Skip to main content

2021 | OriginalPaper | Buchkapitel

Embedding Knowledge Graphs Attentive to Positional and Centrality Qualities

verfasst von : Afshin Sadeghi, Diego Collarana, Damien Graux, Jens Lehmann

Erschienen in: Machine Learning and Knowledge Discovery in Databases. Research Track

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Knowledge graphs embeddings (KGE) are lately at the center of many artificial intelligence studies due to their applicability for solving downstream tasks, including link prediction and node classification. However, most Knowledge Graph embedding models encode, into the vector space, only the local graph structure of an entity, i.e., information of the 1-hop neighborhood. Capturing not only local graph structure but global features of entities are crucial for prediction tasks on Knowledge Graphs. This work proposes a novel KGE method named Graph Feature Attentive Neural Network (GFA-NN) that computes graphical features of entities. As a consequence, the resulting embeddings are attentive to two types of global network features. First, nodes’ relative centrality is based on the observation that some of the entities are more “prominent” than the others. Second, the relative position of entities in the graph. GFA-NN computes several centrality values per entity, generates a random set of reference nodes’ entities, and computes a given entity’s shortest path to each entity in the reference set. It then learns this information through optimization of objectives specified on each of these features. We investigate GFA-NN on several link prediction benchmarks in the inductive and transductive setting and show that GFA-NN achieves on-par or better results than state-of-the-art KGE solutions.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
E.g. (Berlin, CapitalOf, Germany) is a fact stating Berlin is the capital of Germany.
 
Literatur
1.
Zurück zum Zitat Balazevic, I., Allen, C., Hospedales, T.: Tucker: tensor factorization for knowledge graph. In: EMNLP-IJCNLP, pp. 5185–5194 (2019) Balazevic, I., Allen, C., Hospedales, T.: Tucker: tensor factorization for knowledge graph. In: EMNLP-IJCNLP, pp. 5185–5194 (2019)
2.
3.
Zurück zum Zitat Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J., Yakhnenko, O.: Translating embeddings for modeling multi-relational data. In: NIPS, pp. 2787–2795 (2013) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J., Yakhnenko, O.: Translating embeddings for modeling multi-relational data. In: NIPS, pp. 2787–2795 (2013)
4.
Zurück zum Zitat Cai, L., Yan, B., Mai, G., Janowicz, K., Zhu, R.: TransGCN: coupling transformation assumptions with graph convolutional networks for link prediction. In: K-CAP, pp. 131–138. ACM (2019) Cai, L., Yan, B., Mai, G., Janowicz, K., Zhu, R.: TransGCN: coupling transformation assumptions with graph convolutional networks for link prediction. In: K-CAP, pp. 131–138. ACM (2019)
5.
Zurück zum Zitat Dettmers, T., Minervini, P., Stenetorp, P., Riedel, S.: Convolutional 2D knowledge graph embeddings. In: AAAI, pp. 1811–1818 (2018) Dettmers, T., Minervini, P., Stenetorp, P., Riedel, S.: Convolutional 2D knowledge graph embeddings. In: AAAI, pp. 1811–1818 (2018)
6.
Zurück zum Zitat Guo, S., Wang, Q., Wang, L., Wang, B., Guo, L.: Knowledge graph embedding with iterative guidance from soft rules. In: AAAI, pp. 4816–4823 (2018) Guo, S., Wang, Q., Wang, L., Wang, B., Guo, L.: Knowledge graph embedding with iterative guidance from soft rules. In: AAAI, pp. 4816–4823 (2018)
7.
Zurück zum Zitat Hu, W., et al.: Open graph benchmark: datasets for machine learning on graphs. In: NeurIPS (2020) Hu, W., et al.: Open graph benchmark: datasets for machine learning on graphs. In: NeurIPS (2020)
8.
Zurück zum Zitat Katz, L.: A new status index derived from sociometric analysis. Psychometrika 18(1), 39–43 (1953)CrossRef Katz, L.: A new status index derived from sociometric analysis. Psychometrika 18(1), 39–43 (1953)CrossRef
9.
Zurück zum Zitat Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: Bengio, Y., LeCun, Y. (eds.) ICLR (2015) Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: Bengio, Y., LeCun, Y. (eds.) ICLR (2015)
10.
Zurück zum Zitat Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: ICLR (2017) Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: ICLR (2017)
11.
Zurück zum Zitat Lacroix, T., Usunier, N., Obozinski, G.: Canonical tensor decomposition for knowledge base completion. In: ICML, pp. 2863–2872 (2018) Lacroix, T., Usunier, N., Obozinski, G.: Canonical tensor decomposition for knowledge base completion. In: ICML, pp. 2863–2872 (2018)
13.
Zurück zum Zitat Lin, Y., Liu, Z., Sun, M., Liu, Y., Zhu, X.: Learning entity and relation embeddings for knowledge graph completion. In: AAAI, pp. 2181–2187 (2015) Lin, Y., Liu, Z., Sun, M., Liu, Y., Zhu, X.: Learning entity and relation embeddings for knowledge graph completion. In: AAAI, pp. 2181–2187 (2015)
14.
Zurück zum Zitat Luqman, M.M., Ramel, J.Y., Lladós, J., Brouard, T.: Fuzzy multilevel graph embedding. Pattern Recognit. 46(2), 551–565 (2013)CrossRef Luqman, M.M., Ramel, J.Y., Lladós, J., Brouard, T.: Fuzzy multilevel graph embedding. Pattern Recognit. 46(2), 551–565 (2013)CrossRef
15.
Zurück zum Zitat Meilicke, C., Fink, M., Wang, Y., Ruffinelli, D., Gemulla, R., Stuckenschmidt, H.: Fine-grained evaluation of rule- and embedding-based systems for knowledge graph completion. In: ISWC, pp. 3–20 (2018) Meilicke, C., Fink, M., Wang, Y., Ruffinelli, D., Gemulla, R., Stuckenschmidt, H.: Fine-grained evaluation of rule- and embedding-based systems for knowledge graph completion. In: ISWC, pp. 3–20 (2018)
16.
Zurück zum Zitat Ristoski, P., Paulheim, H.: RDF2Vec: RDF graph embeddings for data mining. In: ISWC, pp. 498–514 (2016) Ristoski, P., Paulheim, H.: RDF2Vec: RDF graph embeddings for data mining. In: ISWC, pp. 498–514 (2016)
17.
Zurück zum Zitat Sadeghi, A., Graux, D., Shariat Yazdi, H., Lehmann, J.: MDE: multiple distance embeddings for link prediction in knowledge graphs. In: ECAI (2020) Sadeghi, A., Graux, D., Shariat Yazdi, H., Lehmann, J.: MDE: multiple distance embeddings for link prediction in knowledge graphs. In: ECAI (2020)
18.
Zurück zum Zitat Sadeghian, A., Armandpour, M., Ding, P., Wang, D.Z.: DRUM: end-to-end differentiable rule mining on knowledge graphs. In: NeurIPS, pp. 15321–15331 (2019) Sadeghian, A., Armandpour, M., Ding, P., Wang, D.Z.: DRUM: end-to-end differentiable rule mining on knowledge graphs. In: NeurIPS, pp. 15321–15331 (2019)
19.
Zurück zum Zitat Schlichtkrull, M.S., Kipf, T.N., Bloem, P., van den Berg, R., Titov, I., Welling, M.: Modeling relational data with graph convolutional networks. In: ESWC (2018) Schlichtkrull, M.S., Kipf, T.N., Bloem, P., van den Berg, R., Titov, I., Welling, M.: Modeling relational data with graph convolutional networks. In: ESWC (2018)
20.
Zurück zum Zitat Sun, Z., Deng, Z.H., Nie, J.Y., Tang, J.: RotatE: knowledge graph embedding by relational rotation in complex space. In: ICLR (2019) Sun, Z., Deng, Z.H., Nie, J.Y., Tang, J.: RotatE: knowledge graph embedding by relational rotation in complex space. In: ICLR (2019)
21.
Zurück zum Zitat Teru, K., Denis, E., Hamilton, W.: Inductive relation prediction by subgraph reasoning. In: ICML, pp. 9448–9457 (2020) Teru, K., Denis, E., Hamilton, W.: Inductive relation prediction by subgraph reasoning. In: ICML, pp. 9448–9457 (2020)
22.
Zurück zum Zitat Toutanova, K., Chen, D.: Observed versus latent features for knowledge base and text inference. In: CVSC, pp. 57–66 (2015) Toutanova, K., Chen, D.: Observed versus latent features for knowledge base and text inference. In: CVSC, pp. 57–66 (2015)
23.
Zurück zum Zitat Trouillon, T., Welbl, J., Riedel, S., Gaussier, É., Bouchard, G.: Complex embeddings for simple link prediction. In: ICML, pp. 2071–2080 (2016) Trouillon, T., Welbl, J., Riedel, S., Gaussier, É., Bouchard, G.: Complex embeddings for simple link prediction. In: ICML, pp. 2071–2080 (2016)
24.
Zurück zum Zitat Vashishth, S., Sanyal, S., Nitin, V., Talukdar, P.: Composition-based multi-relational graph convolutional networks. In: ICLR (2020) Vashishth, S., Sanyal, S., Nitin, V., Talukdar, P.: Composition-based multi-relational graph convolutional networks. In: ICLR (2020)
25.
Zurück zum Zitat Vashishth, S., Sanyal, S., Nitin, V., Talukdar, P.P.: Composition-based multi-relational graph convolutional networks. In: ICLR (2020) Vashishth, S., Sanyal, S., Nitin, V., Talukdar, P.P.: Composition-based multi-relational graph convolutional networks. In: ICLR (2020)
26.
Zurück zum Zitat Veira, N., Keng, B., Padmanabhan, K., Veneris, A.G.: Unsupervised embedding enhancements of knowledge graphs using textual associations. In: IJCAI (2019) Veira, N., Keng, B., Padmanabhan, K., Veneris, A.G.: Unsupervised embedding enhancements of knowledge graphs using textual associations. In: IJCAI (2019)
27.
Zurück zum Zitat Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: ICLR (2018) Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: ICLR (2018)
28.
Zurück zum Zitat Wang, W.Y., Cohen, W.W.: Learning first-order logic embeddings via matrix factorization. In: IJCAI, pp. 2132–2138 (2016) Wang, W.Y., Cohen, W.W.: Learning first-order logic embeddings via matrix factorization. In: IJCAI, pp. 2132–2138 (2016)
29.
Zurück zum Zitat Wang, Z., Zhang, J., Feng, J., Chen, Z.: Knowledge graph embedding by translating on hyperplanes. In: AAAI (2014) Wang, Z., Zhang, J., Feng, J., Chen, Z.: Knowledge graph embedding by translating on hyperplanes. In: AAAI (2014)
30.
Zurück zum Zitat Xie, R., Liu, Z., Jia, J., Luan, H., Sun, M.: Representation learning of knowledge graphs with entity descriptions. In: AAAI, pp. 2659–2665 (2016) Xie, R., Liu, Z., Jia, J., Luan, H., Sun, M.: Representation learning of knowledge graphs with entity descriptions. In: AAAI, pp. 2659–2665 (2016)
31.
Zurück zum Zitat Xiong, W., Hoang, T., Wang, W.Y.: DeepPath: a reinforcement learning method for knowledge graph reasoning. In: EMNLP, pp. 564–573 (2017) Xiong, W., Hoang, T., Wang, W.Y.: DeepPath: a reinforcement learning method for knowledge graph reasoning. In: EMNLP, pp. 564–573 (2017)
32.
Zurück zum Zitat Xu, K., Li, C., Tian, Y., Sonobe, T., Kawarabayashi, K., Jegelka, S.: Representation learning on graphs with jumping knowledge networks. In: Dy, J.G., Krause, A. (eds.) ICML, pp. 5449–5458 (2018) Xu, K., Li, C., Tian, Y., Sonobe, T., Kawarabayashi, K., Jegelka, S.: Representation learning on graphs with jumping knowledge networks. In: Dy, J.G., Krause, A. (eds.) ICML, pp. 5449–5458 (2018)
33.
Zurück zum Zitat Yang, B., Yih, W., He, X., Gao, J., Deng, L.: Embedding entities and relations for learning and inference in knowledge bases. In: ICLR (2015) Yang, B., Yih, W., He, X., Gao, J., Deng, L.: Embedding entities and relations for learning and inference in knowledge bases. In: ICLR (2015)
34.
Zurück zum Zitat Yang, F., Yang, Z., Cohen, W.W.: Differentiable learning of logical rules for knowledge base reasoning. In: NeurIPS, pp. 2319–2328 (2017) Yang, F., Yang, Z., Cohen, W.W.: Differentiable learning of logical rules for knowledge base reasoning. In: NeurIPS, pp. 2319–2328 (2017)
35.
Zurück zum Zitat You, J., Ying, R., Leskovec, J.: Position-aware graph neural networks. In: ICML, pp. 7134–7143 (2019) You, J., Ying, R., Leskovec, J.: Position-aware graph neural networks. In: ICML, pp. 7134–7143 (2019)
36.
Zurück zum Zitat Zhang, S., Tay, Y., Yao, L., Liu, Q.: Quaternion knowledge graph embeddings. In: NeurIPS, pp. 2731–2741 (2019) Zhang, S., Tay, Y., Yao, L., Liu, Q.: Quaternion knowledge graph embeddings. In: NeurIPS, pp. 2731–2741 (2019)
Metadaten
Titel
Embedding Knowledge Graphs Attentive to Positional and Centrality Qualities
verfasst von
Afshin Sadeghi
Diego Collarana
Damien Graux
Jens Lehmann
Copyright-Jahr
2021
DOI
https://doi.org/10.1007/978-3-030-86520-7_34

Premium Partner