Skip to main content
Top
Published in: Journal of Materials Science: Materials in Electronics 4/2019

17-01-2019

Employing novel Janus nanobelts to achieve anisotropic conductive array pellicle functionalized by superparamagnetism and green fluorescence

Authors: Xue Xi, Wensheng Yu, Dan Li, Qianli Ma, Xiangting Dong, Jinxian Wang, Guixia Liu

Published in: Journal of Materials Science: Materials in Electronics | Issue 4/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

At present, the nanobelts with coaxial or Janus structure, which provide at most two subareas, have been reported. The nanobelts with more than two subareas have not been proposed. Here, we report the flexible, especial-structured Janus nanobelts array pellicle that has three functions of anisotropically electrical conduction, superparamagnetism and photoluminescence. Each especial-structured Janus nanobelt comprises a photoluminescent-superparamagnetic dual functional [Fe3O4/polymethyl methacrylate (PMMA)]@[Tb(BA)3phen/PMMA] co-axis nanobelt and an adjacent conductive polyaniline (PANI)/PMMA nanobelt. In addition, all the especial-structured Janus nanobelts are ordered in the same orientation to form a two-dimensional (2D) array pellicle. The conduction along the length orientation can reach 108 higher than that in the width orientation (two vertical orientations), and thus, the array pellicle has outstanding anisotropically electric conductance. Moreover, we can adjust the degree of electroconductive anisotropy of the specimens by changing the amount of PANI. Under the 281-nm excitation, the main green light emission at 545 nm was clearly observed in the Janus nanobelts array pellicle. Furthermore, the Janus nanobelts array pellicle also combines with excellent tunable superparamagnetism. The concept and manufacturing technology of the novel Janus nanobelts array pellicle provide a simple method to preparing multifunctional pellicle.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference C.M. Zhang, J. Yang, Z.W. Quan, P.P. Yang, C.X. Li, Z.Y. Hou, J. Lin, Cryst. Growth Des. 9, 2725–2733 (2009)CrossRef C.M. Zhang, J. Yang, Z.W. Quan, P.P. Yang, C.X. Li, Z.Y. Hou, J. Lin, Cryst. Growth Des. 9, 2725–2733 (2009)CrossRef
3.
go back to reference M.J. Yim, K.W. Paik, IEEE T. Comp. Pack. Man. 21, 233–242 (1997) M.J. Yim, K.W. Paik, IEEE T. Comp. Pack. Man. 21, 233–242 (1997)
5.
6.
go back to reference C. Feng, K. Liu, J.S. Wu, L. Liu, J.S. Cheng, Y.Y. Zhang, Y.H. Sun, Q.Q. Li, S.S. Fan, K.L. Jiang, Adv. Funct. Mater. 20, 885–891 (2010)CrossRef C. Feng, K. Liu, J.S. Wu, L. Liu, J.S. Cheng, Y.Y. Zhang, Y.H. Sun, Q.Q. Li, S.S. Fan, K.L. Jiang, Adv. Funct. Mater. 20, 885–891 (2010)CrossRef
7.
go back to reference J.R. Huang, Y.T. Zhu, W. Jiang, Q.X. Tang, ACS Appl. Mater. Interfaces 6, 1754–1758 (2014)CrossRef J.R. Huang, Y.T. Zhu, W. Jiang, Q.X. Tang, ACS Appl. Mater. Interfaces 6, 1754–1758 (2014)CrossRef
8.
9.
go back to reference Q.L. Ma, J.X. Wang, X.T. Dong, W.S. Yu, G.X. Liu, Adv. Funct. Mater. 25, 2436–2443 (2015)CrossRef Q.L. Ma, J.X. Wang, X.T. Dong, W.S. Yu, G.X. Liu, Adv. Funct. Mater. 25, 2436–2443 (2015)CrossRef
10.
go back to reference Q.L. Ma, W.S. Yu, X.T. Dong, M. Yang, J.X. Wang, G.X. Liu, Sci. Rep. 5, 14583 (2015)CrossRef Q.L. Ma, W.S. Yu, X.T. Dong, M. Yang, J.X. Wang, G.X. Liu, Sci. Rep. 5, 14583 (2015)CrossRef
11.
go back to reference L. Han, M.M. Pan, Y. Lv, Y.T. Gu, X.F. Wang, D. Li, Q.L. Kong, X.T. Dong, J. Mater. Sci.-Mater. Eletron. 26, 677–684 (2015)CrossRef L. Han, M.M. Pan, Y. Lv, Y.T. Gu, X.F. Wang, D. Li, Q.L. Kong, X.T. Dong, J. Mater. Sci.-Mater. Eletron. 26, 677–684 (2015)CrossRef
12.
go back to reference X. Xi, Q.L. Ma, M. Yang, X.T. Dong, J.X. Wang, W.S. Yu, G.X. Liu, J. Mater. Sci.-Mater. Eletron. 25, 4024–4032 (2014)CrossRef X. Xi, Q.L. Ma, M. Yang, X.T. Dong, J.X. Wang, W.S. Yu, G.X. Liu, J. Mater. Sci.-Mater. Eletron. 25, 4024–4032 (2014)CrossRef
13.
go back to reference J. Tian, Q.L. Ma, W.S. Yu, X.T. Dong, Y. Yang, B. Zhao, J.X. Wang, G.X. Liu, New J. Chem. 41, 13983–13992 (2017)CrossRef J. Tian, Q.L. Ma, W.S. Yu, X.T. Dong, Y. Yang, B. Zhao, J.X. Wang, G.X. Liu, New J. Chem. 41, 13983–13992 (2017)CrossRef
14.
go back to reference Y.T. Geng, P. Zhang, Q.T. Wang, Y.X. Liu, K. Pan, J. Mater. Chem. B 5, 5390–5396 (2017)CrossRef Y.T. Geng, P. Zhang, Q.T. Wang, Y.X. Liu, K. Pan, J. Mater. Chem. B 5, 5390–5396 (2017)CrossRef
15.
go back to reference C. Luo, X.X. Wang, J.Q. Wang, K. Pan, Compos. Sci. Technol. 133, 97–103 (2016)CrossRef C. Luo, X.X. Wang, J.Q. Wang, K. Pan, Compos. Sci. Technol. 133, 97–103 (2016)CrossRef
16.
go back to reference X.B. Li, Q.L. Ma, J. Tian, X. Xi, D. Li, X.T. Dong, W.S. Yu, X.L. Wang, J.X. Wang, G.X. Liu, Nanoscale 9, 18918–18930 (2017)CrossRef X.B. Li, Q.L. Ma, J. Tian, X. Xi, D. Li, X.T. Dong, W.S. Yu, X.L. Wang, J.X. Wang, G.X. Liu, Nanoscale 9, 18918–18930 (2017)CrossRef
17.
go back to reference N. Lv, Z.G. Wang, W.Z. Bi, G.M. Li, J.L. Zhang, J.Z. Ni, J. Mater. Chem. B 4, 4402–4409 (2016)CrossRef N. Lv, Z.G. Wang, W.Z. Bi, G.M. Li, J.L. Zhang, J.Z. Ni, J. Mater. Chem. B 4, 4402–4409 (2016)CrossRef
18.
go back to reference N. Lv, G.M. Li, X. Wang, J.L. Zhang, J.Z. Ni, J. Phys. Chem. C 121, 11926–11931 (2017)CrossRef N. Lv, G.M. Li, X. Wang, J.L. Zhang, J.Z. Ni, J. Phys. Chem. C 121, 11926–11931 (2017)CrossRef
19.
go back to reference P. Zhang, C.L. Shao, X.H. Li, M.Y. Zhang, X. Zhang, C.Y. Su, N. Lu, K.X. Wang, Y.C. Liu, Phys. Chem. Chem. Phys. 25, 10453–10458 (2013)CrossRef P. Zhang, C.L. Shao, X.H. Li, M.Y. Zhang, X. Zhang, C.Y. Su, N. Lu, K.X. Wang, Y.C. Liu, Phys. Chem. Chem. Phys. 25, 10453–10458 (2013)CrossRef
20.
go back to reference Y.C. Chou, C.L. Shao, X.H. Li, C.Y. Su, H.C. Xu, M.Y. Zhang, P. Zhang, X. Zhang, Y.C. Liu, Appl. Surf. Sci. 285, 509–516 (2013)CrossRef Y.C. Chou, C.L. Shao, X.H. Li, C.Y. Su, H.C. Xu, M.Y. Zhang, P. Zhang, X. Zhang, Y.C. Liu, Appl. Surf. Sci. 285, 509–516 (2013)CrossRef
21.
go back to reference K. Lun, Q.L. Ma, M. Yang, X.T. Dong, Y. Yang, J.X. Wang, W.S. Yu, G.X. Liu, J. Mater. Sci.-Mater. Eletron. 26, 5994–6003 (2015)CrossRef K. Lun, Q.L. Ma, M. Yang, X.T. Dong, Y. Yang, J.X. Wang, W.S. Yu, G.X. Liu, J. Mater. Sci.-Mater. Eletron. 26, 5994–6003 (2015)CrossRef
22.
go back to reference Q.L. Ma, J.X. Wang, X.T. Dong, W.S. Yu, G.X. Liu, Chem. Eng. J. 222, 16–22 (2013)CrossRef Q.L. Ma, J.X. Wang, X.T. Dong, W.S. Yu, G.X. Liu, Chem. Eng. J. 222, 16–22 (2013)CrossRef
23.
go back to reference H. Shao, Q.L. Ma, X.T. Dong, W.S. Yu, M. Yang, J.X. Wang, G.X. Liu, Phys. Chem. Chem. Phys. 17, 21845–21855 (2015)CrossRef H. Shao, Q.L. Ma, X.T. Dong, W.S. Yu, M. Yang, J.X. Wang, G.X. Liu, Phys. Chem. Chem. Phys. 17, 21845–21855 (2015)CrossRef
24.
go back to reference Q.L. Ma, J.X. Wang, X.T. Dong, W.S. Yu, G.X. Liu, Nanoscale 6, 2945–2952 (2014)CrossRef Q.L. Ma, J.X. Wang, X.T. Dong, W.S. Yu, G.X. Liu, Nanoscale 6, 2945–2952 (2014)CrossRef
25.
go back to reference X. Xi, J.X. Wang, X.T. Dong, Q.L. Ma, W.S. Yu, G.X. Liu, Chem. Eng. J. 254, 259–267 (2014)CrossRef X. Xi, J.X. Wang, X.T. Dong, Q.L. Ma, W.S. Yu, G.X. Liu, Chem. Eng. J. 254, 259–267 (2014)CrossRef
26.
go back to reference X. Xi, Q.L. Ma, X.T. Dong, D. Li, W.S. Yu, J.X. Wang, G.X. Liu, J. Mater. Sci.-Mater. Eletron. 29, 7119–7129 (2018)CrossRef X. Xi, Q.L. Ma, X.T. Dong, D. Li, W.S. Yu, J.X. Wang, G.X. Liu, J. Mater. Sci.-Mater. Eletron. 29, 7119–7129 (2018)CrossRef
Metadata
Title
Employing novel Janus nanobelts to achieve anisotropic conductive array pellicle functionalized by superparamagnetism and green fluorescence
Authors
Xue Xi
Wensheng Yu
Dan Li
Qianli Ma
Xiangting Dong
Jinxian Wang
Guixia Liu
Publication date
17-01-2019
Publisher
Springer US
Published in
Journal of Materials Science: Materials in Electronics / Issue 4/2019
Print ISSN: 0957-4522
Electronic ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-019-00713-6

Other articles of this Issue 4/2019

Journal of Materials Science: Materials in Electronics 4/2019 Go to the issue