Skip to main content
Top

2017 | OriginalPaper | Chapter

4. Energy and Bandwidth-Efficient Modulation

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In addition to the requirement of high spectral efficiency, power (or energy) efficiency—equivalent to battery life—is another important requirement for modulation techniques. In some applications, such as mobile handset devices, portable devices, and even satellite communication equipment, energy efficiency is crucial to achieve longer battery life or longer communication time. In these applications, to maintain minimum DC power consumption by power amplifiers, the power amplifier must operate in or close to the saturation region to maximize energy efficiency or minimize DC power consumption because the minimum DC current consumption occurs in a saturation region. However, a saturated amplifier introduces amplitude modulation to amplitude modulation (AM/AM) and amplitude modulation to phase modulation (AM/PM) conversions into the amplified signal, which is usually the amplitude- and phase-modulated signal. If such an input signal to a power amplifier that operates in or close to a saturated condition is a non-constant envelope modulation signal, its output will be affected by the AM/AM and AM/PM conversions. As a result, a nonlinearly amplified signal at the output of the power amplifier is affected by spectrum regrowth such that its output signal cannot meet the required spectrum mask or adjacent channel power ratio (ACPR) imposed by different standards and its error vector magnitude (EVM) is degraded as well. Thus, requirements of both energy efficiency and ACPR or spectrum efficiency impose constant or nearly constant envelope characteristics on the modulated signal to the power amplifier.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Proakis, J. G. (1995). Digital communications (3rd ed.). New York, NY: McGraw-Hill Inc.MATH Proakis, J. G. (1995). Digital communications (3rd ed.). New York, NY: McGraw-Hill Inc.MATH
2.
go back to reference Simon, M. K. (2001). Bandwidth-efficient digital modulation with application to deep-space communications (Deep-space communications and navigation series). New York, NY: John Wiley & Sons Inc. Simon, M. K. (2001). Bandwidth-efficient digital modulation with application to deep-space communications (Deep-space communications and navigation series). New York, NY: John Wiley & Sons Inc.
3.
go back to reference Murota, K., & Hirade, K. (1981, July). GMSK modulation for digital mobile radio telephony. IEEE Transactions on Communications, 29(7), 1044–1050. Murota, K., & Hirade, K. (1981, July). GMSK modulation for digital mobile radio telephony. IEEE Transactions on Communications, 29(7), 1044–1050.
4.
go back to reference Feher, K. (1995). Wireless and digital communications; modulation & spread spectrum applications. Upper Saddle River, NJ: Prentice-Hall PTR. Feher, K. (1995). Wireless and digital communications; modulation & spread spectrum applications. Upper Saddle River, NJ: Prentice-Hall PTR.
5.
go back to reference Gao, W., Soderstrand, M., & Feher, K (1995, May). Gaussian filter screens TDMA and frequency-hopping spread-spectrum signals. Microwave & RF (pp. 17–20). Gao, W., Soderstrand, M., & Feher, K (1995, May). Gaussian filter screens TDMA and frequency-hopping spread-spectrum signals. Microwave & RF (pp. 17–20).
6.
go back to reference Feher, K., & Kato, S. U.S. patents: 4,567,602; 4,339,724; 4,644,565; 5,784,402; 5,491,457. Canadian patents: 1,211,517; 1,130,871; 1,265,851. Feher, K., & Kato, S. U.S. patents: 4,567,602; 4,339,724; 4,644,565; 5,784,402; 5,491,457. Canadian patents: 1,211,517; 1,130,871; 1,265,851.
7.
go back to reference Seo, J. S., & Feher, K. (1985, May). SQAM: A new superposed QAM modem technique. Transactions on Communications, COM-33(3), 296–300. Seo, J. S., & Feher, K. (1985, May). SQAM: A new superposed QAM modem technique. Transactions on Communications, COM-33(3), 296–300.
8.
go back to reference Kato, S., & Feher, K (1983, May). XPSK: A new cross-correlated phase shift keying modulation technique. IEEE Transactions on Communications, COM-31(5), 701–707. Kato, S., & Feher, K (1983, May). XPSK: A new cross-correlated phase shift keying modulation technique. IEEE Transactions on Communications, COM-31(5), 701–707.
9.
go back to reference Telemetry Group. (2004, May). Telemetry Standards, IRIG Standard 106-04. Telemetry Group. (2004, May). Telemetry Standards, IRIG Standard 106-04.
10.
go back to reference Simon, M. K., & Wang, C. C. (1984, November). Differential detection of Gaussian MSK in a mobile radio environment. IEEE Transactions on Vehicular Technology, VT-33(4), 307–320. Simon, M. K., & Wang, C. C. (1984, November). Differential detection of Gaussian MSK in a mobile radio environment. IEEE Transactions on Vehicular Technology, VT-33(4), 307–320.
11.
go back to reference Sato, Y. (1975, June). A method of self-recovering equalization for multilevel amplitude modulation systems. IEEE Transactions on Communications, COM-23, 679–682. Sato, Y. (1975, June). A method of self-recovering equalization for multilevel amplitude modulation systems. IEEE Transactions on Communications, COM-23, 679–682.
12.
go back to reference Godard, D. N. (1980, November). Self-recovering equalization and carrier tracking in two dimensional data communication systems. IEEE Transactions on Communications, COM-28, 1867–1875. Godard, D. N. (1980, November). Self-recovering equalization and carrier tracking in two dimensional data communication systems. IEEE Transactions on Communications, COM-28, 1867–1875.
13.
go back to reference Treichler, J. R., et al. (1983, April). A new approach to multipath correction of constant modulus signals. IEEE Transactions on Acoustics, Speech, and Signal Processing, ASSP-31(2), 459–472. Treichler, J. R., et al. (1983, April). A new approach to multipath correction of constant modulus signals. IEEE Transactions on Acoustics, Speech, and Signal Processing, ASSP-31(2), 459–472.
14.
go back to reference Pasupathy, S. (1979, July). Minimum shift keying: A spectrally efficient modulation. IEEE Communications Magazine (pp. 14–22). Pasupathy, S. (1979, July). Minimum shift keying: A spectrally efficient modulation. IEEE Communications Magazine (pp. 14–22).
15.
go back to reference Gao, W., & Feher, K. (1996, March). All digital reverse modulation architecture based carrier recovery implementation for GMSK and compatible FQPSK. IEEE Transaction on Broadcasting, 42(1), 55–62. Gao, W., & Feher, K. (1996, March). All digital reverse modulation architecture based carrier recovery implementation for GMSK and compatible FQPSK. IEEE Transaction on Broadcasting, 42(1), 55–62.
16.
go back to reference Spilker, J. J., Jr. (1977). Digital communication by satellite (pp. 31–312). Englewood Cliffs, NJ: Prentice-Hall, Inc. Spilker, J. J., Jr. (1977). Digital communication by satellite (pp. 31–312). Englewood Cliffs, NJ: Prentice-Hall, Inc.
17.
go back to reference Cavers, J. (1991, May). Performance of tone calibration with frequency offset and imperfect pilot filter. IEEE Transactions on Vehicular Technology, VT-40, 426–434. Cavers, J. (1991, May). Performance of tone calibration with frequency offset and imperfect pilot filter. IEEE Transactions on Vehicular Technology, VT-40, 426–434.
18.
go back to reference Jain, P. K. (2004, December). Regenerate coherent carriers from PSK signals. Microwaves & RF (pp. 52–68). Jain, P. K. (2004, December). Regenerate coherent carriers from PSK signals. Microwaves & RF (pp. 52–68).
19.
go back to reference Weber, C. L., & Alem, W. K. (1980, December). Demod-remod coherent tracking receiver for QPSK and SQPSK. IEEE Transactions on Communications, COM-28(12), 1945–1954. Weber, C. L., & Alem, W. K. (1980, December). Demod-remod coherent tracking receiver for QPSK and SQPSK. IEEE Transactions on Communications, COM-28(12), 1945–1954.
20.
go back to reference Morihiro, Y., Nakajima, S., & Furuya, N. (1979, October). A 100 Mbit/s prototype MSK modem for satellite communications. IEEE Transactions on Communications, COM-27(10), 1512–1518. Morihiro, Y., Nakajima, S., & Furuya, N. (1979, October). A 100 Mbit/s prototype MSK modem for satellite communications. IEEE Transactions on Communications, COM-27(10), 1512–1518.
21.
go back to reference Kaleh, G. K. (1989, December). Simple coherent receivers for partial response continuous phase modulation. IEEE Journal on Selected Areas in Communications, 7(9), 1427–1436. Kaleh, G. K. (1989, December). Simple coherent receivers for partial response continuous phase modulation. IEEE Journal on Selected Areas in Communications, 7(9), 1427–1436.
22.
go back to reference Anderson, J. B., Aulin, T., & Sundberg, C. E. (1986). Digital phase modulation. New York, NY: Plenum.CrossRef Anderson, J. B., Aulin, T., & Sundberg, C. E. (1986). Digital phase modulation. New York, NY: Plenum.CrossRef
23.
go back to reference Liu, G. L. (1998, October). Threshold detection performance of GMSK signal with BTb = 0.5. MILCOM’98 Conference Proceedings, 2, 515–519. Liu, G. L. (1998, October). Threshold detection performance of GMSK signal with BTb = 0.5. MILCOM’98 Conference Proceedings, 2, 515–519.
24.
go back to reference Laurent, P. A. (1986, February). Exact and approximate construction of digital phase modulations by superposition of amplitude modulated pulse. IEEE Transactions on Communications, COM-34(2), 150–160. Laurent, P. A. (1986, February). Exact and approximate construction of digital phase modulations by superposition of amplitude modulated pulse. IEEE Transactions on Communications, COM-34(2), 150–160.
25.
go back to reference Costas, J. P. (1956). Synchronous communications. Proceedings of the IRE, 44, 1713–1718.CrossRef Costas, J. P. (1956). Synchronous communications. Proceedings of the IRE, 44, 1713–1718.CrossRef
26.
go back to reference Holmes, J. K. (1982). Coherent spread spectrum systems. New York, NY: John Wiley & Sons Inc. Holmes, J. K. (1982). Coherent spread spectrum systems. New York, NY: John Wiley & Sons Inc.
27.
go back to reference Chung, B. Y., et al. (1993, September). Performance analysis of an all-digital BPSK direct-sequence spread-spectrum IF receiver architecture. IEEE Journal on Selected Areas in Communications, 11(7), 1096–1107. Chung, B. Y., et al. (1993, September). Performance analysis of an all-digital BPSK direct-sequence spread-spectrum IF receiver architecture. IEEE Journal on Selected Areas in Communications, 11(7), 1096–1107.
28.
go back to reference Gardner, F. M. (1979). Phase lock techniques. New York, NY: Jon Wiley & Sons Inc. Gardner, F. M. (1979). Phase lock techniques. New York, NY: Jon Wiley & Sons Inc.
29.
go back to reference Lee, E. A., & Messerschmitt, D. G. (1994). Digital communication. Norwell, MA: Kluwer Academic Publishers.CrossRef Lee, E. A., & Messerschmitt, D. G. (1994). Digital communication. Norwell, MA: Kluwer Academic Publishers.CrossRef
30.
go back to reference GSM 05.05 version 8.5.1 Release 1999. Digital Cellular Telecommunications Systems (Phase 2+); Radio Transmission and Reception. ETSI EN 300 910 V8.5.1 (2000-11). GSM 05.05 version 8.5.1 Release 1999. Digital Cellular Telecommunications Systems (Phase 2+); Radio Transmission and Reception. ETSI EN 300 910 V8.5.1 (2000-11).
31.
go back to reference Weldon, J. A., Narayanaswami, R. S., Rudell, J. C., Lin, L., Otsuka, M., & Dedieu, S. (2001, December). A 1.75 GHz highly integrated narrow-band CMOS transmitter with harmonic-rejection mixers. IEEE Journal of Solid-State Circuits, 36(12), 2003–2015. Weldon, J. A., Narayanaswami, R. S., Rudell, J. C., Lin, L., Otsuka, M., & Dedieu, S. (2001, December). A 1.75 GHz highly integrated narrow-band CMOS transmitter with harmonic-rejection mixers. IEEE Journal of Solid-State Circuits, 36(12), 2003–2015.
32.
go back to reference Stetzler, T. D., Post, I. G., Havens, J. H., & Koyama, M. (1995, December). A 2.7-4.5V single chip GSM transceiver RF integrated circuit. IEEE Journal of Solid-State Circuits, 30, 1421–1429. Stetzler, T. D., Post, I. G., Havens, J. H., & Koyama, M. (1995, December). A 2.7-4.5V single chip GSM transceiver RF integrated circuit. IEEE Journal of Solid-State Circuits, 30, 1421–1429.
33.
go back to reference Tham, J. I., et al. (March 1999). A 2.7V 900 MHz/1.9 GHz dual band transceiver IC for digital wireless communication. IEEE Journal of Solid-State Circuit, 34(3), 286–291. Tham, J. I., et al. (March 1999). A 2.7V 900 MHz/1.9 GHz dual band transceiver IC for digital wireless communication. IEEE Journal of Solid-State Circuit, 34(3), 286–291.
34.
go back to reference LMX3162 data sheet, National Semiconductor Corporation, January 2000. LMX3162 data sheet, National Semiconductor Corporation, January 2000.
35.
go back to reference Heinen, S., Beyer, S., & Fenk, J. (1995, February). A 3.0V 2 GHz transmitter IC for digital radio communication with integrated VCO’s. Proceedings of the IEEE International Solid-State Circuits Conference (pp. 150–151). Heinen, S., Beyer, S., & Fenk, J. (1995, February). A 3.0V 2 GHz transmitter IC for digital radio communication with integrated VCO’s. Proceedings of the IEEE International Solid-State Circuits Conference (pp. 150–151).
36.
go back to reference Razavi, B. (2003). RF microelectronics. Taiwan: Pearson Education. Razavi, B. (2003). RF microelectronics. Taiwan: Pearson Education.
37.
go back to reference Goldberg, B. (1999, June). Analog and digital fractional-N PLL frequency synthesis: A survey and update. Applied Microwave & Wireless (pp. 32–42). Goldberg, B. (1999, June). Analog and digital fractional-N PLL frequency synthesis: A survey and update. Applied Microwave & Wireless (pp. 32–42).
38.
go back to reference Riley, T. A. D., & Copeland, M. A. (1994, May). A simplified continuous phase modulator. IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, 41(5), 321–328. Riley, T. A. D., & Copeland, M. A. (1994, May). A simplified continuous phase modulator. IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, 41(5), 321–328.
39.
go back to reference Vandegraff, J. J. (1989, September 12). Phase locked frequency synthesizer with single input wideband modulation systems. US Patent 4,866,404. Vandegraff, J. J. (1989, September 12). Phase locked frequency synthesizer with single input wideband modulation systems. US Patent 4,866,404.
40.
go back to reference Perrott, M. H., Tewksbury, T. L., & Sodini, C. G. (1997, December). A 27-mW CMOS fractional-N synthesizer using digital compensation for 2.5 Mbit/s GFSK modulation. IEEE Journal of Solid-State Circuits, 32(12), 2048–2060. Perrott, M. H., Tewksbury, T. L., & Sodini, C. G. (1997, December). A 27-mW CMOS fractional-N synthesizer using digital compensation for 2.5 Mbit/s GFSK modulation. IEEE Journal of Solid-State Circuits, 32(12), 2048–2060.
41.
go back to reference Bax, W. T., & Copeland, M. A. (2001, August). A GMSK modulator using a Δ∑ frequency discriminator based synthesizer. IEEE Journal of Solid-State Circuits, 36(8), 1218–1227. Bax, W. T., & Copeland, M. A. (2001, August). A GMSK modulator using a Δ∑ frequency discriminator based synthesizer. IEEE Journal of Solid-State Circuits, 36(8), 1218–1227.
42.
go back to reference Lee, S. T. (2003). Quad-band global system for mobile communications complementary metal-oxide-semiconductor transmitter. Doctor’s dissertation, University of Washington. Lee, S. T. (2003). Quad-band global system for mobile communications complementary metal-oxide-semiconductor transmitter. Doctor’s dissertation, University of Washington.
43.
go back to reference McMahil, D. R., & Sodini, C. G. (2001). Automatic calibration of modulated ∑−Δ frequency synthesizers. Symposium on VLSI Circuits Digest of Technical Papers (pp. 51–54). McMahil, D. R., & Sodini, C. G. (2001). Automatic calibration of modulated ∑−Δ frequency synthesizers. Symposium on VLSI Circuits Digest of Technical Papers (pp. 51–54).
44.
go back to reference McMahill, D. R., & Sodini, C. G. (2002, January). A 2.5 Mb/s GFSK 5 Mb/s 4-FSK automatically calibrated ∑−Δ frequency synthesizer. IEEE Journal of Solid-State Circuits, 37(1), 18–26. McMahill, D. R., & Sodini, C. G. (2002, January). A 2.5 Mb/s GFSK 5 Mb/s 4-FSK automatically calibrated ∑−Δ frequency synthesizer. IEEE Journal of Solid-State Circuits, 37(1), 18–26.
45.
go back to reference Lee, T. H., & Bulzacchelli, J. F. (1992, December). A 155 MHz clock recovery delay- and phase-locked loop. IEEE Journal of Solid-State Circuits, 27(12), 1736–1746. Lee, T. H., & Bulzacchelli, J. F. (1992, December). A 155 MHz clock recovery delay- and phase-locked loop. IEEE Journal of Solid-State Circuits, 27(12), 1736–1746.
46.
go back to reference Yamawaki, T., Kokubo, M., Irie, K., Matsui, H., Hori, K., Endou, T., et al. (1997, December). A 2.7V GSM RF transceiver IC. IEEE Journal of Solid-State Circuit, 32(12), 2089–2096. Yamawaki, T., Kokubo, M., Irie, K., Matsui, H., Hori, K., Endou, T., et al. (1997, December). A 2.7V GSM RF transceiver IC. IEEE Journal of Solid-State Circuit, 32(12), 2089–2096.
47.
go back to reference Imine, G., Herzinger, S., Schmidtz, R., Kubetzko, D., & Fenk, J. (1998, February). An up-conversion loop transmitter IC for digital mobile telephones. ISSCC Digest of Technical Papers (pp. 364–365). Imine, G., Herzinger, S., Schmidtz, R., Kubetzko, D., & Fenk, J. (1998, February). An up-conversion loop transmitter IC for digital mobile telephones. ISSCC Digest of Technical Papers (pp. 364–365).
48.
go back to reference Tham, J. L., Margarit, M. A., Pregardier, B., Hull, C. D., Magoon, R., & Carr, F. (1999, March). A 2.7V 900 MHz/1.9 GHz dual-band transceiver IC for digital wireless communication. IEEE Journal of Solid-State Circuit, 34(3), 286–291. Tham, J. L., Margarit, M. A., Pregardier, B., Hull, C. D., Magoon, R., & Carr, F. (1999, March). A 2.7V 900 MHz/1.9 GHz dual-band transceiver IC for digital wireless communication. IEEE Journal of Solid-State Circuit, 34(3), 286–291.
49.
go back to reference Molnar, A., Magoon, R., Zachan, J., Hatcher, G., & Rhee, W. (2002, February). A single-chip quad-band (850/900/1800/1900 MHz) direct conversion GSM/GPRS RF transceiver with integrated VCOs and fractional-N synthesizer. ISSCC Digest of Technical Papers (pp. 184–185). Molnar, A., Magoon, R., Zachan, J., Hatcher, G., & Rhee, W. (2002, February). A single-chip quad-band (850/900/1800/1900 MHz) direct conversion GSM/GPRS RF transceiver with integrated VCOs and fractional-N synthesizer. ISSCC Digest of Technical Papers (pp. 184–185).
50.
go back to reference Song, E., Koo, Y., Jung, Y.-J., Lee, D.-H., Chu, S., & Chae, S.-I. (2005, May). A 0.25 μm CMOS Quad-Band GSM RF transceiver using an efficient LO frequency plan. IEEE Journal of Solid-State Circuits, 40(5), 1094–1106. Song, E., Koo, Y., Jung, Y.-J., Lee, D.-H., Chu, S., & Chae, S.-I. (2005, May). A 0.25 μm CMOS Quad-Band GSM RF transceiver using an efficient LO frequency plan. IEEE Journal of Solid-State Circuits, 40(5), 1094–1106.
51.
go back to reference Durrant, M., & Nitschke, A. (2005, May). Design considerations for an ultra-compact GSM radio solution. RF Design (pp. 46–54). Durrant, M., & Nitschke, A. (2005, May). Design considerations for an ultra-compact GSM radio solution. RF Design (pp. 46–54).
52.
go back to reference Data sheet (2001, December 3). CX74017 RF transceiver for multi-band GSM/GPRS/EDGE applications, Conexant. Data sheet (2001, December 3). CX74017 RF transceiver for multi-band GSM/GPRS/EDGE applications, Conexant.
53.
go back to reference Strange, J., & Atkinson, S. (2000, June). A direct conversion transceiver for multi-band GSM application. Proceedings of IEEE RFIC Symposium (pp. 25–28). Strange, J., & Atkinson, S. (2000, June). A direct conversion transceiver for multi-band GSM application. Proceedings of IEEE RFIC Symposium (pp. 25–28).
54.
go back to reference Cipriani, S., Carpineto, L., Bisanti, B., Hogervorst, I. R., Puccio, G., & Mouralis, N. (2002). Fully integrated zero IF transceiver for GPRS/GSM/DCS/PCS application. ESSCIRC 2002 (pp. 439–442). Cipriani, S., Carpineto, L., Bisanti, B., Hogervorst, I. R., Puccio, G., & Mouralis, N. (2002). Fully integrated zero IF transceiver for GPRS/GSM/DCS/PCS application. ESSCIRC 2002 (pp. 439–442).
Metadata
Title
Energy and Bandwidth-Efficient Modulation
Author
Wei Gao
Copyright Year
2017
DOI
https://doi.org/10.1007/978-3-319-44222-8_4