Skip to main content
Top

2021 | OriginalPaper | Chapter

Energy-Based Topology Optimization Under Stochastic Seismic Ground Motion: Preliminary Framework

Authors : Giulia Angelucci, Giuseppe Quaranta, Fabrizio Mollaioli

Published in: Energy-Based Seismic Engineering

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The growing availability of suitable computational resources to support the design of complex and large buildings makes the topology optimization more and more attractive to achieve high structural performances while reducing the use of building materials and thus cutting the total costs. In case of buildings under dynamic loads, displacement- and acceleration-based criteria are most commonly employed in topology optimization for preventing damage in structural components and protecting high-frequency sensitive non-structural components, respectively. The present work introduces the energy-based topology optimization of large structures as a more effective design approach to mitigate damage due to earthquake. The inherent randomness of the seismic excitation is taken into account by means of the random vibration theory, in such a way to avoid the direct integration of the motion equations for a large number of records. Topology optimization is performed via Solid Isotropic Material with Penalization (SIMP) method and resorting to an analytical evaluation of the gradient. A stationary-type stochastic seismic ground motion is considered in the preliminary framework presented in this study, whereas the final case study here discussed is concerned the search of the optimal layout for a lateral resisting system in a multi-story building subjected to earthquake.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Sigmund, O.: A 99 line topology optimization code written in Matlab. Struct. Multidiscip. Optim. 21(2), 120–127 (2001)CrossRef Sigmund, O.: A 99 line topology optimization code written in Matlab. Struct. Multidiscip. Optim. 21(2), 120–127 (2001)CrossRef
2.
go back to reference Stromberg, L.L., Beghini, A., Baker, W.F., Paulino, G.H.: Topology optimization for braced frames: combining continuum and beam/column elements. Eng. Struct. 37, 106–124 (2012)CrossRef Stromberg, L.L., Beghini, A., Baker, W.F., Paulino, G.H.: Topology optimization for braced frames: combining continuum and beam/column elements. Eng. Struct. 37, 106–124 (2012)CrossRef
3.
go back to reference Talischi, C., Paulino, G.H., Pereira, A., Menezes, I.F.M.: PolyTop: a Matlab implementation of a general topology optimization framework using unstructured polygonal finite element meshes. Struct. Multidiscip. Optim. 45(3), 329–357 (2012)MathSciNetMATHCrossRef Talischi, C., Paulino, G.H., Pereira, A., Menezes, I.F.M.: PolyTop: a Matlab implementation of a general topology optimization framework using unstructured polygonal finite element meshes. Struct. Multidiscip. Optim. 45(3), 329–357 (2012)MathSciNetMATHCrossRef
4.
go back to reference Liu, K., Tovar, A.: An efficient 3D topology optimization code written in Matlab. Struct. Multidiscip. Optim. 50(6), 1175–1196 (2014)MathSciNetCrossRef Liu, K., Tovar, A.: An efficient 3D topology optimization code written in Matlab. Struct. Multidiscip. Optim. 50(6), 1175–1196 (2014)MathSciNetCrossRef
5.
go back to reference Angelucci, G., Spence, S.M.J., Mollaioli, F.: An integrated topology optimization framework for three-dimensional domains using shell elements. Struct. Des. Tall Special Build. 30(1), 1–17 (2021)CrossRef Angelucci, G., Spence, S.M.J., Mollaioli, F.: An integrated topology optimization framework for three-dimensional domains using shell elements. Struct. Des. Tall Special Build. 30(1), 1–17 (2021)CrossRef
6.
go back to reference Díaaz, A.R., Kikuchi, N.: Solutions to shape and topology eigenvalue optimization problems using a homogenization method. Int. J. Numer. Methods Eng. 35(7), 1487–1502 (1992)MathSciNetMATHCrossRef Díaaz, A.R., Kikuchi, N.: Solutions to shape and topology eigenvalue optimization problems using a homogenization method. Int. J. Numer. Methods Eng. 35(7), 1487–1502 (1992)MathSciNetMATHCrossRef
7.
go back to reference Seyranian, A.P., Lund, E., Olhoff, N.: Multiple eigenvalues in structural optimization problems. Struct. Optim. 8(4), 207–227 (1994)CrossRef Seyranian, A.P., Lund, E., Olhoff, N.: Multiple eigenvalues in structural optimization problems. Struct. Optim. 8(4), 207–227 (1994)CrossRef
8.
go back to reference Pedersen, N.L.: Maximization of eigenvalues using topology optimization. Struct. Multidiscip. Optim. 20(1), 2–11 (2000)CrossRef Pedersen, N.L.: Maximization of eigenvalues using topology optimization. Struct. Multidiscip. Optim. 20(1), 2–11 (2000)CrossRef
9.
go back to reference Yoon, G.H.: Structural topology optimization for frequency response problem using model reduction schemes. Comput. Methods Appl. Mech. Eng. 199(25–28), 1744–1763 (2010)MathSciNetMATHCrossRef Yoon, G.H.: Structural topology optimization for frequency response problem using model reduction schemes. Comput. Methods Appl. Mech. Eng. 199(25–28), 1744–1763 (2010)MathSciNetMATHCrossRef
10.
go back to reference Min, S., Kikuchi, N., Park, Y.C., Kim, S., Chang, S.: Optimal topology design of structures under dynamic loads. Struct. Optim. 17(2–3), 208–218 (1999) Min, S., Kikuchi, N., Park, Y.C., Kim, S., Chang, S.: Optimal topology design of structures under dynamic loads. Struct. Optim. 17(2–3), 208–218 (1999)
11.
go back to reference Maeda, Y., Nishiwaki, S., Izui, K., Yoshimura, M., Matsui, K., Terada, K.: Structural topology optimization of vibrating structures with specified eigenfrequencies and eigenmode shapes. Int. J. Numer. Methods Eng. 67(5), 597–628 (2006)MathSciNetMATHCrossRef Maeda, Y., Nishiwaki, S., Izui, K., Yoshimura, M., Matsui, K., Terada, K.: Structural topology optimization of vibrating structures with specified eigenfrequencies and eigenmode shapes. Int. J. Numer. Methods Eng. 67(5), 597–628 (2006)MathSciNetMATHCrossRef
12.
go back to reference Filipov, E.T., Chun, J., Paulino, G.H., Song, J.: Polygonal multiresolution topology optimization (PolyMTOP) for structural dynamics. Struct. Multidiscip. Optim. 53(4), 673–694 (2016)CrossRef Filipov, E.T., Chun, J., Paulino, G.H., Song, J.: Polygonal multiresolution topology optimization (PolyMTOP) for structural dynamics. Struct. Multidiscip. Optim. 53(4), 673–694 (2016)CrossRef
13.
go back to reference Greene, W.H., Haftka, R.T.: Computational aspects of sensitivity calculations in linear transient structural analysis. Struct. Optim. 3(3), 176–201 (1991)CrossRef Greene, W.H., Haftka, R.T.: Computational aspects of sensitivity calculations in linear transient structural analysis. Struct. Optim. 3(3), 176–201 (1991)CrossRef
14.
go back to reference Zhao, J., Wang, C.: Dynamic response topology optimization in the time domain using model reduction method. Struct. Multidiscip. Optim. 53(1), 101–114 (2016)MathSciNetCrossRef Zhao, J., Wang, C.: Dynamic response topology optimization in the time domain using model reduction method. Struct. Multidiscip. Optim. 53(1), 101–114 (2016)MathSciNetCrossRef
15.
go back to reference Angelucci, G., Mollaioli, F., AlShawa, O.: Evaluation of optimal lateral resisting systems for tall buildings subject to horizontal loads. Procedia Manuf. 44, 457–464 (2020)CrossRef Angelucci, G., Mollaioli, F., AlShawa, O.: Evaluation of optimal lateral resisting systems for tall buildings subject to horizontal loads. Procedia Manuf. 44, 457–464 (2020)CrossRef
16.
go back to reference Yang, Y., Zhu, M., Shields, M.D., Guest, J.K.: Topology optimization of continuum structures subjected to filtered white noise stochastic excitations. Comput. Methods Appl. Mech. Eng. 324, 438–456 (2017)MathSciNetMATHCrossRef Yang, Y., Zhu, M., Shields, M.D., Guest, J.K.: Topology optimization of continuum structures subjected to filtered white noise stochastic excitations. Comput. Methods Appl. Mech. Eng. 324, 438–456 (2017)MathSciNetMATHCrossRef
17.
go back to reference Zhu, M., Yang, Y., Guest, J.K., Shields, M.D.: Topology optimization for linear stationary stochastic dynamics: applications to frame structures. Struct. Saf. 67, 116–131 (2017)CrossRef Zhu, M., Yang, Y., Guest, J.K., Shields, M.D.: Topology optimization for linear stationary stochastic dynamics: applications to frame structures. Struct. Saf. 67, 116–131 (2017)CrossRef
18.
go back to reference Chun, J., Song, J., Paulino, G.H.: System-reliability-based design and topology optimization of structures under constraints on first-passage probability. Struct. Saf. 76, 81–94 (2019)CrossRef Chun, J., Song, J., Paulino, G.H.: System-reliability-based design and topology optimization of structures under constraints on first-passage probability. Struct. Saf. 76, 81–94 (2019)CrossRef
19.
go back to reference Kang, B.S., Park, G.J., Arora, J.S.: A review of optimization of structures subjected to transient loads. Struct. Multidiscip. Optim. 31(2), 81–95 (2006)MathSciNetMATHCrossRef Kang, B.S., Park, G.J., Arora, J.S.: A review of optimization of structures subjected to transient loads. Struct. Multidiscip. Optim. 31(2), 81–95 (2006)MathSciNetMATHCrossRef
20.
go back to reference Liu, Z., Liu, W., Peng, Y.: Random function based spectral representation of stationary and non-stationary stochastic processes. Probab. Eng. Mech. 45, 115–126 (2016)CrossRef Liu, Z., Liu, W., Peng, Y.: Random function based spectral representation of stationary and non-stationary stochastic processes. Probab. Eng. Mech. 45, 115–126 (2016)CrossRef
21.
go back to reference Bendsøe, M.P., Sigmund, O.: Material interpolation schemes in topology optimization. Arch. Appl. Mech. 69(9), 635–654 (1999)MATH Bendsøe, M.P., Sigmund, O.: Material interpolation schemes in topology optimization. Arch. Appl. Mech. 69(9), 635–654 (1999)MATH
Metadata
Title
Energy-Based Topology Optimization Under Stochastic Seismic Ground Motion: Preliminary Framework
Authors
Giulia Angelucci
Giuseppe Quaranta
Fabrizio Mollaioli
Copyright Year
2021
DOI
https://doi.org/10.1007/978-3-030-73932-4_14