Skip to main content
Top
Published in: Telecommunication Systems 4/2021

29-10-2020

Energy efficiency optimization for amplify and forward relay networks with channel estimation errors

Authors: Foroogh S. Tabataba, Parisa Rouhani, Mohammad Koolivand

Published in: Telecommunication Systems | Issue 4/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Due to the rapidly increasing energy consumption of the wireless communication systems, designing an energy-efficient system has become an important challenge. One can consider cooperative communication as a promising solution to reduce energy consumed by wireless networks. Hence, in this paper, we study the problem of maximizing energy efficiency by optimally allocating power in three cooperative channel scenarios. Unlike the previous works, imperfect channel state information is considered for all channels. Therefore, energy efficiency functions are derived considering channel estimation errors, and the following optimization problems are formulated to maximize the energy efficiency under the maximum transmission power and the minimum spectral efficiency constraints. Regarding the energy efficiency function behavior, an alternating optimization algorithm is used to find pilot and data transmission power at the source node. It also optimizes the power amplification gain of pilot and data at the relay node. Simulation results demonstrate that the imperfect channel state information condition can degrade the energy efficiency performance significantly. However, using the proposed power allocation method can improve the performance and compensate for the negative effect of channel estimation error. Moreover, the effect of circuit power on the optimal energy efficiency is investigated. It is shown that for a lower range of spectral efficiency, the negative effect of circuit power is greater than the channel estimation error’s negative effect, while for the higher values, the estimation error dominates the circuit power. We also observe that the results obtained from the proposed power allocation algorithms are close to the results of the global search method.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Zujun, L., Li, J., & Sun, D. (2017). Circuit power consumption-unaware energy efficiency optimization for massive MIMO systems. IEEE Wireless Communications Letters, 6, 370–373.CrossRef Zujun, L., Li, J., & Sun, D. (2017). Circuit power consumption-unaware energy efficiency optimization for massive MIMO systems. IEEE Wireless Communications Letters, 6, 370–373.CrossRef
2.
go back to reference Guowang, M., et al. (2009). Cross-layer optimization for energy-efficient wireless communications: A survey. Wireless Communications and Mobile Computing, 9, 529–542.CrossRef Guowang, M., et al. (2009). Cross-layer optimization for energy-efficient wireless communications: A survey. Wireless Communications and Mobile Computing, 9, 529–542.CrossRef
3.
go back to reference Boccardi, F., Heath, R. W., Lozano, A., Marzetta, T. L., & Popovski, P. (2014). Five disruptive technology directions for 5G. IEEE Communication Magazine, 52, 74–80.CrossRef Boccardi, F., Heath, R. W., Lozano, A., Marzetta, T. L., & Popovski, P. (2014). Five disruptive technology directions for 5G. IEEE Communication Magazine, 52, 74–80.CrossRef
4.
go back to reference Chen, H., Li, G., & Cai, J. (2015). Spectral-energy efficiency tradeoff in full-duplex two-way relay networks. IEEE Systems Journal, 12, 583–592. Chen, H., Li, G., & Cai, J. (2015). Spectral-energy efficiency tradeoff in full-duplex two-way relay networks. IEEE Systems Journal, 12, 583–592.
5.
go back to reference Ahmad, M., Orakzai, F. A., Ahmed, A., et al. (2019). Energy efficiency in cognitive radio assisted D2D communication networks. Telecommunication Systems, 71, 167–180.CrossRef Ahmad, M., Orakzai, F. A., Ahmed, A., et al. (2019). Energy efficiency in cognitive radio assisted D2D communication networks. Telecommunication Systems, 71, 167–180.CrossRef
6.
go back to reference Li, H., Song, L., & Debbah, M. (2014). Energy efficiency of large-scale multiple antenna systems with transmit antenna selection. IEEE Transactions on Communications, 62, 638–647.CrossRef Li, H., Song, L., & Debbah, M. (2014). Energy efficiency of large-scale multiple antenna systems with transmit antenna selection. IEEE Transactions on Communications, 62, 638–647.CrossRef
7.
go back to reference Guowang, M., Himayat, N., & Li, G. Y. (2010). Energy-efficient link adaptation in frequency-selective channels. IEEE Transactions on communications, 58, 545–554.CrossRef Guowang, M., Himayat, N., & Li, G. Y. (2010). Energy-efficient link adaptation in frequency-selective channels. IEEE Transactions on communications, 58, 545–554.CrossRef
8.
go back to reference Guo, S., Shi, Y., Yang, Y., & Xiao, B. (2018). Energy efficiency maximization in mobile wireless energy harvesting sensor networks. IEEE Transactions on Mobile Computing, 17, 1524–1537.CrossRef Guo, S., Shi, Y., Yang, Y., & Xiao, B. (2018). Energy efficiency maximization in mobile wireless energy harvesting sensor networks. IEEE Transactions on Mobile Computing, 17, 1524–1537.CrossRef
9.
go back to reference Cong, X., et al. (2011). Energy-and spectral-efficiency tradeoff in downlink OFDMA networks. IEEE Transactions on Wireless Communications, 10, 3874–3886.CrossRef Cong, X., et al. (2011). Energy-and spectral-efficiency tradeoff in downlink OFDMA networks. IEEE Transactions on Wireless Communications, 10, 3874–3886.CrossRef
10.
go back to reference Khalil, M., Barber, S., & Sworby, K. (2018). High energy efficiency for low error rate in wireless relay networks. IET Signal Processing, 5, 659–665.CrossRef Khalil, M., Barber, S., & Sworby, K. (2018). High energy efficiency for low error rate in wireless relay networks. IET Signal Processing, 5, 659–665.CrossRef
11.
go back to reference Sun, C., & Yang, C. (2012). Energy efficiency analysis of one-way and two-way relay systems. EURASIP Journal on Wireless Communications and Networking, 2012, 46.CrossRef Sun, C., & Yang, C. (2012). Energy efficiency analysis of one-way and two-way relay systems. EURASIP Journal on Wireless Communications and Networking, 2012, 46.CrossRef
12.
go back to reference Sharma, E., et al. (2018). Full-duplex massive MIMO multi-pair two-way AF relaying: Energy efficiency optimization. IEEE Transactions on Communications, 66, 3322–3340.CrossRef Sharma, E., et al. (2018). Full-duplex massive MIMO multi-pair two-way AF relaying: Energy efficiency optimization. IEEE Transactions on Communications, 66, 3322–3340.CrossRef
13.
go back to reference Chinaei, M. H., et al. (2016). Energy efficiency optimization of one-way and two-way DF relaying considering circuit power. Wireless Networks, 22, 367–381.CrossRef Chinaei, M. H., et al. (2016). Energy efficiency optimization of one-way and two-way DF relaying considering circuit power. Wireless Networks, 22, 367–381.CrossRef
14.
go back to reference Cao, Y., Jiang, T., & Wang, C. (2015). Cooperative device-to-device communications in cellular networks. IEEE Wireless Communications, 22, 124–129.CrossRef Cao, Y., Jiang, T., & Wang, C. (2015). Cooperative device-to-device communications in cellular networks. IEEE Wireless Communications, 22, 124–129.CrossRef
15.
go back to reference Viet-Anh, L., et al. (2010). Green cooperative communication using threshold-based relay selection protocols. In IEEE International Conference on Green Circuits and Systems (ICGCS) (pp. 521–526). Viet-Anh, L., et al. (2010). Green cooperative communication using threshold-based relay selection protocols. In IEEE International Conference on Green Circuits and Systems (ICGCS) (pp. 521–526).
16.
go back to reference Huang, S., et al. (2013). Energy efficiency and spectral-efficiency tradeoff in amplify-and-forward relay networks. IEEE Transactions on Vehicular Technology, 62, 4366–4378.CrossRef Huang, S., et al. (2013). Energy efficiency and spectral-efficiency tradeoff in amplify-and-forward relay networks. IEEE Transactions on Vehicular Technology, 62, 4366–4378.CrossRef
17.
go back to reference Tabataba, F. S., Sadeghi, P., Hucher, Ch., & Pakravan, M. R. (2012). Impact of channel estimation errors and power allocation on analog network coding and routing in two-way relaying. IEEE Transactions on Vehicular Technology, 61, 3223–3239.CrossRef Tabataba, F. S., Sadeghi, P., Hucher, Ch., & Pakravan, M. R. (2012). Impact of channel estimation errors and power allocation on analog network coding and routing in two-way relaying. IEEE Transactions on Vehicular Technology, 61, 3223–3239.CrossRef
18.
go back to reference Yu, H., et al. (2013). The analysis of the energy efficiency for the decode-and-forward two-way relay networks. In IEEE Wireless Communications and Networking Conference (WCNC) (pp. 2823–2827). Yu, H., et al. (2013). The analysis of the energy efficiency for the decode-and-forward two-way relay networks. In IEEE Wireless Communications and Networking Conference (WCNC) (pp. 2823–2827).
19.
go back to reference Chen, H., Li, G., & Cai, J. (2018). Spectral-energy efficiency tradeoff in full-duplex two-way relay networks. IEEE Systems Journal, 12, 583–592. Chen, H., Li, G., & Cai, J. (2018). Spectral-energy efficiency tradeoff in full-duplex two-way relay networks. IEEE Systems Journal, 12, 583–592.
20.
go back to reference Pashazadeh, M., & Tabataba, F. S. (2017). Impact of loop-back interference and channel estimation errors on full-duplex relay networks. Wireless Networks, 23, 1133–1143.CrossRef Pashazadeh, M., & Tabataba, F. S. (2017). Impact of loop-back interference and channel estimation errors on full-duplex relay networks. Wireless Networks, 23, 1133–1143.CrossRef
21.
go back to reference Zhang, J., & Haardt, M. (2015). Energy efficient two-way non-regenerative relaying for relays with multiple antennas. IEEE Signal Processing Letters, 22, 1079–1083.CrossRef Zhang, J., & Haardt, M. (2015). Energy efficient two-way non-regenerative relaying for relays with multiple antennas. IEEE Signal Processing Letters, 22, 1079–1083.CrossRef
22.
go back to reference Silva, S., et al. (2018). Performance analysis of massive MIMO two-way relay networks with pilot contamination. Imperfect CSI, and Antenna Correlation, IEEE Transactions on Vehicular Technology, 67, 4831–4842.CrossRef Silva, S., et al. (2018). Performance analysis of massive MIMO two-way relay networks with pilot contamination. Imperfect CSI, and Antenna Correlation, IEEE Transactions on Vehicular Technology, 67, 4831–4842.CrossRef
23.
go back to reference Zappone, A., Buzzi, S., & Jorswieck, E. (2011). Energy-efficient power control and receiver design in relay-assisted DS/CDMA wireless networks via game theory. IEEE Communications Letters, 15, 701–703.CrossRef Zappone, A., Buzzi, S., & Jorswieck, E. (2011). Energy-efficient power control and receiver design in relay-assisted DS/CDMA wireless networks via game theory. IEEE Communications Letters, 15, 701–703.CrossRef
24.
go back to reference Zappone, A., et al. (2013). Energy-aware competitive power control in relay-assisted interference wireless networks. IEEE Transactions on Wireless Communications, 12, 1860–1871.CrossRef Zappone, A., et al. (2013). Energy-aware competitive power control in relay-assisted interference wireless networks. IEEE Transactions on Wireless Communications, 12, 1860–1871.CrossRef
25.
go back to reference Gao, Y., & Chen, Y. (2018). Channel estimation for AF relaying using ML and MAP. Wireless Networks, 24, 3161–3170.CrossRef Gao, Y., & Chen, Y. (2018). Channel estimation for AF relaying using ML and MAP. Wireless Networks, 24, 3161–3170.CrossRef
26.
go back to reference Nguyen, V. D., & Shin, O. S. (2017). Performance analysis of ZF receivers with imperfect CSI for uplink massive MIMO systems. Telecommunication Systems, 65, 241–252.CrossRef Nguyen, V. D., & Shin, O. S. (2017). Performance analysis of ZF receivers with imperfect CSI for uplink massive MIMO systems. Telecommunication Systems, 65, 241–252.CrossRef
27.
go back to reference Bezdek, J. C., & Hathaway, R. J. (2002). Some notes on alternating optimization. In AFSS international conference on fuzzy systems (Vol. 4, pp. 288–300). Springer, Berlin, Heidelberg. Bezdek, J. C., & Hathaway, R. J. (2002). Some notes on alternating optimization. In AFSS international conference on fuzzy systems (Vol. 4, pp. 288–300). Springer, Berlin, Heidelberg.
28.
go back to reference Rappaport, T. S. (2002). Wireless communications-principles and practice. Upper Saddle River: Prentice Hall. Rappaport, T. S. (2002). Wireless communications-principles and practice. Upper Saddle River: Prentice Hall.
29.
go back to reference Patel, C. S., & Stuber, G. L. (2007). Channel estimation for amplify and forward relay-based cooperation diversity systems. IEEE Transactions on Wireless Communications, 6, 2348–2356.CrossRef Patel, C. S., & Stuber, G. L. (2007). Channel estimation for amplify and forward relay-based cooperation diversity systems. IEEE Transactions on Wireless Communications, 6, 2348–2356.CrossRef
30.
go back to reference Yadav, S. (2018). Three-phase two-way relaying with imperfect channel estimation and asymmetric traffic requirements: Performance analysis and optimization. Wireless Networks, 25, 3133–3147.CrossRef Yadav, S. (2018). Three-phase two-way relaying with imperfect channel estimation and asymmetric traffic requirements: Performance analysis and optimization. Wireless Networks, 25, 3133–3147.CrossRef
31.
go back to reference Jiang, B., Gao, F., Gao, X., & Nallanathan, A. (2010). Channel estimation and training design for two-way relay networks with power allocation. IEEE Transactions on Wireless Communications, 9, 2022–2032.CrossRef Jiang, B., Gao, F., Gao, X., & Nallanathan, A. (2010). Channel estimation and training design for two-way relay networks with power allocation. IEEE Transactions on Wireless Communications, 9, 2022–2032.CrossRef
32.
go back to reference Tabataba, F. S., Sadeghi, P., & Pakravan, M. R. (2011). Outage probability and power allocation of amplify and forward relaying with channel estimation errors. IEEE Transactions on Wireless Communications, 10, 124–134.CrossRef Tabataba, F. S., Sadeghi, P., & Pakravan, M. R. (2011). Outage probability and power allocation of amplify and forward relaying with channel estimation errors. IEEE Transactions on Wireless Communications, 10, 124–134.CrossRef
33.
go back to reference Kroese, D. P., Thomas, T., & Zdravko, I. B. (2013). Handbook of Monte Carlo methods. Hoboken: Wiley. Kroese, D. P., Thomas, T., & Zdravko, I. B. (2013). Handbook of Monte Carlo methods. Hoboken: Wiley.
Metadata
Title
Energy efficiency optimization for amplify and forward relay networks with channel estimation errors
Authors
Foroogh S. Tabataba
Parisa Rouhani
Mohammad Koolivand
Publication date
29-10-2020
Publisher
Springer US
Published in
Telecommunication Systems / Issue 4/2021
Print ISSN: 1018-4864
Electronic ISSN: 1572-9451
DOI
https://doi.org/10.1007/s11235-020-00730-5

Other articles of this Issue 4/2021

Telecommunication Systems 4/2021 Go to the issue