Skip to main content
Top
Published in:
Cover of the book

2017 | OriginalPaper | Chapter

Energy Harvesting: Breakthrough Technologies Through Polymer Composites

Authors : Saquib Ahmed, Sankha Banerjee, Udhay Sundar, Hector Ruiz, Sanjeev Kumar, Ajith Weerasinghe

Published in: Smart Polymer Nanocomposites

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Polymer composites have been extensively studied in the last few years toward application in solar-, thermoelectric-, and vibration-based energy harvesting technologies. Of late, polymer nanocomposites are being investigated successfully in hybrid organic–inorganic devices, in bulk heterojunction devices incorporating all flavors of solar cells, and through the perovskite structures. In the thermoelectric power generation arena, abundance of raw materials, lack of toxicity, and the feasibility for large-area applications are all advantages that polymer nanocomposites boast over their inorganic predecessors. Within the vibration-based energy systems, polymer nanocomposites are being used as the magnets within the harvester devices; they offer low rigidity and easy processing (spin coating, drop casting, and molding). Also, recent work has focused on utilizing polymer ceramic nanocomposites as electrostatic energy storage materials. Lastly, polymer-based piezoelectric materials can be used directly as an active material in different transduction applications.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Service RF (2005) Is it time to shoot for the sun? Science 309(5734):548–551CrossRef Service RF (2005) Is it time to shoot for the sun? Science 309(5734):548–551CrossRef
2.
go back to reference Potočnik J (2007) Renewable energy sources and the realities of setting an energy agenda. Science 315(5813):810–811CrossRef Potočnik J (2007) Renewable energy sources and the realities of setting an energy agenda. Science 315(5813):810–811CrossRef
3.
go back to reference Schiermeier Q, Tollefson J, Scully T, Witze A, Morton O (2008) Energy alternatives: electricity without carbon. Nature 454:816–823CrossRef Schiermeier Q, Tollefson J, Scully T, Witze A, Morton O (2008) Energy alternatives: electricity without carbon. Nature 454:816–823CrossRef
4.
go back to reference International Energy Agency (2010) PV environmental, health and safety activities. Photovoltaic Power systems Programme International Energy Agency (2010) PV environmental, health and safety activities. Photovoltaic Power systems Programme
5.
go back to reference Metz A et al (2015) International technology roadmap for photovoltaic Metz A et al (2015) International technology roadmap for photovoltaic
6.
go back to reference Osborne M (2013) First solar hits cost reduction milestone. PV tech Osborne M (2013) First solar hits cost reduction milestone. PV tech
7.
go back to reference Department of Energy. Sunshot initiative mission. Office of Energy Efficiency and Renewable Energy Department of Energy. Sunshot initiative mission. Office of Energy Efficiency and Renewable Energy
8.
go back to reference Bailie CD, Christoforo MG, Mailoa JP, Bowring AR, Unger EL, Nguyen WH, Burschka J, Pellet N, Lee JZ, Gratzel M, Noufi R, Buonassisi T, Salleo A, McGehee MD (2015) Semi-transparent perovskite solar cells for tandems with silicon and CIGS. Energy Environ Sci 8(3):956–963CrossRef Bailie CD, Christoforo MG, Mailoa JP, Bowring AR, Unger EL, Nguyen WH, Burschka J, Pellet N, Lee JZ, Gratzel M, Noufi R, Buonassisi T, Salleo A, McGehee MD (2015) Semi-transparent perovskite solar cells for tandems with silicon and CIGS. Energy Environ Sci 8(3):956–963CrossRef
9.
go back to reference Green M (2003) Third generation photovoltaics: advanced solar energy conversion. Springer series in photonics. Springer, Berlin Green M (2003) Third generation photovoltaics: advanced solar energy conversion. Springer series in photonics. Springer, Berlin
10.
go back to reference Eriksson SK, Josefsson I, Ellis H, Amat A, Pastore M, Oscarsson J, Lindblad R, Eriksson AIK, Johansson EMJ, Boschloo G, Hagfeldt A, Fantacci S, Odelius M, Rensmo H (2016) Geometrical and energetical structural changes in organic dyes for dye-sensitized solar cells probed using photoelectron spectroscopy and DFT. Phys Chem Chem Phys 18(1):252–260CrossRef Eriksson SK, Josefsson I, Ellis H, Amat A, Pastore M, Oscarsson J, Lindblad R, Eriksson AIK, Johansson EMJ, Boschloo G, Hagfeldt A, Fantacci S, Odelius M, Rensmo H (2016) Geometrical and energetical structural changes in organic dyes for dye-sensitized solar cells probed using photoelectron spectroscopy and DFT. Phys Chem Chem Phys 18(1):252–260CrossRef
11.
go back to reference Wang ZL, Wu W (2012) Nanotechnology-enabled energy harvesting for self-powered micro-/nanosystems. Angew Chem Int Ed 51(47):11700–11721CrossRef Wang ZL, Wu W (2012) Nanotechnology-enabled energy harvesting for self-powered micro-/nanosystems. Angew Chem Int Ed 51(47):11700–11721CrossRef
12.
go back to reference Wang ZL (2012) Progress in piezotronics and piezo-phototronics. Adv Mater 24(34):4632–4646CrossRef Wang ZL (2012) Progress in piezotronics and piezo-phototronics. Adv Mater 24(34):4632–4646CrossRef
13.
go back to reference Minnich AJ, Dresselhaus MS, Ren ZF, Chen G (2009) Bulk nanostructured thermoelectric materials: current research and future prospects. Energy Environ Sci 2(5):466–479CrossRef Minnich AJ, Dresselhaus MS, Ren ZF, Chen G (2009) Bulk nanostructured thermoelectric materials: current research and future prospects. Energy Environ Sci 2(5):466–479CrossRef
14.
go back to reference Liu W, Yan Z, Chen G, Ren Z (2012) Recent advances in thermoelectric nanocomposites. Nano Energy 1(1):42–56CrossRef Liu W, Yan Z, Chen G, Ren Z (2012) Recent advances in thermoelectric nanocomposites. Nano Energy 1(1):42–56CrossRef
15.
go back to reference Sootsman JR, Chung DY, Kanatzidis MG (2009) New and old concepts in thermoelectric materials. Angew Chem Int Ed 48(46):8616–8639CrossRef Sootsman JR, Chung DY, Kanatzidis MG (2009) New and old concepts in thermoelectric materials. Angew Chem Int Ed 48(46):8616–8639CrossRef
16.
go back to reference Chandrakasan AP, Verma N, Daly DC (2008) Ultralow-power electronics for biomedical applications. Annu Rev Biomed Eng 10(1):247–274CrossRef Chandrakasan AP, Verma N, Daly DC (2008) Ultralow-power electronics for biomedical applications. Annu Rev Biomed Eng 10(1):247–274CrossRef
17.
go back to reference Leonov V (2011) Human machine and thermoelectric energy scavenging for wearable devices. ISRN Renew Energy 2011:11 Leonov V (2011) Human machine and thermoelectric energy scavenging for wearable devices. ISRN Renew Energy 2011:11
18.
go back to reference Culebras M, Gómez CM, Cantarero A (2014) Review on polymers for thermoelectric applications. Materials 7(9):6701CrossRef Culebras M, Gómez CM, Cantarero A (2014) Review on polymers for thermoelectric applications. Materials 7(9):6701CrossRef
19.
go back to reference Roundy S, Leland ES, Baker J, Carleton E, Reilly E, Lai E, Otis B, Rabaey JML, Wright PK, Sundararajan V (2005) Improving power output for vibration-based energy scavengers. IEEE Pervasive Comput 4(1):28–36CrossRef Roundy S, Leland ES, Baker J, Carleton E, Reilly E, Lai E, Otis B, Rabaey JML, Wright PK, Sundararajan V (2005) Improving power output for vibration-based energy scavengers. IEEE Pervasive Comput 4(1):28–36CrossRef
20.
go back to reference Wang X (2012) Piezoelectric nanogenerators—harvesting ambient mechanical energy at the nanometer scale. Nano Energy 1(1):13–24CrossRef Wang X (2012) Piezoelectric nanogenerators—harvesting ambient mechanical energy at the nanometer scale. Nano Energy 1(1):13–24CrossRef
21.
go back to reference Mathúna CÓ, Donnell TO, Martinez-Catala RV, Rohan J, O’Flynn B (2008) Energy scavenging for long-term deployable wireless sensor networks. Talanta 75(3):613–623CrossRef Mathúna CÓ, Donnell TO, Martinez-Catala RV, Rohan J, O’Flynn B (2008) Energy scavenging for long-term deployable wireless sensor networks. Talanta 75(3):613–623CrossRef
22.
go back to reference Mitcheson PD, Yeatman EM, Rao GK, Holmes AS, Green TC (2008) Energy harvesting from human and machine motion for wireless electronic devices. Proc IEEE 96(9):1457–1486CrossRef Mitcheson PD, Yeatman EM, Rao GK, Holmes AS, Green TC (2008) Energy harvesting from human and machine motion for wireless electronic devices. Proc IEEE 96(9):1457–1486CrossRef
23.
go back to reference Bouendeu E, Greiner A, Smith PJ, Korvink JG (2011) A low-cost electromagnetic generator for vibration energy harvesting. IEEE Sens J 11(1):107–113CrossRef Bouendeu E, Greiner A, Smith PJ, Korvink JG (2011) A low-cost electromagnetic generator for vibration energy harvesting. IEEE Sens J 11(1):107–113CrossRef
24.
go back to reference Mitcheson PD, Miao P, Stark BH, Yeatman EM, Holmes AS, Green TC (2004) MEMS electrostatic micropower generator for low frequency operation. Sens Actuators, A 115(2–3):523–529CrossRef Mitcheson PD, Miao P, Stark BH, Yeatman EM, Holmes AS, Green TC (2004) MEMS electrostatic micropower generator for low frequency operation. Sens Actuators, A 115(2–3):523–529CrossRef
25.
go back to reference Ramsay MJ, Clark WW (2001) Piezoelectric energy harvesting for bio-MEMS applications. In: SPIE Proceedings 4332 Ramsay MJ, Clark WW (2001) Piezoelectric energy harvesting for bio-MEMS applications. In: SPIE Proceedings 4332
26.
go back to reference Chu B, Zhou X, Ren K, Neese B, Lin M, Wang Q, Bauer F, Zhang QM (2006) A dielectric polymer with high electric energy density and fast discharge speed. Science 313(5785):334–336CrossRef Chu B, Zhou X, Ren K, Neese B, Lin M, Wang Q, Bauer F, Zhang QM (2006) A dielectric polymer with high electric energy density and fast discharge speed. Science 313(5785):334–336CrossRef
27.
go back to reference Barber P, Balasubramanian S, Anguchamy J, Gong S, Wibowo A, Gao H, Ploehn HJ, Loye HZ (2009) Polymer composite and nanocomposite dielectric materials for pulse power energy storage. Materials 2(4):1697CrossRef Barber P, Balasubramanian S, Anguchamy J, Gong S, Wibowo A, Gao H, Ploehn HJ, Loye HZ (2009) Polymer composite and nanocomposite dielectric materials for pulse power energy storage. Materials 2(4):1697CrossRef
28.
go back to reference Siddabattuni S, Schuman TP (2014) Polymer ceramic nanocomposite dielectrics for advanced energy storage, in polymer composites for energy harvesting, conversion, and storage. Am Chem Soc 1161:165–190 Siddabattuni S, Schuman TP (2014) Polymer ceramic nanocomposite dielectrics for advanced energy storage, in polymer composites for energy harvesting, conversion, and storage. Am Chem Soc 1161:165–190
29.
go back to reference Wang Q, Zhu L (2011) Polymer nanocomposites for electrical energy storage. J Polym Sci Part B Polym Phys 49(20):1421–1429CrossRef Wang Q, Zhu L (2011) Polymer nanocomposites for electrical energy storage. J Polym Sci Part B Polym Phys 49(20):1421–1429CrossRef
30.
go back to reference Siddabattuni S, Schuman TP, Dogan F (2011) Improved polymer nanocomposite dielectric breakdown performance through barium titanate to epoxy interface control. Mater Sci Eng 176(18):1422–1429CrossRef Siddabattuni S, Schuman TP, Dogan F (2011) Improved polymer nanocomposite dielectric breakdown performance through barium titanate to epoxy interface control. Mater Sci Eng 176(18):1422–1429CrossRef
31.
go back to reference Nayak S, Rahaman M, Pandey AK, Setua DK, Chaki TK, Kastgir D (2013) Development of poly (dimethylsiloxane)—titania nanocomposites with controlled dielectric properties: effect of heat treatment of titania on electrical properties. J Appl Polym Sci 127(1):784–796CrossRef Nayak S, Rahaman M, Pandey AK, Setua DK, Chaki TK, Kastgir D (2013) Development of poly (dimethylsiloxane)—titania nanocomposites with controlled dielectric properties: effect of heat treatment of titania on electrical properties. J Appl Polym Sci 127(1):784–796CrossRef
32.
go back to reference Tang H, Ma Z, Zhong J, Yang J, Zhao R, Liu X (2011) Effect of surface modification on the dielectric properties of PEN nanocomposites based on double-layer core/shell-structured BaTiO3 nanoparticles. Colloids Surf A 384(1–3):311–317CrossRef Tang H, Ma Z, Zhong J, Yang J, Zhao R, Liu X (2011) Effect of surface modification on the dielectric properties of PEN nanocomposites based on double-layer core/shell-structured BaTiO3 nanoparticles. Colloids Surf A 384(1–3):311–317CrossRef
33.
go back to reference Arnold DP (2007) Review of microscale magnetic power generation. IEEE Trans Magn 43(11):3940–3951CrossRef Arnold DP (2007) Review of microscale magnetic power generation. IEEE Trans Magn 43(11):3940–3951CrossRef
34.
go back to reference Wang P, Tanaka K, Sugiyama S, Dai X, Zhao X, Liu J (2009) A micro electromagnetic low level vibration energy harvester based on MEMS technology. Microsyst Technol 15(6):941–951CrossRef Wang P, Tanaka K, Sugiyama S, Dai X, Zhao X, Liu J (2009) A micro electromagnetic low level vibration energy harvester based on MEMS technology. Microsyst Technol 15(6):941–951CrossRef
35.
go back to reference Amirtharajah R, Chandrakasan AP (1998) Self-powered signal processing using vibration-based power generation. IEEE J Solid-State Circuits 33(5):687–695CrossRef Amirtharajah R, Chandrakasan AP (1998) Self-powered signal processing using vibration-based power generation. IEEE J Solid-State Circuits 33(5):687–695CrossRef
36.
go back to reference Alfadhel A, Li B, Zaher A, Yassine O, Kosel J (2014) A magnetic nanocomposite for biomimetic flow sensing. Lab Chip 14(22):4362–4369 Alfadhel A, Li B, Zaher A, Yassine O, Kosel J (2014) A magnetic nanocomposite for biomimetic flow sensing. Lab Chip 14(22):4362–4369
37.
go back to reference Alnassar M, Alfadhel A, Ivanov YP, Kosel J (2015) Magnetoelectric polymer nanocomposite for flexible electronics. J Appl Phys 117(17):17D711CrossRef Alnassar M, Alfadhel A, Ivanov YP, Kosel J (2015) Magnetoelectric polymer nanocomposite for flexible electronics. J Appl Phys 117(17):17D711CrossRef
38.
go back to reference Zheng JC (2008) Recent advances on thermoelectric materials. Front Phys China 3(3):269–279CrossRef Zheng JC (2008) Recent advances on thermoelectric materials. Front Phys China 3(3):269–279CrossRef
39.
go back to reference Khaled SR, Sameoto D, Evoy S (2014) A review of piezoelectric polymers as functional materials for electromechanical transducers. Smart Mater Struct 23(3):033001CrossRef Khaled SR, Sameoto D, Evoy S (2014) A review of piezoelectric polymers as functional materials for electromechanical transducers. Smart Mater Struct 23(3):033001CrossRef
40.
go back to reference Kim HS, Kim JH, Kim J (2011) A review of piezoelectric energy harvesting based on vibration. Int J Precis Eng Manuf 12(6):1129–1141CrossRef Kim HS, Kim JH, Kim J (2011) A review of piezoelectric energy harvesting based on vibration. Int J Precis Eng Manuf 12(6):1129–1141CrossRef
41.
go back to reference Saadon S, Sidek O (2011) A review of vibration-based MEMS piezoelectric energy harvesters. Energy Convers Manag 52(1):500–504CrossRef Saadon S, Sidek O (2011) A review of vibration-based MEMS piezoelectric energy harvesters. Energy Convers Manag 52(1):500–504CrossRef
42.
go back to reference Tang CW (1986) Two-layer organic photovoltaic cell. Appl Phys Lett 48(2):183–185CrossRef Tang CW (1986) Two-layer organic photovoltaic cell. Appl Phys Lett 48(2):183–185CrossRef
43.
go back to reference Yu G, Gao J, Hummelen JC, Wudl F, Heeger AJ (1995) Polymer photovoltaic cells: enhanced efficiencies via a network of internal donor-acceptor heterojunctions. Science 270(5243):1789–1791CrossRef Yu G, Gao J, Hummelen JC, Wudl F, Heeger AJ (1995) Polymer photovoltaic cells: enhanced efficiencies via a network of internal donor-acceptor heterojunctions. Science 270(5243):1789–1791CrossRef
44.
go back to reference Thompson BC, Frecher JMJ (2008) Polymer-fullerene composite solar cells. Angew Chem Int Ed 47(1):58–77CrossRef Thompson BC, Frecher JMJ (2008) Polymer-fullerene composite solar cells. Angew Chem Int Ed 47(1):58–77CrossRef
45.
go back to reference Hoppe H, Sariciftci NS (2004) Organic solar cells: an overview. J Mater Res 19(07):1924–1945CrossRef Hoppe H, Sariciftci NS (2004) Organic solar cells: an overview. J Mater Res 19(07):1924–1945CrossRef
46.
go back to reference Carsten D, Dyakonov V (2010) Polymer—fullerene bulk heterojunction solar cells. Rep Prog Phys 73(9):096401CrossRef Carsten D, Dyakonov V (2010) Polymer—fullerene bulk heterojunction solar cells. Rep Prog Phys 73(9):096401CrossRef
47.
go back to reference Park SH, Roy A, Beaupré S, Cho S, Coates N, Moon JS, Moses D, Leclerc M, Lee K, Heeger AJ (2009) Bulk heterojunction solar cells with internal quantum efficiency approaching 100%. Nat Photonics 3(5):297–302CrossRef Park SH, Roy A, Beaupré S, Cho S, Coates N, Moon JS, Moses D, Leclerc M, Lee K, Heeger AJ (2009) Bulk heterojunction solar cells with internal quantum efficiency approaching 100%. Nat Photonics 3(5):297–302CrossRef
48.
go back to reference Liang Y, Xu Z, Xia J, Tsai ST, Wu Y, Li G, Ray C, Yu L (2010) For the bright future-bulk heterojunction polymer solar cells with power conversion efficiency of 7.4%. Adv Mater 22(20):E135–E138CrossRef Liang Y, Xu Z, Xia J, Tsai ST, Wu Y, Li G, Ray C, Yu L (2010) For the bright future-bulk heterojunction polymer solar cells with power conversion efficiency of 7.4%. Adv Mater 22(20):E135–E138CrossRef
49.
go back to reference Krebs FC, Tromholt T, Jørgensen M (2010) Upscaling of polymer solar cell fabrication using full roll-to-roll processing. Nanoscale 2(6):873–886CrossRef Krebs FC, Tromholt T, Jørgensen M (2010) Upscaling of polymer solar cell fabrication using full roll-to-roll processing. Nanoscale 2(6):873–886CrossRef
50.
go back to reference Koeppe R, Sariciftci NS (2006) Photoinduced charge and energy transfer involving fullerene derivatives. Photochem Photobiol Sci 5(12):1122–1131CrossRef Koeppe R, Sariciftci NS (2006) Photoinduced charge and energy transfer involving fullerene derivatives. Photochem Photobiol Sci 5(12):1122–1131CrossRef
51.
go back to reference Kumar JSD, Das S (1997) Photoinduced electron transfer reactions of amines: synthetic applications and mechanistic studies. Res Chem Intermed 23(8):755–800CrossRef Kumar JSD, Das S (1997) Photoinduced electron transfer reactions of amines: synthetic applications and mechanistic studies. Res Chem Intermed 23(8):755–800CrossRef
52.
go back to reference Brabec CJ, Cravino A, Meissner D, Sariciftci NS, Fromherz T, Rispens MT, Sanchez L, Hummelen JC (2001) Origin of the open circuit voltage of plastic solar cells. Adv Funct Mater 11(5):374–380CrossRef Brabec CJ, Cravino A, Meissner D, Sariciftci NS, Fromherz T, Rispens MT, Sanchez L, Hummelen JC (2001) Origin of the open circuit voltage of plastic solar cells. Adv Funct Mater 11(5):374–380CrossRef
53.
go back to reference Hashiguchi M, Obata N, Maruyama M, Yeo KS, Ueno T, Ikebe T, Takahashi I, Matsuo Y (2012) FeCl3-mediated synthesis of fullerenyl esters as low-LUMO acceptors for organic photovoltaic devices. Org Lett 14(13):3276–3279CrossRef Hashiguchi M, Obata N, Maruyama M, Yeo KS, Ueno T, Ikebe T, Takahashi I, Matsuo Y (2012) FeCl3-mediated synthesis of fullerenyl esters as low-LUMO acceptors for organic photovoltaic devices. Org Lett 14(13):3276–3279CrossRef
54.
go back to reference Arkhipov VI, Bassler H (2004) Exciton dissociation and charge photogeneration in pristine and doped conjugated polymers. Phys Status Solidi A 201(6):1152–1187 Arkhipov VI, Bassler H (2004) Exciton dissociation and charge photogeneration in pristine and doped conjugated polymers. Phys Status Solidi A 201(6):1152–1187
55.
go back to reference Gaines GL, O’Neil MP, Svec WA, Niemczyk MP, Wasielewski MR (1991) Photoinduced electron transfer in the solid state: rate vs. free energy dependence in fixed-distance porphyrin-acceptor molecules. J Am Chem Soc 113(2):719–721CrossRef Gaines GL, O’Neil MP, Svec WA, Niemczyk MP, Wasielewski MR (1991) Photoinduced electron transfer in the solid state: rate vs. free energy dependence in fixed-distance porphyrin-acceptor molecules. J Am Chem Soc 113(2):719–721CrossRef
56.
go back to reference Brabec CJ, Winder C, Sariciftci NS, Hummelen JC, Dhanabalan A, Van Hal PA, Janssen RAJ (2002) A low-bandgap semiconducting polymer for photovoltaic devices and infrared emitting diodes. Adv Funct Mater 12(10):709–712CrossRef Brabec CJ, Winder C, Sariciftci NS, Hummelen JC, Dhanabalan A, Van Hal PA, Janssen RAJ (2002) A low-bandgap semiconducting polymer for photovoltaic devices and infrared emitting diodes. Adv Funct Mater 12(10):709–712CrossRef
57.
go back to reference Winder C, Matt G, Hummelen JC, Janssen RAJ, Sariciftci NS, Brabec CJ (2002) Sensitization of low bandgap polymer bulk heterojunction solar cells. Thin Solid Films 403–404:373–379CrossRef Winder C, Matt G, Hummelen JC, Janssen RAJ, Sariciftci NS, Brabec CJ (2002) Sensitization of low bandgap polymer bulk heterojunction solar cells. Thin Solid Films 403–404:373–379CrossRef
58.
go back to reference Koster LJA, Kuo CY, Yuan MC, Jeng US, Su CJ, Wei KH (2006) Ultimate efficiency of polymer/fullerene bulk heterojunction solar cells. Appl Phys Lett 88(9):093511CrossRef Koster LJA, Kuo CY, Yuan MC, Jeng US, Su CJ, Wei KH (2006) Ultimate efficiency of polymer/fullerene bulk heterojunction solar cells. Appl Phys Lett 88(9):093511CrossRef
59.
go back to reference Soci C, Huang IW, Moses D, Zhu Z, Waller D, Gaudiana R, Brabec CJ, Heeger AJ (2007) Photoconductivity of a low-bandgap conjugated polymer. Adv Funct Mater 17(4):632–636CrossRef Soci C, Huang IW, Moses D, Zhu Z, Waller D, Gaudiana R, Brabec CJ, Heeger AJ (2007) Photoconductivity of a low-bandgap conjugated polymer. Adv Funct Mater 17(4):632–636CrossRef
60.
go back to reference Scharber MC, Dennler M, Ameri T, Denk P, Forberich K, Waldauf C, Brabec CJ (2006) Design rules for donors in bulk-heterojunction solar cells—towards 10% energy-conversion efficiency. Adv Mater 18(6):789–794CrossRef Scharber MC, Dennler M, Ameri T, Denk P, Forberich K, Waldauf C, Brabec CJ (2006) Design rules for donors in bulk-heterojunction solar cells—towards 10% energy-conversion efficiency. Adv Mater 18(6):789–794CrossRef
61.
go back to reference Mihailetchi VD, Mihailetchi, Van Duren JKJ, Blom PWM, Hummelen JC, Janssen RAJ, Kroon JM, Rispens MT, Verhees WJH, Wienk MM (2003) Electron transport in a methanofullerene. Adv Funct Mater 13(1):43–46 Mihailetchi VD, Mihailetchi, Van Duren JKJ, Blom PWM, Hummelen JC, Janssen RAJ, Kroon JM, Rispens MT, Verhees WJH, Wienk MM (2003) Electron transport in a methanofullerene. Adv Funct Mater 13(1):43–46
62.
go back to reference Singh TB, Marjanović N, Stadler P, Auinger M, Matt GJ, Günes S, Sariciftci NS, Schwödiauer R, Bauer S (2005) Fabrication and characterization of solution-processed methanofullerene-based organic field-effect transistors. J Appl Phys 97(8):083714CrossRef Singh TB, Marjanović N, Stadler P, Auinger M, Matt GJ, Günes S, Sariciftci NS, Schwödiauer R, Bauer S (2005) Fabrication and characterization of solution-processed methanofullerene-based organic field-effect transistors. J Appl Phys 97(8):083714CrossRef
63.
go back to reference Hoppe H, Sariciftci NS (2006) Morphology of polymer/fullerene bulk heterojunction solar cells. J Mater Chem 16(1):45–61CrossRef Hoppe H, Sariciftci NS (2006) Morphology of polymer/fullerene bulk heterojunction solar cells. J Mater Chem 16(1):45–61CrossRef
64.
go back to reference Yang X, Loos J (2007) Toward high-performance polymer solar cells: the importance of morphology control. Macromolecules 40(5):1353–1362CrossRef Yang X, Loos J (2007) Toward high-performance polymer solar cells: the importance of morphology control. Macromolecules 40(5):1353–1362CrossRef
65.
go back to reference Shaheen SE, Brabec CJ, Sariciftci NS, Padinger F, Fromherz T, Hummelen JC (2001) 2.5% efficient organic plastic solar cells. Appl Phys Lett 78(6):841–843CrossRef Shaheen SE, Brabec CJ, Sariciftci NS, Padinger F, Fromherz T, Hummelen JC (2001) 2.5% efficient organic plastic solar cells. Appl Phys Lett 78(6):841–843CrossRef
66.
go back to reference Hoppe H, Niggemann M, Winder C, Kraut J, Hiesgen R, Hinsch A, Meissner D, Sariciftci NS (2004) Nanoscale morphology of conjugated polymer/fullerene-based bulk-heterojunction solar cells. Adv Funct Mater 14(10):1005–1011CrossRef Hoppe H, Niggemann M, Winder C, Kraut J, Hiesgen R, Hinsch A, Meissner D, Sariciftci NS (2004) Nanoscale morphology of conjugated polymer/fullerene-based bulk-heterojunction solar cells. Adv Funct Mater 14(10):1005–1011CrossRef
67.
go back to reference Yang X, van Duren JK, Janssen RA, Michels MA, Loos J (2004) Morphology and thermal stability of the active layer in poly(p-phenylenevinylene)/methanofullerene plastic photovoltaic devices. Macromolecules 37(6):2151–2158CrossRef Yang X, van Duren JK, Janssen RA, Michels MA, Loos J (2004) Morphology and thermal stability of the active layer in poly(p-phenylenevinylene)/methanofullerene plastic photovoltaic devices. Macromolecules 37(6):2151–2158CrossRef
68.
go back to reference Ma W, Yang C, Gong X, Lee K, Heeger AJ (2005) Thermally stable, efficient polymer solar cells with nanoscale control of the interpenetrating network morphology. Adv Funct Mater 15(10):1617–1622CrossRef Ma W, Yang C, Gong X, Lee K, Heeger AJ (2005) Thermally stable, efficient polymer solar cells with nanoscale control of the interpenetrating network morphology. Adv Funct Mater 15(10):1617–1622CrossRef
69.
go back to reference Li G, Shrotriya V, Huang J, Yao Y, Moriarty T, Emery K, Yang Y (2005) High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends. Nat Mater 4(11):864–868CrossRef Li G, Shrotriya V, Huang J, Yao Y, Moriarty T, Emery K, Yang Y (2005) High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends. Nat Mater 4(11):864–868CrossRef
70.
go back to reference Reyes R, Kim K, Carroll DL (2005) High-efficiency photovoltaic devices based on annealed poly(3-hexylthiophene) and 1-(3-methoxycarbonyl)-propyl-1-phenyl-(6,6)C61 blends. Appl Phys Lett 87(8):083506CrossRef Reyes R, Kim K, Carroll DL (2005) High-efficiency photovoltaic devices based on annealed poly(3-hexylthiophene) and 1-(3-methoxycarbonyl)-propyl-1-phenyl-(6,6)C61 blends. Appl Phys Lett 87(8):083506CrossRef
71.
go back to reference Kim Y, Choulis SA, Nelson J, Bradley DDC, Cook S, Durrant JR (2005) Device annealing effect in organic solar cells with blends of regioregular poly(3-hexylthiophene) and soluble fullerene. Appl Phys Lett 86(6):063502CrossRef Kim Y, Choulis SA, Nelson J, Bradley DDC, Cook S, Durrant JR (2005) Device annealing effect in organic solar cells with blends of regioregular poly(3-hexylthiophene) and soluble fullerene. Appl Phys Lett 86(6):063502CrossRef
72.
go back to reference Padinger F, Rittberger RS, Sacriciftci NS (2003) Effects of postproduction treatment on plastic solar cells. Adv Funct Mater 13(1):85–88CrossRef Padinger F, Rittberger RS, Sacriciftci NS (2003) Effects of postproduction treatment on plastic solar cells. Adv Funct Mater 13(1):85–88CrossRef
73.
go back to reference Sivula K, Ball ZT, Watanabe N, Frecher JMJ (2006) Amphiphilic diblock copolymer compatibilizers and their effect on the morphology and performance of polythiophene: fullerene solar cells. Adv Mater 18(2):206–210CrossRef Sivula K, Ball ZT, Watanabe N, Frecher JMJ (2006) Amphiphilic diblock copolymer compatibilizers and their effect on the morphology and performance of polythiophene: fullerene solar cells. Adv Mater 18(2):206–210CrossRef
74.
go back to reference Stalmach U, Boer BD, Videlot C, Hutten PFV, Hadziioannou G (2000) Semiconducting diblock copolymers synthesized by means of controlled radical polymerization techniques. J Am Chem Soc 122(23):5464–5472CrossRef Stalmach U, Boer BD, Videlot C, Hutten PFV, Hadziioannou G (2000) Semiconducting diblock copolymers synthesized by means of controlled radical polymerization techniques. J Am Chem Soc 122(23):5464–5472CrossRef
75.
go back to reference Kim JY, Kim SH, Lee HH, Lee K, Ma W, Gong X, Heeger AJ (2006) New architecture for high-efficiency polymer photovoltaic cells using solution-based titanium oxide as an optical spacer. Adv Mater 18(5):572–576CrossRef Kim JY, Kim SH, Lee HH, Lee K, Ma W, Gong X, Heeger AJ (2006) New architecture for high-efficiency polymer photovoltaic cells using solution-based titanium oxide as an optical spacer. Adv Mater 18(5):572–576CrossRef
76.
go back to reference Liu R (2014) Hybrid organic/inorganic nanocomposites for photovoltaic cells. Materials 7(4):2747CrossRef Liu R (2014) Hybrid organic/inorganic nanocomposites for photovoltaic cells. Materials 7(4):2747CrossRef
77.
go back to reference Silva C (2013) Organic photovoltaics: some like it hot. Nat Mater 12(1):5–6 Silva C (2013) Organic photovoltaics: some like it hot. Nat Mater 12(1):5–6
78.
go back to reference Deibel C, Strobel T, Dyakonov V (2010) Role of the charge transfer state in organic donor-acceptor solar cells. Adv Mater 22(37):4097–4111CrossRef Deibel C, Strobel T, Dyakonov V (2010) Role of the charge transfer state in organic donor-acceptor solar cells. Adv Mater 22(37):4097–4111CrossRef
79.
go back to reference Bansal N, Reynolds LX, MacLachlan A, Lutz T, Ashraf RS, Zhang W, Nielsen CB, McCulloch I, Rebois DG, Kirchartz T, Hill MS, Molloy KC, Nelson J, Haque SA (2013) Influence of crystallinity and energetics on charge separation in polymer-inorganic nanocomposite films for solar cells. Sci Rep 3:1531CrossRef Bansal N, Reynolds LX, MacLachlan A, Lutz T, Ashraf RS, Zhang W, Nielsen CB, McCulloch I, Rebois DG, Kirchartz T, Hill MS, Molloy KC, Nelson J, Haque SA (2013) Influence of crystallinity and energetics on charge separation in polymer-inorganic nanocomposite films for solar cells. Sci Rep 3:1531CrossRef
80.
go back to reference Bhardwaj RK, Kushwaha HS, Gaur J, Upreti T, Bharti V, Gupta V, Chaudhary N, Sharma GD, Banerjee K, Chand S (2012) A green approach for direct growth of CdS nanoparticles network in poly(3-hexylthiophene-2,5-diyl) polymer film for hybrid photovoltaic. Mater Lett 89:195–197CrossRef Bhardwaj RK, Kushwaha HS, Gaur J, Upreti T, Bharti V, Gupta V, Chaudhary N, Sharma GD, Banerjee K, Chand S (2012) A green approach for direct growth of CdS nanoparticles network in poly(3-hexylthiophene-2,5-diyl) polymer film for hybrid photovoltaic. Mater Lett 89:195–197CrossRef
81.
go back to reference Xia C, Wang N, Kim X (2011) Mesoporous CdS spheres for high-performance hybrid solar cells. Electrochim Acta 56(25):9504–9507CrossRef Xia C, Wang N, Kim X (2011) Mesoporous CdS spheres for high-performance hybrid solar cells. Electrochim Acta 56(25):9504–9507CrossRef
82.
go back to reference Greaney MJ, Brutchey RL (2012) Improving open circuit potential in hybrid P3HT:CdSe bulk heterojunction solar cells via colloidal tert-butylthiol ligand exchange. ACS Nano 6(5):4222–4230CrossRef Greaney MJ, Brutchey RL (2012) Improving open circuit potential in hybrid P3HT:CdSe bulk heterojunction solar cells via colloidal tert-butylthiol ligand exchange. ACS Nano 6(5):4222–4230CrossRef
83.
go back to reference Schierhorn M, Boettcher SW, Peet JH, Matioli E, Bazan GC, Stuck YGD, Moskovits M (2010) CdSe nanorods dominate photocurrent of hybrid CdSe–P3HT photovoltaic cell. ACS Nano 4(10):6132–6136CrossRef Schierhorn M, Boettcher SW, Peet JH, Matioli E, Bazan GC, Stuck YGD, Moskovits M (2010) CdSe nanorods dominate photocurrent of hybrid CdSe–P3HT photovoltaic cell. ACS Nano 4(10):6132–6136CrossRef
84.
go back to reference Tan ZN, Zhang WQ, Qian DP, Zheng H, Xiao SQ, Yang YP, Zhu T, Xu J (2011) Efficient hybrid infrared solar cells based on P3HT and PbSe nanocrystal quantum dots. Mater Sci Forum 685:38–43CrossRef Tan ZN, Zhang WQ, Qian DP, Zheng H, Xiao SQ, Yang YP, Zhu T, Xu J (2011) Efficient hybrid infrared solar cells based on P3HT and PbSe nanocrystal quantum dots. Mater Sci Forum 685:38–43CrossRef
85.
go back to reference Zhu T, Berger A, Tan Z, Cui D, Xu J, Khanchaitit P, Wang Q (2008) Composition-limited spectral response of hybrid photovoltaic cells containing infrared PbSe nanocrystals. J Appl Phys 104(4):044306CrossRef Zhu T, Berger A, Tan Z, Cui D, Xu J, Khanchaitit P, Wang Q (2008) Composition-limited spectral response of hybrid photovoltaic cells containing infrared PbSe nanocrystals. J Appl Phys 104(4):044306CrossRef
86.
go back to reference Jangwon S, Kim SJ, Kim WJ, Singh R, Samoc M, Cartwright AN, Prasad PN (2009) Enhancement of the photovoltaic performance in PbS nanocrystal: P3HT hybrid composite devices by post-treatment-driven ligand exchange. Nanotechnology 20(9):095202CrossRef Jangwon S, Kim SJ, Kim WJ, Singh R, Samoc M, Cartwright AN, Prasad PN (2009) Enhancement of the photovoltaic performance in PbS nanocrystal: P3HT hybrid composite devices by post-treatment-driven ligand exchange. Nanotechnology 20(9):095202CrossRef
87.
go back to reference Wang Z, Qu S, Zeng X, Zhang C, Shi M, Tan F, Wang Z, Liu J, Hou Y, Teng F, Feng Z (2008) Synthesis of MDMO-PPV capped PbS quantum dots and their application to solar cells. Polymer 49(21):4647–4651CrossRef Wang Z, Qu S, Zeng X, Zhang C, Shi M, Tan F, Wang Z, Liu J, Hou Y, Teng F, Feng Z (2008) Synthesis of MDMO-PPV capped PbS quantum dots and their application to solar cells. Polymer 49(21):4647–4651CrossRef
88.
go back to reference Feng Y, Yun D, Zhang X, Feng W (2010) Solution-processed bulk heterojunction photovoltaic devices based on poly(2-methoxy,5-octoxy)-1,4-phenylenevinylene-multiwalled carbon nanotubes/PbSe quantum dots bilayer. Appl Phys Lett 96(9):093301CrossRef Feng Y, Yun D, Zhang X, Feng W (2010) Solution-processed bulk heterojunction photovoltaic devices based on poly(2-methoxy,5-octoxy)-1,4-phenylenevinylene-multiwalled carbon nanotubes/PbSe quantum dots bilayer. Appl Phys Lett 96(9):093301CrossRef
89.
go back to reference Baeten L, Conings B, Boyen HG, D’Haen J, Hardy A, D’Olieslaeger M, Manca JV, Van Bael MK (2011) Towards efficient hybrid solar cells based on fully polymer infiltrated ZnO nanorod arrays. Adv Mater 23(25):2802–2805CrossRef Baeten L, Conings B, Boyen HG, D’Haen J, Hardy A, D’Olieslaeger M, Manca JV, Van Bael MK (2011) Towards efficient hybrid solar cells based on fully polymer infiltrated ZnO nanorod arrays. Adv Mater 23(25):2802–2805CrossRef
90.
go back to reference Noori K, Giustino F (2012) Ideal energy-level alignment at the ZnO/P3HT photovoltaic interface. Adv Funct Mater 22(24):5089–5095CrossRef Noori K, Giustino F (2012) Ideal energy-level alignment at the ZnO/P3HT photovoltaic interface. Adv Funct Mater 22(24):5089–5095CrossRef
91.
go back to reference Zhao J, He C, Yang R, Shi Z, Cheng M, Yang W, Xie G, Wang D, Shi D, Zhang G (2012) Ultra-sensitive strain sensors based on piezoresistive nanographene films. Appl Phys Lett 101(6):063112–063115CrossRef Zhao J, He C, Yang R, Shi Z, Cheng M, Yang W, Xie G, Wang D, Shi D, Zhang G (2012) Ultra-sensitive strain sensors based on piezoresistive nanographene films. Appl Phys Lett 101(6):063112–063115CrossRef
92.
go back to reference Zhu R, Jiang CY, Liu B, Ramakrishna S (2009) Highly efficient nanoporous TiO2-polythiophene hybrid solar cells based on interfacial modification using a metal-free organic dye. Adv Mater 21(9):994–1000CrossRef Zhu R, Jiang CY, Liu B, Ramakrishna S (2009) Highly efficient nanoporous TiO2-polythiophene hybrid solar cells based on interfacial modification using a metal-free organic dye. Adv Mater 21(9):994–1000CrossRef
93.
go back to reference Shankar K, Mor GK, Paulose M, Varghese OK, Grimes CA (2008) Effect of device geometry on the performance of TiO2 nanotube array-organic semiconductor double heterojunction solar cells. J Non-Cryst Solids 354(19–25):2767–2771CrossRef Shankar K, Mor GK, Paulose M, Varghese OK, Grimes CA (2008) Effect of device geometry on the performance of TiO2 nanotube array-organic semiconductor double heterojunction solar cells. J Non-Cryst Solids 354(19–25):2767–2771CrossRef
94.
go back to reference Ren S, Chang LY, Lim SK, Zhao J, Smith M, Zhao N, Bulović V, Bawendi M, Gradečak S (2011) Inorganic–organic hybrid solar cell: bridging quantum dots to conjugated polymer nanowires. Nano Lett 11(9):3998–4002CrossRef Ren S, Chang LY, Lim SK, Zhao J, Smith M, Zhao N, Bulović V, Bawendi M, Gradečak S (2011) Inorganic–organic hybrid solar cell: bridging quantum dots to conjugated polymer nanowires. Nano Lett 11(9):3998–4002CrossRef
95.
go back to reference Yun D, Xia X, Zhang S, Bian Z, Liu R, Huang C (2011) ZnO nanorod arrays with different densities in hybrid photovoltaic devices: fabrication and the density effect on performance. Chem Phys Lett 516(1–3):92–95CrossRef Yun D, Xia X, Zhang S, Bian Z, Liu R, Huang C (2011) ZnO nanorod arrays with different densities in hybrid photovoltaic devices: fabrication and the density effect on performance. Chem Phys Lett 516(1–3):92–95CrossRef
96.
go back to reference Li L (2015) Thermoelectric energy harvesting via piezoelectric material. arXiv.org Li L (2015) Thermoelectric energy harvesting via piezoelectric material. arXiv.org
97.
go back to reference Paul D (2014) Thermoelectric energy harvesting. In: Fagas G (ed) ICT-energy-concepts towards zero-power information and communication technology Paul D (2014) Thermoelectric energy harvesting. In: Fagas G (ed) ICT-energy-concepts towards zero-power information and communication technology
98.
go back to reference LeBlanc S (2014) Thermoelectric generators: linking material properties and systems engineering for waste heat recovery applications. Sustain Mater Technol 1–2:26–35 LeBlanc S (2014) Thermoelectric generators: linking material properties and systems engineering for waste heat recovery applications. Sustain Mater Technol 1–2:26–35
99.
go back to reference Tritt TM, Subramanian MA (2006) Thermoelectric materials, phenomena, and applications: a bird’s eye view. MRS Bull 31(3):188–198CrossRef Tritt TM, Subramanian MA (2006) Thermoelectric materials, phenomena, and applications: a bird’s eye view. MRS Bull 31(3):188–198CrossRef
100.
go back to reference Wood C (1988) Materials for thermoelectric energy conversion. Rep Prog Phys 51(4):459CrossRef Wood C (1988) Materials for thermoelectric energy conversion. Rep Prog Phys 51(4):459CrossRef
101.
go back to reference DiSalvo FJ (1999) Thermoelectric cooling and power generation. Science 285(5428):703–706CrossRef DiSalvo FJ (1999) Thermoelectric cooling and power generation. Science 285(5428):703–706CrossRef
102.
go back to reference Dubey N, Lecerc M (2011) Conducting polymers: efficient thermoelectric materials. J Polym Sci Part B Polym Phys 49(7):467–475CrossRef Dubey N, Lecerc M (2011) Conducting polymers: efficient thermoelectric materials. J Polym Sci Part B Polym Phys 49(7):467–475CrossRef
103.
go back to reference Meng C, Liu C, Fan S (2010) A promising approach to enhanced thermoelectric properties using carbon nanotube networks. Adv Mater 22(4):535–539CrossRef Meng C, Liu C, Fan S (2010) A promising approach to enhanced thermoelectric properties using carbon nanotube networks. Adv Mater 22(4):535–539CrossRef
104.
go back to reference Snyder GJ, Toberer ES (2008) Complex thermoelectric materials. Nat Mater 7(2):105–114CrossRef Snyder GJ, Toberer ES (2008) Complex thermoelectric materials. Nat Mater 7(2):105–114CrossRef
105.
go back to reference Venkatasubramanian R, Siivola E, Colpitts T, O’Quinn B (2001) Thin-film thermoelectric devices with high room-temperature figures of merit. Nature 413(6856):597–602CrossRef Venkatasubramanian R, Siivola E, Colpitts T, O’Quinn B (2001) Thin-film thermoelectric devices with high room-temperature figures of merit. Nature 413(6856):597–602CrossRef
106.
go back to reference Bubnova O, Khan ZU, Malti A, Braun S, Fahlman M, Berggren M, Crispin X (2011) Optimization of the thermoelectric figure of merit in the conducting polymer poly(3,4-ethylenedioxythiophene). Nat Mater 10(6):429–433CrossRef Bubnova O, Khan ZU, Malti A, Braun S, Fahlman M, Berggren M, Crispin X (2011) Optimization of the thermoelectric figure of merit in the conducting polymer poly(3,4-ethylenedioxythiophene). Nat Mater 10(6):429–433CrossRef
107.
go back to reference Yu C, Kim YS, Kim D, Grunlan JC (2008) Thermoelectric behavior of segregated-network polymer nanocomposites. Nano Lett 8(12):4428–4432CrossRef Yu C, Kim YS, Kim D, Grunlan JC (2008) Thermoelectric behavior of segregated-network polymer nanocomposites. Nano Lett 8(12):4428–4432CrossRef
108.
go back to reference Kim D, Kim Y, Choi K, Grunlan JC, Yu C (2010) Improved thermoelectric behavior of nanotube-filled polymer composites with poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate). ACS Nano 4(1):513–523CrossRef Kim D, Kim Y, Choi K, Grunlan JC, Yu C (2010) Improved thermoelectric behavior of nanotube-filled polymer composites with poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate). ACS Nano 4(1):513–523CrossRef
109.
go back to reference Sun Y, Sheng P, Di C, Jiao F, Xu W, Qiu D, Zhu D (2012) Organic thermoelectric materials and devices based on p- and n-type poly(metal 1,1,2,2-ethenetetrathiolate)s. Adv Mater 24(7):932–937CrossRef Sun Y, Sheng P, Di C, Jiao F, Xu W, Qiu D, Zhu D (2012) Organic thermoelectric materials and devices based on p- and n-type poly(metal 1,1,2,2-ethenetetrathiolate)s. Adv Mater 24(7):932–937CrossRef
110.
go back to reference Abramson AR, Kim WC, Huxtable ST, Yan H, Wu Y, Majumdar A, Tien CL, Yang P (2004) Fabrication and characterization of a nanowire/polymer-based nanocomposite for a prototype thermoelectric device. J Microelectromech Syst 13(3):505–513CrossRef Abramson AR, Kim WC, Huxtable ST, Yan H, Wu Y, Majumdar A, Tien CL, Yang P (2004) Fabrication and characterization of a nanowire/polymer-based nanocomposite for a prototype thermoelectric device. J Microelectromech Syst 13(3):505–513CrossRef
111.
go back to reference Xia Y, Sun K, Ouyang J (2012) Solution-processed metallic conducting polymer films as transparent electrode of optoelectronic devices. Adv Mater 24(18):2436–2440CrossRef Xia Y, Sun K, Ouyang J (2012) Solution-processed metallic conducting polymer films as transparent electrode of optoelectronic devices. Adv Mater 24(18):2436–2440CrossRef
112.
go back to reference Bubnova O, Krispin X (2012) Towards polymer-based organic thermoelectric generators. Energy Environ Sci 5(11):9345–9362CrossRef Bubnova O, Krispin X (2012) Towards polymer-based organic thermoelectric generators. Energy Environ Sci 5(11):9345–9362CrossRef
113.
go back to reference Kraemer D, Poudel B, Feng HP, Caylor JC, Yu B, Yan X, Ma Y, Wang X, Wang D, Muto A, McEnaney K, Chiesa M, Ren Z, Chen G (2011) High-performance flat-panel solar thermoelectric generators with high thermal concentration. Nat Mater 10(7):532–538CrossRef Kraemer D, Poudel B, Feng HP, Caylor JC, Yu B, Yan X, Ma Y, Wang X, Wang D, Muto A, McEnaney K, Chiesa M, Ren Z, Chen G (2011) High-performance flat-panel solar thermoelectric generators with high thermal concentration. Nat Mater 10(7):532–538CrossRef
114.
go back to reference Du Y, Shen SZ, Cai K, Casey PS (2012) Research progress on polymer—inorganic thermoelectric nanocomposite materials. Prog Polym Sci 37(6):820–841CrossRef Du Y, Shen SZ, Cai K, Casey PS (2012) Research progress on polymer—inorganic thermoelectric nanocomposite materials. Prog Polym Sci 37(6):820–841CrossRef
115.
go back to reference Zhang B, Sun J, Katz HE, Fang F, Opila RL (2010) Promising thermoelectric properties of commercial PEDOT:PSS materials and their Bi2Te3 powder composites. ACS Appl Mater Interfaces 2(11):3170–3178CrossRef Zhang B, Sun J, Katz HE, Fang F, Opila RL (2010) Promising thermoelectric properties of commercial PEDOT:PSS materials and their Bi2Te3 powder composites. ACS Appl Mater Interfaces 2(11):3170–3178CrossRef
116.
go back to reference Kaiser AB (2001) Electronic transport properties of conducting polymers and carbon nanotubes. Rep Prog Phys 64(1):1CrossRef Kaiser AB (2001) Electronic transport properties of conducting polymers and carbon nanotubes. Rep Prog Phys 64(1):1CrossRef
117.
go back to reference Carpi F, De Rossi D (2005) Electroactive polymer-based devices for e-textiles in biomedicine. IEEE Trans Inf Technol Biomed 9(3):295–318CrossRef Carpi F, De Rossi D (2005) Electroactive polymer-based devices for e-textiles in biomedicine. IEEE Trans Inf Technol Biomed 9(3):295–318CrossRef
118.
go back to reference Jun T, Akio T, Kikuko K (1990) Structure and electrical properties of polyacetylene yielding a conductivity of 10 5 S/cm. Jpn J Appl Phys 29(1R):125 Jun T, Akio T, Kikuko K (1990) Structure and electrical properties of polyacetylene yielding a conductivity of 10 5 S/cm. Jpn J Appl Phys 29(1R):125
119.
go back to reference Taylor PS, Karasz LK, Wilusz E, Lahti PM, Karasz FE (2013) Thermoelectric studies of oligophenylenevinylene segmented block copolymers and their blends with MEH-PPV. Synth Met 185–186:109–114CrossRef Taylor PS, Karasz LK, Wilusz E, Lahti PM, Karasz FE (2013) Thermoelectric studies of oligophenylenevinylene segmented block copolymers and their blends with MEH-PPV. Synth Met 185–186:109–114CrossRef
120.
go back to reference Shi H, Liu C, Xu J, Song H, Lu B, Jiang F, Zhou W, Zhang G, Jiang Q (2013) Facile fabrication of PEDOT:PSS/polythiophenes bilayered nanofilms on pure organic electrodes and their thermoelectric performance. ACS Appl Mater Interfaces 5(24):12811–12819CrossRef Shi H, Liu C, Xu J, Song H, Lu B, Jiang F, Zhou W, Zhang G, Jiang Q (2013) Facile fabrication of PEDOT:PSS/polythiophenes bilayered nanofilms on pure organic electrodes and their thermoelectric performance. ACS Appl Mater Interfaces 5(24):12811–12819CrossRef
121.
go back to reference Kazmierski TJ (2014) Energy harvesting systems. Springer, Berlin Kazmierski TJ (2014) Energy harvesting systems. Springer, Berlin
122.
go back to reference Zhu D, Tudor MJ, Beeby SP (2009) Strategies for increasing the operating frequency range of vibration energy harvesters: a review. Meas Sci Technol 21(2):022001CrossRef Zhu D, Tudor MJ, Beeby SP (2009) Strategies for increasing the operating frequency range of vibration energy harvesters: a review. Meas Sci Technol 21(2):022001CrossRef
123.
go back to reference Dallago E, Danioni A, Marchesi M, Nucita V, Venchi G (2011) A self-powered electronic interface for electromagnetic energy harvester. IEEE Trans Power Electron 26(11):3174–3182CrossRef Dallago E, Danioni A, Marchesi M, Nucita V, Venchi G (2011) A self-powered electronic interface for electromagnetic energy harvester. IEEE Trans Power Electron 26(11):3174–3182CrossRef
124.
go back to reference Vullers R, Doms I, Hoof CV, Mertens R (2009) Micropower energy harvesting. Solid-State Electron 53(7):684–693CrossRef Vullers R, Doms I, Hoof CV, Mertens R (2009) Micropower energy harvesting. Solid-State Electron 53(7):684–693CrossRef
125.
go back to reference Yang B, Lee C, Xiang W, Xie J, He JH, Kotlanka RK, SiewPingLow Feng H (2009) Electromagnetic energy harvesting from vibrations of multiple frequencies. J Micromech Microeng 19(3):035001CrossRef Yang B, Lee C, Xiang W, Xie J, He JH, Kotlanka RK, SiewPingLow Feng H (2009) Electromagnetic energy harvesting from vibrations of multiple frequencies. J Micromech Microeng 19(3):035001CrossRef
126.
go back to reference Foisal ARM, Hong C, Chung CS (2012) Multi-frequency electromagnetic energy harvester using a magnetic spring cantilever. Sens Actuators, A 182:106–113CrossRef Foisal ARM, Hong C, Chung CS (2012) Multi-frequency electromagnetic energy harvester using a magnetic spring cantilever. Sens Actuators, A 182:106–113CrossRef
127.
go back to reference Carvalho CMF, Manuel C, Paulino, Veríssimo NFS (2016) CMOS indoor light energy harvesting system for wireless sensing applications. Springer, Berlin Carvalho CMF, Manuel C, Paulino, Veríssimo NFS (2016) CMOS indoor light energy harvesting system for wireless sensing applications. Springer, Berlin
128.
go back to reference Arnold DP (2007) Review of microscale magnetic power generation. IEEE Trans Magn 43(11):3940–3951CrossRef Arnold DP (2007) Review of microscale magnetic power generation. IEEE Trans Magn 43(11):3940–3951CrossRef
129.
go back to reference Beeby SPR, Torah N, Tudor MJ, Glynne-Jones P, Donnell TO, Saha CR, Roy S (2007) A micro electromagnetic generator for vibration energy harvesting. J Micromech Microeng 17(7):1257CrossRef Beeby SPR, Torah N, Tudor MJ, Glynne-Jones P, Donnell TO, Saha CR, Roy S (2007) A micro electromagnetic generator for vibration energy harvesting. J Micromech Microeng 17(7):1257CrossRef
130.
go back to reference Cook-Chennault Thambi KN, Sastry AM (2008) Powering MEMS portable devices—a review of non-regenerative and regenerative power supplies systems with special emphasis on piezoelectric energy harvesting systems. Smart Mater Struct 17(4):043001CrossRef Cook-Chennault Thambi KN, Sastry AM (2008) Powering MEMS portable devices—a review of non-regenerative and regenerative power supplies systems with special emphasis on piezoelectric energy harvesting systems. Smart Mater Struct 17(4):043001CrossRef
131.
go back to reference Khan MA, Alfadhel A, Kosel J (2016) Magnetic nanocomposite cilia energy harvester. IEEE Trans Magn: 1–4 Khan MA, Alfadhel A, Kosel J (2016) Magnetic nanocomposite cilia energy harvester. IEEE Trans Magn: 1–4
132.
go back to reference Alfadhel A, Li B, Zaher A, Yassine O, Kosel J (2014) A magnetic nanocomposite for biomimetic flow sensing. Lab Chip 14(22):4362–4369CrossRef Alfadhel A, Li B, Zaher A, Yassine O, Kosel J (2014) A magnetic nanocomposite for biomimetic flow sensing. Lab Chip 14(22):4362–4369CrossRef
133.
go back to reference Zhou B, Xu W, Syed AA, Chau Y, Chen L, Chew B, Yassine O, Wu X, Gao Y, Zhang J, Xiao X, Kosel J, Zhang XX, Yao Z, Wen W (2015) Design and fabrication of magnetically functionalized flexible micropillar arrays for rapid and controllable microfluidic mixing. Lab Chip 15(9):2125–2132CrossRef Zhou B, Xu W, Syed AA, Chau Y, Chen L, Chew B, Yassine O, Wu X, Gao Y, Zhang J, Xiao X, Kosel J, Zhang XX, Yao Z, Wen W (2015) Design and fabrication of magnetically functionalized flexible micropillar arrays for rapid and controllable microfluidic mixing. Lab Chip 15(9):2125–2132CrossRef
134.
go back to reference Jordan OTL, Ounaies Z (2001) Piezoelectric ceramics characterization. Institute for Computer Applications in Science and Engineering (ICASE) Jordan OTL, Ounaies Z (2001) Piezoelectric ceramics characterization. Institute for Computer Applications in Science and Engineering (ICASE)
135.
go back to reference Haertling GH (1999) Ferroelectric ceramics: history and technology. J Am Ceram Soc 82(4):797–818CrossRef Haertling GH (1999) Ferroelectric ceramics: history and technology. J Am Ceram Soc 82(4):797–818CrossRef
136.
go back to reference Scala EP (1996) A brief history of composites in the U.S.—the dream and the success. JOM 48(2):45–48CrossRef Scala EP (1996) A brief history of composites in the U.S.—the dream and the success. JOM 48(2):45–48CrossRef
137.
go back to reference Venkatragavaraj E, Satish B, Vinod PR, Vijaya MS (2001) Piezoelectric properties of ferroelectric PZT-polymer composites. J Phys D Appl Phys 34(4):487CrossRef Venkatragavaraj E, Satish B, Vinod PR, Vijaya MS (2001) Piezoelectric properties of ferroelectric PZT-polymer composites. J Phys D Appl Phys 34(4):487CrossRef
138.
go back to reference Zhang TY, Kuo CM, Barnett DM, Willis JR (2002) Fracture of piezoelectric ceramics. In: Adv Appl Mech: 147–289 Zhang TY, Kuo CM, Barnett DM, Willis JR (2002) Fracture of piezoelectric ceramics. In: Adv Appl Mech: 147–289
139.
go back to reference Banerjee S, Hennault KAC (2012) An investigation into the influence of electrically conductive particle size on electromechanical coupling and effective dielectric strain coefficients in three phase composite piezoelectric polymers. Compos Part A Appl Sci Manuf 43(9):1612–1619 Banerjee S, Hennault KAC (2012) An investigation into the influence of electrically conductive particle size on electromechanical coupling and effective dielectric strain coefficients in three phase composite piezoelectric polymers. Compos Part A Appl Sci Manuf 43(9):1612–1619
140.
go back to reference Banerjee S, Hennault KAC (2013) Fabrication of dome-shaped PZT-epoxy actuator using modified solvent and spin coating technique. J Electroceram: 1–11 Banerjee S, Hennault KAC (2013) Fabrication of dome-shaped PZT-epoxy actuator using modified solvent and spin coating technique. J Electroceram: 1–11
141.
go back to reference Banerjee S, Hennault KAC (2011) Influence of Al particle size and lead zirconate titanate (PZT) volume fraction on the dielectric properties of PZT-epoxy-aluminum composites. J Eng Mater Technol 133:041016 Banerjee S, Hennault KAC (2011) Influence of Al particle size and lead zirconate titanate (PZT) volume fraction on the dielectric properties of PZT-epoxy-aluminum composites. J Eng Mater Technol 133:041016
142.
go back to reference Rianyoi R, Potong R, Jaitanong N, Yimnirun R, Chaipanich A (2011) Dielectric, ferroelectric and piezoelectric properties of 0–3 barium titanate–Portland cement composites. Appl Phys A 104(2):661–666CrossRef Rianyoi R, Potong R, Jaitanong N, Yimnirun R, Chaipanich A (2011) Dielectric, ferroelectric and piezoelectric properties of 0–3 barium titanate–Portland cement composites. Appl Phys A 104(2):661–666CrossRef
143.
go back to reference Jaitanong N, Chaipanich A, Tunkasiri T (2008) Properties 0–3 PZT–Portland cement composites. Ceram Int 34(4):793–795CrossRef Jaitanong N, Chaipanich A, Tunkasiri T (2008) Properties 0–3 PZT–Portland cement composites. Ceram Int 34(4):793–795CrossRef
144.
go back to reference Chaipanich A, Jaitanong N, Yimnirun R (2009) Ferroelectric hysteresis behavior in 0–3 PZT-cement composites: effects of frequency and electric field. Ferroelectr Lett 36(3–4):59–66CrossRef Chaipanich A, Jaitanong N, Yimnirun R (2009) Ferroelectric hysteresis behavior in 0–3 PZT-cement composites: effects of frequency and electric field. Ferroelectr Lett 36(3–4):59–66CrossRef
145.
go back to reference Huang S, Chang J, Xu R, Liu F, Lu L, Ye Z, Cheng X (2004) Piezoelectric properties of 0–3 PZT/sulfoaluminate cement composites. Smart Mater Struct 13(2):270CrossRef Huang S, Chang J, Xu R, Liu F, Lu L, Ye Z, Cheng X (2004) Piezoelectric properties of 0–3 PZT/sulfoaluminate cement composites. Smart Mater Struct 13(2):270CrossRef
146.
go back to reference Li Z, Zhang D, Wu K (2002) Cement-based 0–3 piezoelectric composites. J Am Ceram Soc 85(2):305–313CrossRef Li Z, Zhang D, Wu K (2002) Cement-based 0–3 piezoelectric composites. J Am Ceram Soc 85(2):305–313CrossRef
147.
go back to reference Banerjee S, Chennault KC. Influence of Al inclusions and PZT volume fraction on the dielectric and piezoelectric characteristics of three phase PZT-cement-Al composites. In: Advances in Cement Research. Accepted for Publication Banerjee S, Chennault KC. Influence of Al inclusions and PZT volume fraction on the dielectric and piezoelectric characteristics of three phase PZT-cement-Al composites. In: Advances in Cement Research. Accepted for Publication
148.
go back to reference Banerjee S, Chennault KC (2011) Influence of Al particle size and lead zirconate titanate (PZT) volume fraction on the dielectric properties of PZT-epoxy-aluminum composites. J Eng Mater Technol 133(4):041016CrossRef Banerjee S, Chennault KC (2011) Influence of Al particle size and lead zirconate titanate (PZT) volume fraction on the dielectric properties of PZT-epoxy-aluminum composites. J Eng Mater Technol 133(4):041016CrossRef
149.
go back to reference Banerjee S, Du W, Wang L, Chennault KAC (2013) Fabrication of dome-shaped PZT-epoxy actuator using modified solvent and spin coating technique. J Electroceram 31(1–2):148–158CrossRef Banerjee S, Du W, Wang L, Chennault KAC (2013) Fabrication of dome-shaped PZT-epoxy actuator using modified solvent and spin coating technique. J Electroceram 31(1–2):148–158CrossRef
150.
go back to reference Banerjee S, Rajesh K, Chennault CAK, Manish C (2013) Multi-walled carbon-nanotube based flexible piezoelectric films with graphene monolayers. Energy Environ Focus 2(3):195–202CrossRef Banerjee S, Rajesh K, Chennault CAK, Manish C (2013) Multi-walled carbon-nanotube based flexible piezoelectric films with graphene monolayers. Energy Environ Focus 2(3):195–202CrossRef
151.
go back to reference Chennault CK, Thambi N, Sastry AM (2008) Powering MEMS portable devices—a review of non-regenerative and regenerative power supply systems with special emphasis on piezoelectric energy harvesting systems. Smart Mater Struct 17(4):043001CrossRef Chennault CK, Thambi N, Sastry AM (2008) Powering MEMS portable devices—a review of non-regenerative and regenerative power supply systems with special emphasis on piezoelectric energy harvesting systems. Smart Mater Struct 17(4):043001CrossRef
152.
go back to reference Dang ZM, Fan LZ, Shen Y, Nan CW (2003) Dielectric behavior of novel three-phase MWNTs/BaTiO3/PVDF composites. Mater Sci Eng B 103(2):140–144CrossRef Dang ZM, Fan LZ, Shen Y, Nan CW (2003) Dielectric behavior of novel three-phase MWNTs/BaTiO3/PVDF composites. Mater Sci Eng B 103(2):140–144CrossRef
153.
go back to reference Dang ZM, Yao SH, Yuan JK, Bai J (2010) Tailored dielectric properties based on microstructure change in BaTiO3-carbon nanotube/polyvinylidene fluoride three-phase nanocomposites. J Phys Chem C 114(31):13204–13209CrossRef Dang ZM, Yao SH, Yuan JK, Bai J (2010) Tailored dielectric properties based on microstructure change in BaTiO3-carbon nanotube/polyvinylidene fluoride three-phase nanocomposites. J Phys Chem C 114(31):13204–13209CrossRef
154.
go back to reference Dong B, Li Z (2005) Cement-based piezoelectric ceramic smart composites. Compos Sci Technol 65(9):1363–1371CrossRef Dong B, Li Z (2005) Cement-based piezoelectric ceramic smart composites. Compos Sci Technol 65(9):1363–1371CrossRef
155.
go back to reference Frank S, Poncharal P, Wang ZL, De Hee WA (1998) Carbon nanotube quantum resistors. Science 280(5370):1744–1746CrossRef Frank S, Poncharal P, Wang ZL, De Hee WA (1998) Carbon nanotube quantum resistors. Science 280(5370):1744–1746CrossRef
156.
go back to reference Gong H, Zhang Y, Quan J, Che S (2011) Preparation and properties of cement based piezoelectric composites modified by CNTs. Curr Appl Phys 11(3):653–656CrossRef Gong H, Zhang Y, Quan J, Che S (2011) Preparation and properties of cement based piezoelectric composites modified by CNTs. Curr Appl Phys 11(3):653–656CrossRef
157.
go back to reference Gullapalli H, Vemuru VSM, Kumar A, Mendez AB, Vajtai R, Terrones M, Nagarajaiah S, Ajayan PM (2010) Flexible piezoelectric ZnO–paper nanocomposite strain sensor. Small 6(15):1641–1646CrossRef Gullapalli H, Vemuru VSM, Kumar A, Mendez AB, Vajtai R, Terrones M, Nagarajaiah S, Ajayan PM (2010) Flexible piezoelectric ZnO–paper nanocomposite strain sensor. Small 6(15):1641–1646CrossRef
158.
go back to reference Hong SY, Glasser SP (1999) Alkali binding in cement pastes: part I. The C-S-H phase. Cem Concr Res 29(12):1893–1903CrossRef Hong SY, Glasser SP (1999) Alkali binding in cement pastes: part I. The C-S-H phase. Cem Concr Res 29(12):1893–1903CrossRef
159.
go back to reference Hosseinzadegan H, Smith AD, Niklaus F, Paussa A, Vaziri S, Fischer AC, Sterner M, Forsberg F, Delin A, Esseni D, Palestri P, Östling M, Lemme MC (2012) Graphene has ultra high piezoresistive gauge factor. In: 2012 IEEE 25th international conference on micro electro mechanical systems (MEMS) Hosseinzadegan H, Smith AD, Niklaus F, Paussa A, Vaziri S, Fischer AC, Sterner M, Forsberg F, Delin A, Esseni D, Palestri P, Östling M, Lemme MC (2012) Graphene has ultra high piezoresistive gauge factor. In: 2012 IEEE 25th international conference on micro electro mechanical systems (MEMS)
160.
go back to reference Kok SL, White NM, Harris NR (2008) Free-standing thick-film piezoelectric device. Electron Lett 44(4):280–281 Kok SL, White NM, Harris NR (2008) Free-standing thick-film piezoelectric device. Electron Lett 44(4):280–281
161.
go back to reference Kuo DH, Chang CC, Su TY, Wang WK, Lin BY (2001) Dielectric behaviours of multi-doped BaTiO3/epoxy composites. J Eur Ceram Soc 21(9):1171–1177CrossRef Kuo DH, Chang CC, Su TY, Wang WK, Lin BY (2001) Dielectric behaviours of multi-doped BaTiO3/epoxy composites. J Eur Ceram Soc 21(9):1171–1177CrossRef
162.
go back to reference Kymakis E, Stratakis E, Stylianakis MM, Koudoumas E, Fotakis C (2011) Spin coated graphene films as the transparent electrode in organic photovoltaic devices. Thin Solid Films 520(4):1238–1241CrossRef Kymakis E, Stratakis E, Stylianakis MM, Koudoumas E, Fotakis C (2011) Spin coated graphene films as the transparent electrode in organic photovoltaic devices. Thin Solid Films 520(4):1238–1241CrossRef
163.
go back to reference Levy N, Burke SA, Meaker KL, Panlasigui M, Zettl A, Guinea F, Neto AHC, Crommie MF (2010) Strain-induced pseudo-magnetic fields greater than 300 Tesla in graphene nanobubbles. Science 329(5991):544–547CrossRef Levy N, Burke SA, Meaker KL, Panlasigui M, Zettl A, Guinea F, Neto AHC, Crommie MF (2010) Strain-induced pseudo-magnetic fields greater than 300 Tesla in graphene nanobubbles. Science 329(5991):544–547CrossRef
164.
go back to reference Li FX, Fang DN, Liu YM (2006) Domain switching anisotropy in poled lead titanate zirconate ceramics under orthogonal electromechanical loading. J Appl Phys 100(8):084101–084106CrossRef Li FX, Fang DN, Liu YM (2006) Domain switching anisotropy in poled lead titanate zirconate ceramics under orthogonal electromechanical loading. J Appl Phys 100(8):084101–084106CrossRef
165.
go back to reference Li X, Zhang RW, Wang K, Wei J, Wu D, Cao A, Li Z, Cheng Y, Quanshui Zheng Q, Ruoff RS, Zhu H (2012) Stretchable and highly sensitive graphene-on-polymer strain sensors. Sci Rep 2:1–6 Li X, Zhang RW, Wang K, Wei J, Wu D, Cao A, Li Z, Cheng Y, Quanshui Zheng Q, Ruoff RS, Zhu H (2012) Stretchable and highly sensitive graphene-on-polymer strain sensors. Sci Rep 2:1–6
166.
go back to reference Ma M, Wang X (2009) Preparation, microstructure and properties of epoxy-based composites containing carbon nanotubes and PMN-PZT piezoceramics as rigid piezo-damping materials. Mater Chem Phys 116(1):191–197CrossRef Ma M, Wang X (2009) Preparation, microstructure and properties of epoxy-based composites containing carbon nanotubes and PMN-PZT piezoceramics as rigid piezo-damping materials. Mater Chem Phys 116(1):191–197CrossRef
167.
go back to reference Maiti Suin S, Shrivastava NK, Khatua BB (2013) Low percolation threshold in melt-blended PC/MWCNT nanocomposites in the presence of styrene acrylonitrile (SAN) copolymer: preparation and characterizations. Synth Met 165:40–50CrossRef Maiti Suin S, Shrivastava NK, Khatua BB (2013) Low percolation threshold in melt-blended PC/MWCNT nanocomposites in the presence of styrene acrylonitrile (SAN) copolymer: preparation and characterizations. Synth Met 165:40–50CrossRef
168.
go back to reference Miao X, Tongay S, Hebard AF (2012) Strain-induced suppression of weak localization in CVD-grown graphene. J Phys Condens Matter 24(47):475304CrossRef Miao X, Tongay S, Hebard AF (2012) Strain-induced suppression of weak localization in CVD-grown graphene. J Phys Condens Matter 24(47):475304CrossRef
169.
go back to reference Nagarajan V, Ganpule CS, Nagaraj B, Aggarwal S, Alpay SP, Roytburd AL, Williams ED, Ramesh R (1999) Effect of mechanical constraint on the dielectric and piezoelectric behavior of epitaxial Pb(Mg1/3Nb2/3)O3(90%)–PbTiO3(10%) relaxor thin films. Appl Phys Lett 75(26):4183–4185CrossRef Nagarajan V, Ganpule CS, Nagaraj B, Aggarwal S, Alpay SP, Roytburd AL, Williams ED, Ramesh R (1999) Effect of mechanical constraint on the dielectric and piezoelectric behavior of epitaxial Pb(Mg1/3Nb2/3)O3(90%)–PbTiO3(10%) relaxor thin films. Appl Phys Lett 75(26):4183–4185CrossRef
170.
go back to reference Romasanta L, Hernández M, Manchado ML, Verdejo R (2011) Functionalised graphene sheets as effective high dielectric constant fillers. Nanoscale Res Lett 6(1):1–6CrossRef Romasanta L, Hernández M, Manchado ML, Verdejo R (2011) Functionalised graphene sheets as effective high dielectric constant fillers. Nanoscale Res Lett 6(1):1–6CrossRef
171.
go back to reference Satish B, Sridevi K, Vijaya MS (2002) Study of piezoelectric and dielectric properties of ferroelectric PZT-polymer composites prepared by hot-press technique. J Phys D Appl Phys 35(16):2048CrossRef Satish B, Sridevi K, Vijaya MS (2002) Study of piezoelectric and dielectric properties of ferroelectric PZT-polymer composites prepared by hot-press technique. J Phys D Appl Phys 35(16):2048CrossRef
172.
go back to reference Schedin F, Geim AK, Morozov SV, Hill EW, Blake P, Katsnelson MI, Novoselov KS (2007) Detection of individual gas molecules adsorbed on graphene. Nat Mater 6(9):652–655CrossRef Schedin F, Geim AK, Morozov SV, Hill EW, Blake P, Katsnelson MI, Novoselov KS (2007) Detection of individual gas molecules adsorbed on graphene. Nat Mater 6(9):652–655CrossRef
173.
go back to reference Seema A, Dayas KR, Vargheze JM (2007) PVDF-PZT-5H composites prepared by hot press and tape casting techniques. J Appl Polym Sci 106(1):146–151CrossRef Seema A, Dayas KR, Vargheze JM (2007) PVDF-PZT-5H composites prepared by hot press and tape casting techniques. J Appl Polym Sci 106(1):146–151CrossRef
174.
go back to reference Sencadas V, Mendez SL, Filho RG, Chinaglia DL, Pouzada AS (2005) Influence of the processing conditions and corona poling on the morphology of β-PVDF. In: Proceedings of 12th International Symposium on Electrets (ISE-12) Sencadas V, Mendez SL, Filho RG, Chinaglia DL, Pouzada AS (2005) Influence of the processing conditions and corona poling on the morphology of β-PVDF. In: Proceedings of 12th International Symposium on Electrets (ISE-12)
175.
go back to reference Senthilkumar R, Sridevi K, Jambunathan V, Vijaya MS (2005) Investigations on ferroelectric PZT-PVDF composites of 0–3 connectivity. Ferroelectrics 325(1):121–130CrossRef Senthilkumar R, Sridevi K, Jambunathan V, Vijaya MS (2005) Investigations on ferroelectric PZT-PVDF composites of 0–3 connectivity. Ferroelectrics 325(1):121–130CrossRef
176.
go back to reference Shen Y, Guan Y, Hu Y, Lei Y, Song Y, Lin Y, Nan CW (2013) Dielectric behavior of graphene/BaTiO[sub 3]/polyvinylidene fluoride nanocomposite under high electric field. Appl Phys Lett 103(7):072906-4CrossRef Shen Y, Guan Y, Hu Y, Lei Y, Song Y, Lin Y, Nan CW (2013) Dielectric behavior of graphene/BaTiO[sub 3]/polyvinylidene fluoride nanocomposite under high electric field. Appl Phys Lett 103(7):072906-4CrossRef
177.
go back to reference Song Y, ZhuDi Z, WenXue Y, Bo L, XinFang C (2007) Morphological structures of poly(vinylidene fluoride)/montmorillonite nanocomposites. Sci China Ser B Chem 50(6):790–796CrossRef Song Y, ZhuDi Z, WenXue Y, Bo L, XinFang C (2007) Morphological structures of poly(vinylidene fluoride)/montmorillonite nanocomposites. Sci China Ser B Chem 50(6):790–796CrossRef
178.
go back to reference Sordan R, Traversi F, Russo V (2009) Logic gates with a single graphene transistor. Appl Phys Lett 94(7):073305-3CrossRef Sordan R, Traversi F, Russo V (2009) Logic gates with a single graphene transistor. Appl Phys Lett 94(7):073305-3CrossRef
179.
go back to reference Tian S, Wang X (2008) Fabrication and performances of epoxy/multi-walled carbon nanotubes/piezoelectric ceramic composites as rigid piezo-damping materials. J Mater Sci 43(14):4979–4987CrossRef Tian S, Wang X (2008) Fabrication and performances of epoxy/multi-walled carbon nanotubes/piezoelectric ceramic composites as rigid piezo-damping materials. J Mater Sci 43(14):4979–4987CrossRef
180.
go back to reference Topsakal M, Bagci VMK, Salim Ciraci S (2010) Current-voltage (I-V) characteristics of armchair graphene nanoribbons under uniaxial strain. Phys Rev B 81:205437CrossRef Topsakal M, Bagci VMK, Salim Ciraci S (2010) Current-voltage (I-V) characteristics of armchair graphene nanoribbons under uniaxial strain. Phys Rev B 81:205437CrossRef
181.
go back to reference Akiyama M, Morofuji Y, Kamohara T, Nishikubo K, Tsubai M, Fukuda O, Ueno N (2006) Flexible piezoelectric pressure sensors using oriented aluminum nitride thin films prepared on polyethylene terephthalate films. J Appl Phys 100(11):114318-5CrossRef Akiyama M, Morofuji Y, Kamohara T, Nishikubo K, Tsubai M, Fukuda O, Ueno N (2006) Flexible piezoelectric pressure sensors using oriented aluminum nitride thin films prepared on polyethylene terephthalate films. J Appl Phys 100(11):114318-5CrossRef
182.
go back to reference Banerjee S, Chennault CAK (2011) An analytical model for the effective dielectric constant of a 0–3–0 composite. J Eng Mater Technol 133(4):041005CrossRef Banerjee S, Chennault CAK (2011) An analytical model for the effective dielectric constant of a 0–3–0 composite. J Eng Mater Technol 133(4):041005CrossRef
183.
go back to reference Banerjee S, Chennault CAK, Capera R, Chowela M (2013) Influence of Al inclusions and PZT volume fraction on the dielectric and piezoelectric characteristics of three phase PZT-cement-Al composites. In: Advances in Cement Research. Accepted For Publication Banerjee S, Chennault CAK, Capera R, Chowela M (2013) Influence of Al inclusions and PZT volume fraction on the dielectric and piezoelectric characteristics of three phase PZT-cement-Al composites. In: Advances in Cement Research. Accepted For Publication
184.
go back to reference Banerjee S, Chennault CAK (2013) Multi walled carbon nanotube based flexible multi-morph composite thick films with graphene electrodes. Energy Environ Focus Banerjee S, Chennault CAK (2013) Multi walled carbon nanotube based flexible multi-morph composite thick films with graphene electrodes. Energy Environ Focus
185.
go back to reference Biercuk MJ, Llaguno MC, Radosavljevic M, Hyun JK, Johnson AT, Fischer JE (2002) Carbon nanotube composites for thermal management. Appl Phys Lett 80(15):2767–2769CrossRef Biercuk MJ, Llaguno MC, Radosavljevic M, Hyun JK, Johnson AT, Fischer JE (2002) Carbon nanotube composites for thermal management. Appl Phys Lett 80(15):2767–2769CrossRef
186.
go back to reference Choi HW, Heo YW, Lee JH, Kim JJ, Lee HY, Park ET, Chung YK (2006) Effects of BaTiO3 on dielectric behavior of BaTiO3-Ni-polymethyl methacrylate composites. Appl Phys Lett 89(13):132910-132910-3 Choi HW, Heo YW, Lee JH, Kim JJ, Lee HY, Park ET, Chung YK (2006) Effects of BaTiO3 on dielectric behavior of BaTiO3-Ni-polymethyl methacrylate composites. Appl Phys Lett 89(13):132910-132910-3
187.
go back to reference Chennault CKA, Thambi N, Hameyie EB (2008) Piezoelectric energy harvesting: a green and clean alternative for sustained power production. Bull Sci Technol Soc 28(6):496–509CrossRef Chennault CKA, Thambi N, Hameyie EB (2008) Piezoelectric energy harvesting: a green and clean alternative for sustained power production. Bull Sci Technol Soc 28(6):496–509CrossRef
188.
go back to reference Dang ZM, Shen Y, Nan CW (2002) Dielectric behavior of three-phase percolative Ni–BaTiO[sub 3]/polyvinylidene fluoride composites. Appl Phys Lett 81(25):4814–4816CrossRef Dang ZM, Shen Y, Nan CW (2002) Dielectric behavior of three-phase percolative Ni–BaTiO[sub 3]/polyvinylidene fluoride composites. Appl Phys Lett 81(25):4814–4816CrossRef
189.
go back to reference Gao G, Çagin T, Goddard WA (1998) Energetics, structure, mechanical and vibrational properties of single-walled carbon nanotubes. Nanotechnology 9(3):184CrossRef Gao G, Çagin T, Goddard WA (1998) Energetics, structure, mechanical and vibrational properties of single-walled carbon nanotubes. Nanotechnology 9(3):184CrossRef
190.
go back to reference Li Z, Biqin Dong B, Zhang D (2005) Influence of polarization on properties of 0–3 cement-based PZT composites. Cement Concr Compos 27(1):27–32CrossRef Li Z, Biqin Dong B, Zhang D (2005) Influence of polarization on properties of 0–3 cement-based PZT composites. Cement Concr Compos 27(1):27–32CrossRef
191.
go back to reference Liang Y, Frisch J, Zhi L, Norouzi-Arasi H, Feng X, Rabe JP, Koch N, Müllen K (2009) Transparent, highly conductive graphene electrodes from acetylene-assisted thermolysis of graphite oxide sheets and nanographene molecules. Nanotechnology 20(43):434007CrossRef Liang Y, Frisch J, Zhi L, Norouzi-Arasi H, Feng X, Rabe JP, Koch N, Müllen K (2009) Transparent, highly conductive graphene electrodes from acetylene-assisted thermolysis of graphite oxide sheets and nanographene molecules. Nanotechnology 20(43):434007CrossRef
192.
go back to reference Nan CW, Liu L, Cai N, Zhai J, Ye J, Lin YH, Dong LJ, Xiong CX (2002) A three-phase magnetoelectric composite of piezoelectric ceramics, rare-earth iron alloys, and polymer. Appl Phys Lett 81(20):3831–3833CrossRef Nan CW, Liu L, Cai N, Zhai J, Ye J, Lin YH, Dong LJ, Xiong CX (2002) A three-phase magnetoelectric composite of piezoelectric ceramics, rare-earth iron alloys, and polymer. Appl Phys Lett 81(20):3831–3833CrossRef
193.
go back to reference Thomas M, Folliard K, Drimalas T, Ramlochan T (2008) Diagnosing delayed ettringite formation in concrete structures. Cem Concr Res 38(6):841–847CrossRef Thomas M, Folliard K, Drimalas T, Ramlochan T (2008) Diagnosing delayed ettringite formation in concrete structures. Cem Concr Res 38(6):841–847CrossRef
194.
go back to reference Yadav K, Smelser CW, Jacob S, Blanchetiere C, Callender CL, Albert J (2011) Simultaneous corona poling of multiple glass layers for enhanced effective second-order optical nonlinearities. Appl Phys Lett 99(3):031109 Yadav K, Smelser CW, Jacob S, Blanchetiere C, Callender CL, Albert J (2011) Simultaneous corona poling of multiple glass layers for enhanced effective second-order optical nonlinearities. Appl Phys Lett 99(3):031109
195.
go back to reference Bao WS, Meguid SA, Zhu ZH, Pan Y, Weng GJ (2012) A novel approach to predict the electrical conductivity of multifunctional nanocomposites. Mech Mater 46:129–138CrossRef Bao WS, Meguid SA, Zhu ZH, Pan Y, Weng GJ (2012) A novel approach to predict the electrical conductivity of multifunctional nanocomposites. Mech Mater 46:129–138CrossRef
196.
go back to reference Blanas P, Gupta KD (1999) Composite piezoelectric materials for health monitoring of composite structures. In: MRS Proceedings Blanas P, Gupta KD (1999) Composite piezoelectric materials for health monitoring of composite structures. In: MRS Proceedings
197.
go back to reference Yao SH, Dang ZM, Jiang MJ, Bai J (2008) BaTiO[sub 3]-carbon nanotube/polyvinylidene fluoride three-phase composites with high dielectric constant and low dielectric loss. Appl Phys Lett 93(18):182905-3CrossRef Yao SH, Dang ZM, Jiang MJ, Bai J (2008) BaTiO[sub 3]-carbon nanotube/polyvinylidene fluoride three-phase composites with high dielectric constant and low dielectric loss. Appl Phys Lett 93(18):182905-3CrossRef
198.
go back to reference Arlt K, Wegener M (2010) Piezoelectric PZT/PVDF-copolymer 0–3 composites: aspects on film preparation and electrical poling. IEEE Trans Dielectr Electr Insul 17(4):1178–1184 Arlt K, Wegener M (2010) Piezoelectric PZT/PVDF-copolymer 0–3 composites: aspects on film preparation and electrical poling. IEEE Trans Dielectr Electr Insul 17(4):1178–1184
199.
go back to reference Dietze M, Es-Souni M (2008) Structural and functional properties of screen-printed PZT–PVDF-TrFE composites. Sens Actuators, A 143(2):329–334CrossRef Dietze M, Es-Souni M (2008) Structural and functional properties of screen-printed PZT–PVDF-TrFE composites. Sens Actuators, A 143(2):329–334CrossRef
200.
go back to reference Oliveira F, Leterrier Y, Manson JA, Sereda O, Neels A, Dommann A, Damjanovic D (2014) Process influences on the structure, piezoelectric, and gas-barrier properties of PVDF-TrFE copolymer. J Polym Sci Part B Polym Phys 52(7):496–506CrossRef Oliveira F, Leterrier Y, Manson JA, Sereda O, Neels A, Dommann A, Damjanovic D (2014) Process influences on the structure, piezoelectric, and gas-barrier properties of PVDF-TrFE copolymer. J Polym Sci Part B Polym Phys 52(7):496–506CrossRef
201.
go back to reference Son YH, Kweon SY, Kim SJ, Kim YM, Hong TW, Lee YG (2007) Fabrication and electrical properties of Pzt-Pvdf 0–3 type composite film. Integr Ferroelectr 88(1):44–50CrossRef Son YH, Kweon SY, Kim SJ, Kim YM, Hong TW, Lee YG (2007) Fabrication and electrical properties of Pzt-Pvdf 0–3 type composite film. Integr Ferroelectr 88(1):44–50CrossRef
202.
go back to reference Pedersen T, Hindrichsen CC, Thomsen EV (2007) Investigation of top/bottom electrode and diffusion barrier layer for PZT thick film MEMS Sensors. In: Sensors IEEE Pedersen T, Hindrichsen CC, Thomsen EV (2007) Investigation of top/bottom electrode and diffusion barrier layer for PZT thick film MEMS Sensors. In: Sensors IEEE
203.
go back to reference Ounaies Z, Park C, Harrison J, Lillehei P (2008) Evidence of piezoelectricity in SWNT-polyimide and SWNT-PZT-polyimide composites. J Thermoplast Compos Mater 21(5):393–409CrossRef Ounaies Z, Park C, Harrison J, Lillehei P (2008) Evidence of piezoelectricity in SWNT-polyimide and SWNT-PZT-polyimide composites. J Thermoplast Compos Mater 21(5):393–409CrossRef
204.
go back to reference Sessler GM, West JE (1962) Self-biased condenser microphone with high capacitance. J Acoust Soc Am 34(11):1787–1788CrossRef Sessler GM, West JE (1962) Self-biased condenser microphone with high capacitance. J Acoust Soc Am 34(11):1787–1788CrossRef
205.
go back to reference Gerhard-Multhaupt R (2002) Less can be more. Holes in polymers lead to a new paradigm of piezoelectric materials for electret transducers. IEEE Trans Dielectr Electr Insul 9(5):850–859CrossRef Gerhard-Multhaupt R (2002) Less can be more. Holes in polymers lead to a new paradigm of piezoelectric materials for electret transducers. IEEE Trans Dielectr Electr Insul 9(5):850–859CrossRef
206.
go back to reference Fang P, Qiu X, Wirges W, Gerhard R (2010) Polyethylene-naphthalate (PEN) ferroelectrets: cellular structure, piezoelectricity and thermal stability. IEEE Trans Dielectr Electr Insul 17(4):1079–1087CrossRef Fang P, Qiu X, Wirges W, Gerhard R (2010) Polyethylene-naphthalate (PEN) ferroelectrets: cellular structure, piezoelectricity and thermal stability. IEEE Trans Dielectr Electr Insul 17(4):1079–1087CrossRef
207.
go back to reference Zhang X, Huang J, Wang X, Xia Z (2010) Piezoelectricity and dynamic characteristics of laminated fluorocarbon films. IEEE Trans Dielectr Electr Insul 17(4):1001–1007CrossRef Zhang X, Huang J, Wang X, Xia Z (2010) Piezoelectricity and dynamic characteristics of laminated fluorocarbon films. IEEE Trans Dielectr Electr Insul 17(4):1001–1007CrossRef
208.
go back to reference Hu Z, Seggern HV (2006) Breakdown-induced polarization buildup in porous fluoropolymer sandwiches: a thermally stable piezoelectret. J Appl Phys 99(2):024102CrossRef Hu Z, Seggern HV (2006) Breakdown-induced polarization buildup in porous fluoropolymer sandwiches: a thermally stable piezoelectret. J Appl Phys 99(2):024102CrossRef
209.
go back to reference Feng Y, Hagiwara K, IguchiY Suzuki Y (2012) Trench-filled cellular parylene electret for piezoelectric transducer. Appl Phys Lett 100(26):262901CrossRef Feng Y, Hagiwara K, IguchiY Suzuki Y (2012) Trench-filled cellular parylene electret for piezoelectric transducer. Appl Phys Lett 100(26):262901CrossRef
210.
go back to reference Banerjee S, Chennault KAC (2014) Influence of aluminium inclusions on dielectric properties of three-phase PZT–cement–aluminium composites. Adv Cement Res 26:63–76CrossRef Banerjee S, Chennault KAC (2014) Influence of aluminium inclusions on dielectric properties of three-phase PZT–cement–aluminium composites. Adv Cement Res 26:63–76CrossRef
211.
go back to reference Park KI (2010) Piezoelectric BaTiO3 thin film nanogenerator on plastic substrates. Nano Lett 10(12):4939–4943CrossRef Park KI (2010) Piezoelectric BaTiO3 thin film nanogenerator on plastic substrates. Nano Lett 10(12):4939–4943CrossRef
212.
go back to reference Qi L, Lee BI, Samuels WD, Exarhos GJ, Parler SG (2006) Three-phase percolative silver–BaTiO3–epoxy nanocomposites with high dielectric constants. J Appl Polym Sci 102(2):967–971CrossRef Qi L, Lee BI, Samuels WD, Exarhos GJ, Parler SG (2006) Three-phase percolative silver–BaTiO3–epoxy nanocomposites with high dielectric constants. J Appl Polym Sci 102(2):967–971CrossRef
213.
go back to reference Zhao LY, Gu JG, Ma HR, Sun ZG (2010) Mechanical properties and curing kinetics of epoxy resins cured by various amino-terminated polyethers. Chin J Polym Sci 28(6):961–969CrossRef Zhao LY, Gu JG, Ma HR, Sun ZG (2010) Mechanical properties and curing kinetics of epoxy resins cured by various amino-terminated polyethers. Chin J Polym Sci 28(6):961–969CrossRef
214.
go back to reference Zepu W, Nelson JK, Miao J, Linhardt RJ, Schadler LS (2012) Effect of high aspect ratio filler on dielectric properties of polymer composites: a study on barium titanate fibers and graphene platelets. IEEE Trans Dielectr Electr Insul 19(3):960–967CrossRef Zepu W, Nelson JK, Miao J, Linhardt RJ, Schadler LS (2012) Effect of high aspect ratio filler on dielectric properties of polymer composites: a study on barium titanate fibers and graphene platelets. IEEE Trans Dielectr Electr Insul 19(3):960–967CrossRef
215.
go back to reference Bao WS, Meguid SA, Zhu ZH, Weng GJ (2012) Tunneling resistance and its effect on the electrical conductivity of CNT nanocomposites. J Appl Phys 111:093726CrossRef Bao WS, Meguid SA, Zhu ZH, Weng GJ (2012) Tunneling resistance and its effect on the electrical conductivity of CNT nanocomposites. J Appl Phys 111:093726CrossRef
216.
go back to reference Yang W, Pan Y, Pelegri AA (2013) Multiscale modeling of matrix cracking coupled with interfacial debonding in random glass fiber composites based on volume elements. J Compos Mater 47(27):3389–3399CrossRef Yang W, Pan Y, Pelegri AA (2013) Multiscale modeling of matrix cracking coupled with interfacial debonding in random glass fiber composites based on volume elements. J Compos Mater 47(27):3389–3399CrossRef
217.
go back to reference Pan CT, Liu ZH, Chen YC, Liu CF (2010) Design and fabrication of flexible piezo-microgenerator by depositing ZnO thin films on PET substrates. Sens Actuators, A 159(1):96–104CrossRef Pan CT, Liu ZH, Chen YC, Liu CF (2010) Design and fabrication of flexible piezo-microgenerator by depositing ZnO thin films on PET substrates. Sens Actuators, A 159(1):96–104CrossRef
218.
go back to reference Huang S, Chang J, Lu L, Liu F, Ye Z, Cheng X (2006) Preparation and polarization of 0–3 cement based piezoelectric composites. Mater Res Bull 41(2):291–297CrossRef Huang S, Chang J, Lu L, Liu F, Ye Z, Cheng X (2006) Preparation and polarization of 0–3 cement based piezoelectric composites. Mater Res Bull 41(2):291–297CrossRef
219.
go back to reference Kok SL, White NM, Harris NR (2009) Fabrication and characterization of free-standing thick-film piezoelectric cantilevers for energy harvesting. Meas Sci Technol 20(12):124010CrossRef Kok SL, White NM, Harris NR (2009) Fabrication and characterization of free-standing thick-film piezoelectric cantilevers for energy harvesting. Meas Sci Technol 20(12):124010CrossRef
220.
go back to reference Chung SY, Kim S, Lee JH, Kim K, Kim SW, Kang SCY, Yoon SJ, Kim YS (2012) All-solution-processed flexible thin film piezoelectric nanogenerator. Adv Mater 24(45):6022–6027CrossRef Chung SY, Kim S, Lee JH, Kim K, Kim SW, Kang SCY, Yoon SJ, Kim YS (2012) All-solution-processed flexible thin film piezoelectric nanogenerator. Adv Mater 24(45):6022–6027CrossRef
221.
go back to reference Park H, Brown PR, Bulović V, Kong J (2011) Graphene as transparent conducting electrodes in organic photovoltaics: studies in graphene morphology, hole transporting layers, and counter electrodes. Nano Lett 12(1):133–140CrossRef Park H, Brown PR, Bulović V, Kong J (2011) Graphene as transparent conducting electrodes in organic photovoltaics: studies in graphene morphology, hole transporting layers, and counter electrodes. Nano Lett 12(1):133–140CrossRef
222.
go back to reference Eda G, Fanchini G, Chhowalla M (2008) Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. Nat Nano 3(5):270–274CrossRef Eda G, Fanchini G, Chhowalla M (2008) Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. Nat Nano 3(5):270–274CrossRef
223.
go back to reference Wang X, Zhi L, Müllen K (2007) Transparent, conductive graphene electrodes for dye-sensitized solar cells. Nano Lett 8(1):323–327CrossRef Wang X, Zhi L, Müllen K (2007) Transparent, conductive graphene electrodes for dye-sensitized solar cells. Nano Lett 8(1):323–327CrossRef
224.
go back to reference Ren Y, Zhu C, Cai W, Li H, Ji H, Kholmanov I, Wu Y, Piner RD, Ruoff RS (2012) Detection of sulfur dioxide gas with graphene field effect transistor. Appl Phys Lett 100(16):163114-4CrossRef Ren Y, Zhu C, Cai W, Li H, Ji H, Kholmanov I, Wu Y, Piner RD, Ruoff RS (2012) Detection of sulfur dioxide gas with graphene field effect transistor. Appl Phys Lett 100(16):163114-4CrossRef
225.
go back to reference Yavari F, Chen Z, Thomas AV, Ren W, Cheng HM, Koratkar N (2011) High sensitivity gas detection using a macroscopic three-dimensional. Sci Rep 1:1–5CrossRef Yavari F, Chen Z, Thomas AV, Ren W, Cheng HM, Koratkar N (2011) High sensitivity gas detection using a macroscopic three-dimensional. Sci Rep 1:1–5CrossRef
226.
go back to reference Chen G, Paronyan TM, Harutyunyan AR (2012) Sub-ppt gas detection with pristine graphene. Appl Phys Lett 101(5):053119-4 Chen G, Paronyan TM, Harutyunyan AR (2012) Sub-ppt gas detection with pristine graphene. Appl Phys Lett 101(5):053119-4
227.
go back to reference Baughman RH, Zakhidov AA, Heer WA (2002) Carbon nanotubes—the route toward applications. Science 297(5582):787–792CrossRef Baughman RH, Zakhidov AA, Heer WA (2002) Carbon nanotubes—the route toward applications. Science 297(5582):787–792CrossRef
228.
go back to reference Schmidt RH, Kinloch JA, Burgess AN, Windle AH (2007) The effect of aggregation on the electrical conductivity of spin-coated polymer/carbon nanotube composite films. Langmuir 23(10):5707–5712CrossRef Schmidt RH, Kinloch JA, Burgess AN, Windle AH (2007) The effect of aggregation on the electrical conductivity of spin-coated polymer/carbon nanotube composite films. Langmuir 23(10):5707–5712CrossRef
229.
go back to reference Chen H, Muthuraman H, Stokes P, Zou J, Liu X, Wang J, Huo Q, Khondaker SI, Zhai L (2007) Dispersion of carbon nanotubes and polymer nanocomposite fabrication using trifluoroacetic acid as a co-solvent. Nanotechnology 18(41):415606CrossRef Chen H, Muthuraman H, Stokes P, Zou J, Liu X, Wang J, Huo Q, Khondaker SI, Zhai L (2007) Dispersion of carbon nanotubes and polymer nanocomposite fabrication using trifluoroacetic acid as a co-solvent. Nanotechnology 18(41):415606CrossRef
230.
go back to reference Pascariu V, Padurariu L, Avadanei O, Mitoseriu L (2013) Dielectric properties of PZT–epoxy composite thick films. J Alloy Compd 574:591–599CrossRef Pascariu V, Padurariu L, Avadanei O, Mitoseriu L (2013) Dielectric properties of PZT–epoxy composite thick films. J Alloy Compd 574:591–599CrossRef
231.
go back to reference Bauhofer W, Kovacs JZ (2009) A review and analysis of electrical percolation in carbon nanotube polymer composites. Compos Sci Technol 69(10):1486–1498CrossRef Bauhofer W, Kovacs JZ (2009) A review and analysis of electrical percolation in carbon nanotube polymer composites. Compos Sci Technol 69(10):1486–1498CrossRef
Metadata
Title
Energy Harvesting: Breakthrough Technologies Through Polymer Composites
Authors
Saquib Ahmed
Sankha Banerjee
Udhay Sundar
Hector Ruiz
Sanjeev Kumar
Ajith Weerasinghe
Copyright Year
2017
DOI
https://doi.org/10.1007/978-3-319-50424-7_1

Premium Partners