Skip to main content
Top

2022 | OriginalPaper | Chapter

5. Energy Recovery from Solid Waste

Authors : Rosnani Alkarimiah, Muaz Mohd Zaini Makhtar, Hamidi Abdul Aziz, P. Aarne Vesilind, Lawrence K. Wang, Yung-Tse Hung

Published in: Solid Waste Engineering and Management

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The growing amount of solid waste (SW) and the related waste disposal problems urge the development of a more sustainable waste management practice. The organic wastes that are generated include food scraps, yard debris, paper, wood, and textile byproducts. According to most studies, almost all landfill gas is created by the breakdown of organic waste in combination with the naturally occurring bacteria in the soil that is used to cover the landfill. They are inevitably linked to the treatment and disposal of solid waste. In this instance, treatment is utilized to restore or recover important materials or energy, control waste generation, or manage trash disposal before it is deposited or discarded in landfills. A disposal site where solid trash, such as paper, glass, and metal, is buried between layers of dirt and other materials, such that land around the site is less contaminated. Waste-to-Energy (WtE) technologies are being developed globally. The essential concepts of available technologies and several specific technologies’ processes are summarized. Technologically sophisticated processes (e.g., plasma gasification) gain increased attention, with an emphasis on energy and material recovery potential. This chapter ends with a comparison of the various technologies, highlighting variables impacting their application and operational suitability. More budgetary allocation for technical support by the government is also recommended in this chapter. This will help to promote solid waste management by reducing, reusing, and recycling waste. It will also help to retain employees by providing a good wage, benefits, and training. As a result, WtE technologies have the potential to make a significant contribution to the growth of renewable energy while also reducing landfilling expenses and the associated environmental implications. However, deciding between the two options necessitates further financial, technological, and environmental examination using a life cycle assessment (LCA) methodology.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Glossary
Blackwater
Water used to flush toilets, along with the human waste it flushes away.
Calorific Value
The calorific value of a substance is known as the number of calories produced when a unit amount of substance is fully oxidized. This value is measured using a bomb calorimeter. The calorific value of coal is calculated using the gross calorific value (HG), which includes latent heat of water vaporization.
Fossil Fuel
Coal, petroleum, natural gas, oil shale, bitumen, tar sands, and heavy oils are all examples of fossil fuels. All are carbon-based and were created because of geologic processes operating on the remains of photosynthesis-produced organic matter.
Greywater
Wastewaters from drains, tubs, showers, dishwashers, and clothes washers.
MSW
Municipal solid waste (MSW) is classified as waste collected by the municipality or disposed of at a municipal waste disposal site. It includes residential, agricultural, institutional, commercial, and municipal waste, as well as waste from construction and demolition.
RDF
Refuse-Derived Fuel (RDF) is made from domestic and commercial waste, which contains both biodegradable and non-biodegradable materials. Non-combustible materials such as glass and metals are removed, and the resulting residue is shredded. At waste-to-energy recycling plants, refuse-derived fuel is used to produce electricity.
SRF
Solid Recovered Fuel (SRF) is a high-quality alternative to fossil fuels made primarily from commercial waste such as paper, card, wood, textiles, and plastic. Solid recovered fuel has been further processed to increase its consistency and value. It has a higher calorific value than RDF and is used in cement kilns and other similar facilities.
Waste-to-Energy
Waste-to-energy (WtE) or energy-from-waste (EfW) is a term that refers to the method of producing energy in the form of electricity and/or heat from waste that has been sorted or processed into a fuel source. WtE is a method of reclaiming resources.
Literature
1.
go back to reference Marchettini, N., Ridolfi, R., & Rustici, M. (2007). An environmental analysis for comparing waste management options and strategies. Waste Management, 27(4), 562–571.CrossRef Marchettini, N., Ridolfi, R., & Rustici, M. (2007). An environmental analysis for comparing waste management options and strategies. Waste Management, 27(4), 562–571.CrossRef
2.
go back to reference Tatarniuk, C. (2007). The feasibility of waste-to-energy in Saskatchewan based on waste composition and quantity. Unpublished M.Sc. Thesis, Department of Civil and Geological Engineering, University of Saskatchewan, Saskatoon. Tatarniuk, C. (2007). The feasibility of waste-to-energy in Saskatchewan based on waste composition and quantity. Unpublished M.Sc. Thesis, Department of Civil and Geological Engineering, University of Saskatchewan, Saskatoon.
3.
go back to reference Idris, Z., Orgéas, L., Geindreau, C., Bloch, J. F., & Auriault, J. L. (2004). Microstructural effects on the flow law of power-law fluids through fibrous media. Modelling and Simulation in Materials Science and Engineering, 12, 995.CrossRef Idris, Z., Orgéas, L., Geindreau, C., Bloch, J. F., & Auriault, J. L. (2004). Microstructural effects on the flow law of power-law fluids through fibrous media. Modelling and Simulation in Materials Science and Engineering, 12, 995.CrossRef
4.
go back to reference Ray, A., & De, S. (2020). Hybrid renewable multigeneration: Low carbon sustainable solution with optimum resource utilization. Encyclopedia of Renewable and Sustainable Materials, 3, 526–533.CrossRef Ray, A., & De, S. (2020). Hybrid renewable multigeneration: Low carbon sustainable solution with optimum resource utilization. Encyclopedia of Renewable and Sustainable Materials, 3, 526–533.CrossRef
5.
go back to reference Callan, S. J., & Thomas, J. M. (2013). Environmental economics and management: Theory, policy, and applications. Cengage Learning. Fifth Edition complements economic theory with timely, real-world application. Callan, S. J., & Thomas, J. M. (2013). Environmental economics and management: Theory, policy, and applications. Cengage Learning. Fifth Edition complements economic theory with timely, real-world application.
6.
go back to reference Yong, J. Y., Klemeš, J. J., Varbanov, P. S., & Huisingh, D. J. (2016). Cleaner energy for cleaner production: Modelling, simulation, optimisation and waste management. Journal of Cleaner Production, 111, 1–16.CrossRef Yong, J. Y., Klemeš, J. J., Varbanov, P. S., & Huisingh, D. J. (2016). Cleaner energy for cleaner production: Modelling, simulation, optimisation and waste management. Journal of Cleaner Production, 111, 1–16.CrossRef
7.
go back to reference Adapa, P. K., Tabil, L. G., & Schoenau, G. J. (2006). Municipal solid waste – A review of classification system. Presented at the 2006 CSBE/SCGA North Central Inter-Sectional Meeting 2016, Saskatoon, SK, Oct 5-7. CSBE Paper No. MBSK 06-209. Adapa, P. K., Tabil, L. G., & Schoenau, G. J. (2006). Municipal solid waste – A review of classification system. Presented at the 2006 CSBE/SCGA North Central Inter-Sectional Meeting 2016, Saskatoon, SK, Oct 5-7. CSBE Paper No. MBSK 06-209.
8.
go back to reference Astrup, T. F., Tonini, D., Turconi, R., & Boldrin, A. (2015). Life cycle assessment of thermal waste-to-energy technologies: Review and recommendations. Waste Management, 37, 104–115.CrossRef Astrup, T. F., Tonini, D., Turconi, R., & Boldrin, A. (2015). Life cycle assessment of thermal waste-to-energy technologies: Review and recommendations. Waste Management, 37, 104–115.CrossRef
9.
go back to reference Portugal-Pereira, J., & Lee, L. (2016). Economic and environmental benefits of waste-to-energy technologies for debris recovery in disaster-hit Northeast Japan. Journal of Cleaner Production, 112, 4419–4429.CrossRef Portugal-Pereira, J., & Lee, L. (2016). Economic and environmental benefits of waste-to-energy technologies for debris recovery in disaster-hit Northeast Japan. Journal of Cleaner Production, 112, 4419–4429.CrossRef
10.
go back to reference Thormak, C. (2001). Conservation of energy and natural resources by recycling building waste. Resources, Conservation and Recycling, 33(2), 113–130.CrossRef Thormak, C. (2001). Conservation of energy and natural resources by recycling building waste. Resources, Conservation and Recycling, 33(2), 113–130.CrossRef
11.
go back to reference Charley, J. S. (2017). Classification and densification of municipal solid waste for biofuels applications. PhD Thesis, Department of Chemical and Biological Engineering University of Saskatchewan, Saskatoon, Canada. Charley, J. S. (2017). Classification and densification of municipal solid waste for biofuels applications. PhD Thesis, Department of Chemical and Biological Engineering University of Saskatchewan, Saskatoon, Canada.
12.
go back to reference American Society of the International Association for Testing and Materials Standards. (2008). Standard test method for determination of the composition of unprocessed municipal solid waste. Author. American Society of the International Association for Testing and Materials Standards. (2008). Standard test method for determination of the composition of unprocessed municipal solid waste. Author.
14.
go back to reference Mainieri, T., Barnett, E. G., Valdero, T. R., & Unipan, J. B. (1997). Green buying: The influence of environmental concern on consumer behavior. The Journal of Social Psychology, 137(2), 189.CrossRef Mainieri, T., Barnett, E. G., Valdero, T. R., & Unipan, J. B. (1997). Green buying: The influence of environmental concern on consumer behavior. The Journal of Social Psychology, 137(2), 189.CrossRef
15.
go back to reference Shao, Y., & Li, C. (2019). Harmless disposal technology of Hazardous waste from thermal power plants. Paper presented at the IOP Conference Series: Earth and Environmental Science.CrossRef Shao, Y., & Li, C. (2019). Harmless disposal technology of Hazardous waste from thermal power plants. Paper presented at the IOP Conference Series: Earth and Environmental Science.CrossRef
16.
go back to reference Kothari, R., Tyagi, V., & Pathak, A. J. R. (2010). Waste-to-energy: A way from renewable energy sources to sustainable development. Renewable & Sustainable Energy Reviews, 14(9), 3164–3170.CrossRef Kothari, R., Tyagi, V., & Pathak, A. J. R. (2010). Waste-to-energy: A way from renewable energy sources to sustainable development. Renewable & Sustainable Energy Reviews, 14(9), 3164–3170.CrossRef
17.
go back to reference Fruergaard, T., & Astrup, T. (2011). Optimal utilization of waste-to-energy in an LCA perspective. Waste Management, 31(3), 572–582.CrossRef Fruergaard, T., & Astrup, T. (2011). Optimal utilization of waste-to-energy in an LCA perspective. Waste Management, 31(3), 572–582.CrossRef
18.
go back to reference Peterson, E., Fleming, M., Saund, S., & Stephens, B. (2019). Baltimore Clean Air Act; the need for a new waste management system in Baltimore. Journal of Science Policy Governance, 14, 1. Peterson, E., Fleming, M., Saund, S., & Stephens, B. (2019). Baltimore Clean Air Act; the need for a new waste management system in Baltimore. Journal of Science Policy Governance, 14, 1.
19.
go back to reference Brunner, P. H., & Rechberger, H. (2015). Waste to energy–Key element for sustainable waste management. Waste Management, 37, 3–12.CrossRef Brunner, P. H., & Rechberger, H. (2015). Waste to energy–Key element for sustainable waste management. Waste Management, 37, 3–12.CrossRef
20.
go back to reference Anwar, M., Fayyaz, A., Sohail, N., Khokhar, M., Baqar, M., Yasar, A., & Rehan, M. J. (2020). CO2 utilization: Turning greenhouse gas into fuels and valuable products. Journal of Environmental Management, 260, 110059.CrossRef Anwar, M., Fayyaz, A., Sohail, N., Khokhar, M., Baqar, M., Yasar, A., & Rehan, M. J. (2020). CO2 utilization: Turning greenhouse gas into fuels and valuable products. Journal of Environmental Management, 260, 110059.CrossRef
21.
go back to reference Rydh, C. J., & Svärd, B. (2003). Impact on global metal flows arising from the use of portable rechargeable batteries. Science of the Total Environment, 302, 167–184.CrossRef Rydh, C. J., & Svärd, B. (2003). Impact on global metal flows arising from the use of portable rechargeable batteries. Science of the Total Environment, 302, 167–184.CrossRef
22.
go back to reference IEA/OECD. (2017). Energy and climate change, world energy outlook special report. International Energy Agency. IEA/OECD. (2017). Energy and climate change, world energy outlook special report. International Energy Agency.
23.
go back to reference Geels, F. W., Sovacool, B. K., Schwanen, T., & Sorrell, S. (2017). Sociotechnical transitions for deep decarbonization. Science, 357(6357), 1242–1244.CrossRef Geels, F. W., Sovacool, B. K., Schwanen, T., & Sorrell, S. (2017). Sociotechnical transitions for deep decarbonization. Science, 357(6357), 1242–1244.CrossRef
24.
go back to reference De Wit, M., Hoppe, T., & Faaij, A. (2011). Productivity developments in European agriculture: Relations to and opportunities for biomass production. Renewable and Sustainable Energy Reviews, 15(5), 2397–2412.CrossRef De Wit, M., Hoppe, T., & Faaij, A. (2011). Productivity developments in European agriculture: Relations to and opportunities for biomass production. Renewable and Sustainable Energy Reviews, 15(5), 2397–2412.CrossRef
25.
go back to reference Soares de Silva, D., & Horlings, L. G. (2020). The role of local energy initiatives in co-producing sustainable places. Sustainability, 15, 363–377.CrossRef Soares de Silva, D., & Horlings, L. G. (2020). The role of local energy initiatives in co-producing sustainable places. Sustainability, 15, 363–377.CrossRef
26.
go back to reference Pellegrini, L. F., & de Oliveira, S., Jr. (2011). Combined production of sugar, ethanol and electricity: Thermoeconomic and environmental analysis and optimization. Energy, 36, 3704–3715.CrossRef Pellegrini, L. F., & de Oliveira, S., Jr. (2011). Combined production of sugar, ethanol and electricity: Thermoeconomic and environmental analysis and optimization. Energy, 36, 3704–3715.CrossRef
27.
go back to reference Sameeroddin, M., Deshmukh, M. K. G., Viswa, G., & Abdul Sattar, M. (2021). Renewable energy: Fuel from biomass, production of ethanol from various sustainable sources by fermentation process. Materials Today: Proceedings. Sameeroddin, M., Deshmukh, M. K. G., Viswa, G., & Abdul Sattar, M. (2021). Renewable energy: Fuel from biomass, production of ethanol from various sustainable sources by fermentation process. Materials Today: Proceedings.
28.
go back to reference Warbroek, B., Hoppe, T., Bressers, H., & Coenen, F. (2019). Testing the social, organizational, and governance factors for success in local low carbon energy initiatives. Energy Research & Social Science, 58, 101269.CrossRef Warbroek, B., Hoppe, T., Bressers, H., & Coenen, F. (2019). Testing the social, organizational, and governance factors for success in local low carbon energy initiatives. Energy Research & Social Science, 58, 101269.CrossRef
29.
go back to reference Zakir Hossain, H. M., Hossain, Q. H., Uddin Monira, M. M., & Ahmed, M. T. (2014). Municipal solid waste (MSW) as a source of renewable energy in Bangladesh: Revisited. Renewable and Sustainable Energy Reviews, 39, 35–41.CrossRef Zakir Hossain, H. M., Hossain, Q. H., Uddin Monira, M. M., & Ahmed, M. T. (2014). Municipal solid waste (MSW) as a source of renewable energy in Bangladesh: Revisited. Renewable and Sustainable Energy Reviews, 39, 35–41.CrossRef
31.
go back to reference Biffa. (2005). Thermal methods of municipal waste treatment. In Mass balance studies. Biffa Waste Services Ltd. Retrieved from www.biffa.co.uk Biffa. (2005). Thermal methods of municipal waste treatment. In Mass balance studies. Biffa Waste Services Ltd. Retrieved from www.​biffa.​co.​uk
32.
go back to reference Gartner, L. (2004). New and emerging residual waste management technologies update. Report prepared for Regional District of Nanaimo, B.C. Gartner Lee Ltd. Gartner, L. (2004). New and emerging residual waste management technologies update. Report prepared for Regional District of Nanaimo, B.C. Gartner Lee Ltd.
33.
go back to reference Mor, S., Ravindra, K., Visscher, A., Dahiya, R., & Chandra, A. (2006). Municipal solid waste characterization and its assessment for potential methane generation: A case study. Science of the Total Environment, 371, 1–10.CrossRef Mor, S., Ravindra, K., Visscher, A., Dahiya, R., & Chandra, A. (2006). Municipal solid waste characterization and its assessment for potential methane generation: A case study. Science of the Total Environment, 371, 1–10.CrossRef
35.
go back to reference Sawatdeenarunat, C., Surendra, K. C., Takara, D., Oechsner, H., & Khanal, S. K. (2015). Anaerobic digestion of lignocellulosic biomass: Challenges and opportunities. Bioresource Technology, 178, 178–186.CrossRef Sawatdeenarunat, C., Surendra, K. C., Takara, D., Oechsner, H., & Khanal, S. K. (2015). Anaerobic digestion of lignocellulosic biomass: Challenges and opportunities. Bioresource Technology, 178, 178–186.CrossRef
36.
go back to reference Hu, F., & Ragauskas, A. (2012). Pretreatment and lignocellulosic chemistry. Bioenergy Research, 5, 1043–1066.CrossRef Hu, F., & Ragauskas, A. (2012). Pretreatment and lignocellulosic chemistry. Bioenergy Research, 5, 1043–1066.CrossRef
37.
go back to reference Pu, Y., Zhang, D., Singh, P. M., & Ragauskas, A. J. (2008). The new forestry biofuels sector. Biofuels, Bioproducts and Biorefining, 2, 58–73.CrossRef Pu, Y., Zhang, D., Singh, P. M., & Ragauskas, A. J. (2008). The new forestry biofuels sector. Biofuels, Bioproducts and Biorefining, 2, 58–73.CrossRef
38.
go back to reference Mosier, N., Wayman, C., Dale, B., Elander, R., Lee, Y. Y., Holtzapple, M., & Ladisch, M. (2005). Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresource Technology, 96(6), 673–686.CrossRef Mosier, N., Wayman, C., Dale, B., Elander, R., Lee, Y. Y., Holtzapple, M., & Ladisch, M. (2005). Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresource Technology, 96(6), 673–686.CrossRef
39.
go back to reference Lynd, L. R., Weimer, P. J., & Van Zyl, W. H. (2002). Pretorius IS: Microbial cellulose utilization: Fundamentals and biotechnology. Microbiology and Molecular Biology Reviews, 66, 506–577.CrossRef Lynd, L. R., Weimer, P. J., & Van Zyl, W. H. (2002). Pretorius IS: Microbial cellulose utilization: Fundamentals and biotechnology. Microbiology and Molecular Biology Reviews, 66, 506–577.CrossRef
40.
go back to reference Laser, M., Schulman, D., Allen, S. G., Lichwa, J., Antal, M. J., Jr., & Lynd, L. R. (2002). A comparison of liquid hot water and steam pretreatments of sugar cane bagasse for bioconversion to ethanol. Bioresource Technology, 81(1), 33–44.CrossRef Laser, M., Schulman, D., Allen, S. G., Lichwa, J., Antal, M. J., Jr., & Lynd, L. R. (2002). A comparison of liquid hot water and steam pretreatments of sugar cane bagasse for bioconversion to ethanol. Bioresource Technology, 81(1), 33–44.CrossRef
41.
go back to reference Kadam, K. L., Rydholm, E. C., & McMillan, J. D. (2004). Development and validation of a kinetic model for enzymatic saccharification of lignocellulosic biomass. Biotechnology Progress, 20(3), 698–705.CrossRef Kadam, K. L., Rydholm, E. C., & McMillan, J. D. (2004). Development and validation of a kinetic model for enzymatic saccharification of lignocellulosic biomass. Biotechnology Progress, 20(3), 698–705.CrossRef
42.
go back to reference Heitz, M., Capek-Menard, E., Koeberle, P. G., Gagne, J., & Chomet, E. (1991). Fractionation of Populus tremuloides at the pilot plant scale: Optimization of steam pretreatment conditions using the STAKE II technology. Bioresource Technology, 35, 23–32.CrossRef Heitz, M., Capek-Menard, E., Koeberle, P. G., Gagne, J., & Chomet, E. (1991). Fractionation of Populus tremuloides at the pilot plant scale: Optimization of steam pretreatment conditions using the STAKE II technology. Bioresource Technology, 35, 23–32.CrossRef
43.
go back to reference De Bari, I., Viola, E., Barisano, D., Cardinale, M., Nanna, F., & Zimbardi, F. (2002). Ethanol production at flask and pilot scale from concentrated slurries of steam-exploded aspen. Industrial & Engineering Chemistry Research, 41, 1745–1753.CrossRef De Bari, I., Viola, E., Barisano, D., Cardinale, M., Nanna, F., & Zimbardi, F. (2002). Ethanol production at flask and pilot scale from concentrated slurries of steam-exploded aspen. Industrial & Engineering Chemistry Research, 41, 1745–1753.CrossRef
44.
go back to reference Vlasenko, E. Y., Ding, H., Labavitch, J. M., & Shoemaker, S. P. (1997). Enzymatic hydrolysis of pretreated rice straw. Bioresource Technology, 59, 109–119.CrossRef Vlasenko, E. Y., Ding, H., Labavitch, J. M., & Shoemaker, S. P. (1997). Enzymatic hydrolysis of pretreated rice straw. Bioresource Technology, 59, 109–119.CrossRef
45.
go back to reference Sun, Y., & Cheng, J. Y. (2002). Hydrolysis of lignocellulosic materials for ethanol production: A review. Bioresource Technology, 83, 1–11.CrossRef Sun, Y., & Cheng, J. Y. (2002). Hydrolysis of lignocellulosic materials for ethanol production: A review. Bioresource Technology, 83, 1–11.CrossRef
46.
go back to reference Fan, L. T., Gharpuray, M. M., & Lee, Y. H. (1987). Cellulose hydrolysis biotechnology monographs. Springer.CrossRef Fan, L. T., Gharpuray, M. M., & Lee, Y. H. (1987). Cellulose hydrolysis biotechnology monographs. Springer.CrossRef
47.
go back to reference Liu, J., Bao, Z., Yi Cui, Y., Dufek, E. J., Goodenough, J. B., Khalifah, P., Li, Q., et al. (2019). Pathways for practical high-energy long-cycling lithium metal batteries. Nature Energy, 4, 180–186.CrossRef Liu, J., Bao, Z., Yi Cui, Y., Dufek, E. J., Goodenough, J. B., Khalifah, P., Li, Q., et al. (2019). Pathways for practical high-energy long-cycling lithium metal batteries. Nature Energy, 4, 180–186.CrossRef
48.
go back to reference Ibikunle, R. A., Titiladunayo, I. F., Akinnuli, B. O., Dahunsi, S. O., & Olayanju, T. M. A. (2019). Estimation of power generation from municipal solid wastes: A case Study of Ilorin metropolis, Nigeria. Energy Reports, 5, 126–135.CrossRef Ibikunle, R. A., Titiladunayo, I. F., Akinnuli, B. O., Dahunsi, S. O., & Olayanju, T. M. A. (2019). Estimation of power generation from municipal solid wastes: A case Study of Ilorin metropolis, Nigeria. Energy Reports, 5, 126–135.CrossRef
49.
go back to reference Bosmans, A., & Helsen, L. (2010). Proceedings Venice 2010, Third International Symposium on Energy from Biomass and Waste Venice, Italy, 8–11 November 2010. Bosmans, A., & Helsen, L. (2010). Proceedings Venice 2010, Third International Symposium on Energy from Biomass and Waste Venice, Italy, 8–11 November 2010.
50.
go back to reference Helsen, L. (2000). Low-temperature pyrolysis of CCA treated wood waste. Ph.D. Thesis, Heverlee, Belgium, K.U. Leuven. Helsen, L. (2000). Low-temperature pyrolysis of CCA treated wood waste. Ph.D. Thesis, Heverlee, Belgium, K.U. Leuven.
53.
go back to reference Huang, H., & Tang, L. (2007). Treatment of organic waste using thermal plasma pyrolysis technology. Energy Conversion and Management, 48(4), 1331–1337.CrossRef Huang, H., & Tang, L. (2007). Treatment of organic waste using thermal plasma pyrolysis technology. Energy Conversion and Management, 48(4), 1331–1337.CrossRef
54.
go back to reference Ahola, S., Turon, X., Osterberg, M., Laine, J., & Rojas, O. (2008). Enzymatic hydrolysis of native cellulose nanofibrils and other cellulose model films: Effect of surface structure. Langmuir, 24, 11592–11599.CrossRef Ahola, S., Turon, X., Osterberg, M., Laine, J., & Rojas, O. (2008). Enzymatic hydrolysis of native cellulose nanofibrils and other cellulose model films: Effect of surface structure. Langmuir, 24, 11592–11599.CrossRef
55.
go back to reference Asif, M., & Muneer, T. (2007). Energy supply, its demand and security issues for developed and emerging economies. Renewable and Sustainable Energy Reviews, 11(7), 1388–1413.CrossRef Asif, M., & Muneer, T. (2007). Energy supply, its demand and security issues for developed and emerging economies. Renewable and Sustainable Energy Reviews, 11(7), 1388–1413.CrossRef
56.
go back to reference Lavric, E. D., Konnov, A., & DeRuyck, J. (2004). Dioxin levels in wood combustion—A review. Biomass and Bioenergy, 26(2), 115–145.CrossRef Lavric, E. D., Konnov, A., & DeRuyck, J. (2004). Dioxin levels in wood combustion—A review. Biomass and Bioenergy, 26(2), 115–145.CrossRef
57.
go back to reference Samarasiri, B. K. T., Samarakoon, S. W. S., Rathnasiri, P. G., & Gunawerdana, S. H. P. (2017). Mechanistic model for electricity generation via biomethane production through anaerobic digestion of organic fraction of municipal solid waste generated in Sri Lanka. In Moratuwa Engineering Research Conference (MERCon). IEEE. Samarasiri, B. K. T., Samarakoon, S. W. S., Rathnasiri, P. G., & Gunawerdana, S. H. P. (2017). Mechanistic model for electricity generation via biomethane production through anaerobic digestion of organic fraction of municipal solid waste generated in Sri Lanka. In Moratuwa Engineering Research Conference (MERCon). IEEE.
58.
go back to reference Negi, P. S., Pandey, C. P., & Singh, N. (2019). Black carbon aerosols in the ambient air of Gangotri Glacier valley of north-western Himalaya in India. Atmospheric Environment, 214, 116879.CrossRef Negi, P. S., Pandey, C. P., & Singh, N. (2019). Black carbon aerosols in the ambient air of Gangotri Glacier valley of north-western Himalaya in India. Atmospheric Environment, 214, 116879.CrossRef
59.
go back to reference Chen, W. H., Peng, J., & Bi, X. T. (2015). A state-of-the-art review of biomass torrefaction, densification and applications. Renewable and Sustainable Energy Reviews, 44, 847–866.CrossRef Chen, W. H., Peng, J., & Bi, X. T. (2015). A state-of-the-art review of biomass torrefaction, densification and applications. Renewable and Sustainable Energy Reviews, 44, 847–866.CrossRef
60.
go back to reference Thapa, B., Gupta, D., & Yadav, A. (2019). Corrosion Inhibition of Bark Extract of Euphorbia royleana on Mild Steel in 1M HCl. Journal of Nepal Chemical Society, 40, 25–29.CrossRef Thapa, B., Gupta, D., & Yadav, A. (2019). Corrosion Inhibition of Bark Extract of Euphorbia royleana on Mild Steel in 1M HCl. Journal of Nepal Chemical Society, 40, 25–29.CrossRef
61.
go back to reference Ramachandra, T. V., Bharat, H. A., Kulkarni, G., & Han, S. S. (2018). Municipal solid waste: Generation, composition and GHG emissions in Bangalore, India. Renewable and Sustainable Energy Reviews, 82(Part 1), 1122–1136.CrossRef Ramachandra, T. V., Bharat, H. A., Kulkarni, G., & Han, S. S. (2018). Municipal solid waste: Generation, composition and GHG emissions in Bangalore, India. Renewable and Sustainable Energy Reviews, 82(Part 1), 1122–1136.CrossRef
62.
go back to reference Nazimudheen, G., Sekhar, N. C., Sunny, A., Kallingal, A., & Hasanath, B. (2021). Physiochemical characterization and thermal kinetics of lignin recovered from sustainable agrowaste for bioenergy applications. International Journal of Hydrogen Energy, 46(6), 4798–4807.CrossRef Nazimudheen, G., Sekhar, N. C., Sunny, A., Kallingal, A., & Hasanath, B. (2021). Physiochemical characterization and thermal kinetics of lignin recovered from sustainable agrowaste for bioenergy applications. International Journal of Hydrogen Energy, 46(6), 4798–4807.CrossRef
63.
go back to reference Cui, C., Yong Liu, Y., Xia, B., Xiaoyan Jiang, X., & Skitmore, M. (2020). Overview of public-private partnerships in the waste-to-energy incineration industry in China: Status, opportunities, and challenges. Energy Strategy Reviews, 32(2020), 100584.CrossRef Cui, C., Yong Liu, Y., Xia, B., Xiaoyan Jiang, X., & Skitmore, M. (2020). Overview of public-private partnerships in the waste-to-energy incineration industry in China: Status, opportunities, and challenges. Energy Strategy Reviews, 32(2020), 100584.CrossRef
64.
go back to reference Kaza, S., Yao, L., Bhada-Tata, P., & Van Woerden, P. (2018). What a waste 2.0: A global snapshot of solid waste management to 2050. World Bank.CrossRef Kaza, S., Yao, L., Bhada-Tata, P., & Van Woerden, P. (2018). What a waste 2.0: A global snapshot of solid waste management to 2050. World Bank.CrossRef
65.
go back to reference Traven, L., Kegalj, I., & Sebelja, I. (2018). Management of municipal solid waste in Croatia: Analysis of current practices with performance benchmarking against other European Union member states. Waste Management & Research: The Journal for a Sustainable Circular Economy, 36(8), 663–669.CrossRef Traven, L., Kegalj, I., & Sebelja, I. (2018). Management of municipal solid waste in Croatia: Analysis of current practices with performance benchmarking against other European Union member states. Waste Management & Research: The Journal for a Sustainable Circular Economy, 36(8), 663–669.CrossRef
66.
go back to reference Gardiner, R., & Petr Hajek, P. (2020). Municipal waste generation, R&D intensity, and economic growth nexus – A case of EU regions. Waste Management, 114, 124–135.CrossRef Gardiner, R., & Petr Hajek, P. (2020). Municipal waste generation, R&D intensity, and economic growth nexus – A case of EU regions. Waste Management, 114, 124–135.CrossRef
67.
go back to reference Zafar, M. W., Shahbaz, M., Hou, F., & Sinha, A. (2019). From nonrenewable to renewable energy and its impact on economic growth: The role of research & development expenditures in Asia-Pacific Economic Cooperation countries. Journal of Cleaner Production, 212, 1166–1178.CrossRef Zafar, M. W., Shahbaz, M., Hou, F., & Sinha, A. (2019). From nonrenewable to renewable energy and its impact on economic growth: The role of research & development expenditures in Asia-Pacific Economic Cooperation countries. Journal of Cleaner Production, 212, 1166–1178.CrossRef
68.
go back to reference Klass, D. L. (2003). A critical assessment of renewable energy usage in the USA. Energy Policy, 31, 353–367.CrossRef Klass, D. L. (2003). A critical assessment of renewable energy usage in the USA. Energy Policy, 31, 353–367.CrossRef
69.
go back to reference Aydin, M., & Pata, U. K. (2020). Are shocks to disaggregated renewable energy consumption permanent or temporary for the USA? Wavelet based unit root test with smooth structural shifts. Energy, 207, 118245.CrossRef Aydin, M., & Pata, U. K. (2020). Are shocks to disaggregated renewable energy consumption permanent or temporary for the USA? Wavelet based unit root test with smooth structural shifts. Energy, 207, 118245.CrossRef
70.
go back to reference Mohd Chachuli, F. S., Mat, S., Ahmad Ludin, N., & Sopian, K. (2021). Performance evaluation of renewable energy R&D activities in Malaysia. Renewable Energy, 163, 544–560.CrossRef Mohd Chachuli, F. S., Mat, S., Ahmad Ludin, N., & Sopian, K. (2021). Performance evaluation of renewable energy R&D activities in Malaysia. Renewable Energy, 163, 544–560.CrossRef
71.
go back to reference Aziz, H. A., Amr, S. S. A., Vesilind, P. A., Wang, L. K., & Hung, Y. T. (2021). Introduction to solid waste management. In L. K. Wang, M. H. S. Wang, & Y. T. Hung (Eds.), H. A. Aziz (Consulting Ed.) Solid waste engineering and management (Vol. 1, pp. 1–86). Springer Nature. Aziz, H. A., Amr, S. S. A., Vesilind, P. A., Wang, L. K., & Hung, Y. T. (2021). Introduction to solid waste management. In L. K. Wang, M. H. S. Wang, & Y. T. Hung (Eds.), H. A. Aziz (Consulting Ed.) Solid waste engineering and management (Vol. 1, pp. 1–86). Springer Nature.
72.
go back to reference Excoffier, G., Toussaint, B., & Vignon, M. R. (1991). Saccharification of steam-exploded poplar wood. Biotechnology and Bioengineering, 38, 1308–1317.CrossRef Excoffier, G., Toussaint, B., & Vignon, M. R. (1991). Saccharification of steam-exploded poplar wood. Biotechnology and Bioengineering, 38, 1308–1317.CrossRef
73.
go back to reference Van Walsum, G. P., Alien, S. G., Spencer, M. J., Laser, M. S., Antal, M. J., Jr., & Lynd, L. R. (1996). Conversion of lignocellulosics pretreated with liquid hot water to ethanol. Applied Biochemistry and Biotechnology, 57/58, 157–170.CrossRef Van Walsum, G. P., Alien, S. G., Spencer, M. J., Laser, M. S., Antal, M. J., Jr., & Lynd, L. R. (1996). Conversion of lignocellulosics pretreated with liquid hot water to ethanol. Applied Biochemistry and Biotechnology, 57/58, 157–170.CrossRef
Metadata
Title
Energy Recovery from Solid Waste
Authors
Rosnani Alkarimiah
Muaz Mohd Zaini Makhtar
Hamidi Abdul Aziz
P. Aarne Vesilind
Lawrence K. Wang
Yung-Tse Hung
Copyright Year
2022
DOI
https://doi.org/10.1007/978-3-030-96989-9_5