Skip to main content
Top
Published in: Physics of Metals and Metallography 3/2020

01-03-2020 | THEORY OF METALS

Energy Spectrum and Optical Properties of C24 Fullerene within the Hubbard Model

Author: A. V. Silant’ev

Published in: Physics of Metals and Metallography | Issue 3/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Anti-commutator Green’s functions and the energy spectra of C24 fullerene with the symmetry groups D6, D6d, and Oh are obtained in analytical form within the Hubbard model, in the mean-field approximation. Using the methods of group theory, the classification of energy states is carried out and the allowed transitions in the energy spectra of C24 fullerene are determined.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference G. Von Helden, M. T. Hsu, N. G. Gotts, P. R. Kemper, and M. T. Bowers, “Do small fullerenes exist only on the computer? Experimental results on \({\text{C}}_{{20}}^{{ + / - }}\) and \({\text{C}}_{{24}}^{{ + / - }}\),” Chem. Phys. Lett. 204, 15–22 (1993).CrossRef G. Von Helden, M. T. Hsu, N. G. Gotts, P. R. Kemper, and M. T. Bowers, “Do small fullerenes exist only on the computer? Experimental results on \({\text{C}}_{{20}}^{{ + / - }}\) and \({\text{C}}_{{24}}^{{ + / - }}\),” Chem. Phys. Lett. 204, 15–22 (1993).CrossRef
2.
go back to reference M. N. Akhtar, B. Ahmad, and S. Ahmad, “Low energy heavy ion detection with the plastic scintillator NE102E,” Nucl. Instrum. Methods Phys. Res., Sect. B 207, 333–338 (2003). M. N. Akhtar, B. Ahmad, and S. Ahmad, “Low energy heavy ion detection with the plastic scintillator NE102E,” Nucl. Instrum. Methods Phys. Res., Sect. B 207, 333–338 (2003).
3.
go back to reference F. Jensen, “C24: Ring or fullerene,” J. Chem. Phys. 108, 3213–3217 (1998).CrossRef F. Jensen, “C24: Ring or fullerene,” J. Chem. Phys. 108, 3213–3217 (1998).CrossRef
4.
go back to reference N. N. Breslavskaya, A. A. Levin, and A. L. Buchachenko, “Endofullerenes: size effects on structure and energy,” Russ. Chem. Bull. 53, 18–23 (2004).CrossRef N. N. Breslavskaya, A. A. Levin, and A. L. Buchachenko, “Endofullerenes: size effects on structure and energy,” Russ. Chem. Bull. 53, 18–23 (2004).CrossRef
5.
go back to reference T. Oku, M. Kuno, H. Kitahara, and I. Navita, “Formation, atomic structures and properties of boron nitride and carbon nanocage fullerene materials,” Int. J. Inorg. Mater. 3, 597–612 (2001).CrossRef T. Oku, M. Kuno, H. Kitahara, and I. Navita, “Formation, atomic structures and properties of boron nitride and carbon nanocage fullerene materials,” Int. J. Inorg. Mater. 3, 597–612 (2001).CrossRef
6.
go back to reference H. S. Wu and J. F. Jia, “Structures and stabilities of C24 and B12N12 clusters,” Chin. J. Struct. Chem. 23, 580–585 (2004). H. S. Wu and J. F. Jia, “Structures and stabilities of C24 and B12N12 clusters,” Chin. J. Struct. Chem. 23, 580–585 (2004).
7.
go back to reference W. An, N. Shao, S. Bulusu, and X. C. Zeng, “Ab initio calculation of carbon clusters,” J. Chem. Phys. 128, 084301 (2008).CrossRef W. An, N. Shao, S. Bulusu, and X. C. Zeng, “Ab initio calculation of carbon clusters,” J. Chem. Phys. 128, 084301 (2008).CrossRef
8.
go back to reference V. A. Greshnyakov and E. A. Belenkov, “Diamond-like phase formed of carbon C24 clusters,” J. Phys.: Conf. Ser. 447, 012018 (2018). V. A. Greshnyakov and E. A. Belenkov, “Diamond-like phase formed of carbon C24 clusters,” J. Phys.: Conf. Ser. 447, 012018 (2018).
9.
go back to reference Y. Zhang and X. Cheng, “Hydrogen storage property of alkali and alkaline-earth metal atoms decorated C24 fullerene: A DFT study,” Chem. Phys. 505, 26–33 (2018).CrossRef Y. Zhang and X. Cheng, “Hydrogen storage property of alkali and alkaline-earth metal atoms decorated C24 fullerene: A DFT study,” Chem. Phys. 505, 26–33 (2018).CrossRef
10.
go back to reference R. A. Harris and L. M. Falicov, “Self-consistent theory of bond alternation in polyenes: Normal state, charge-density waves, and spin-density waves,” J. Chem. Phys. 51, 5034–5041 (1969).CrossRef R. A. Harris and L. M. Falicov, “Self-consistent theory of bond alternation in polyenes: Normal state, charge-density waves, and spin-density waves,” J. Chem. Phys. 51, 5034–5041 (1969).CrossRef
11.
go back to reference J. Hubbard, “Electron correlations in narrow energy bands,” Proc. R. Soc. London, Ser. A 276, 238–257 (1963).CrossRef J. Hubbard, “Electron correlations in narrow energy bands,” Proc. R. Soc. London, Ser. A 276, 238–257 (1963).CrossRef
12.
go back to reference G. S. Ivanchenko and N. G. Lebedev, “Electrical conductivity of double-walled carbon nanotubes in the framework of the Hubbard model,” Phys. Solid State 49, 189–196 (2007).CrossRef G. S. Ivanchenko and N. G. Lebedev, “Electrical conductivity of double-walled carbon nanotubes in the framework of the Hubbard model,” Phys. Solid State 49, 189–196 (2007).CrossRef
13.
go back to reference A. V. Silant’ev, “A research of nanosystems within the hubbard model by mean field approximation,” Izv. Vuzov. Povolzhskii Region. Fiz.-Mat. Nauki, No. 1, 101–112 (2016). A. V. Silant’ev, “A research of nanosystems within the hubbard model by mean field approximation,” Izv. Vuzov. Povolzhskii Region. Fiz.-Mat. Nauki, No. 1, 101–112 (2016).
14.
go back to reference A. V. Silant’ev, “Energy spectrum and optical properties of C60 fullerene within the Hubbard model,” Phys. Met. Metallogr. 118, 1–9 (2017).CrossRef A. V. Silant’ev, “Energy spectrum and optical properties of C60 fullerene within the Hubbard model,” Phys. Met. Metallogr. 118, 1–9 (2017).CrossRef
15.
go back to reference A. V. Silant’ev, “The energy spectrum and optical properties of fullerene C70 within the Hubbard model,” Opt. Spectrosc. 124, 155–162 (2018).CrossRef A. V. Silant’ev, “The energy spectrum and optical properties of fullerene C70 within the Hubbard model,” Opt. Spectrosc. 124, 155–162 (2018).CrossRef
16.
go back to reference A. V. Silant’ev, “Influence of deformation on the energy spectrum and the optical properties of fullerene C20 within the Hubbard model,” Phys. Met. Metallogr. 119, 511–519 (2018).CrossRef A. V. Silant’ev, “Influence of deformation on the energy spectrum and the optical properties of fullerene C20 within the Hubbard model,” Phys. Met. Metallogr. 119, 511–519 (2018).CrossRef
17.
go back to reference A. V. Silant’ev, “The energy spectrum and optical properties of fullerene C36 within the Hubbard model,” Opt. Spectrosc. 127, 190–198 (2019).CrossRef A. V. Silant’ev, “The energy spectrum and optical properties of fullerene C36 within the Hubbard model,” Opt. Spectrosc. 127, 190–198 (2019).CrossRef
18.
go back to reference A. V. Silant’ev, “A dimer in the extended Hubbard model,” Russ. Phys. J. 57, 1491–1502 (2015).CrossRef A. V. Silant’ev, “A dimer in the extended Hubbard model,” Russ. Phys. J. 57, 1491–1502 (2015).CrossRef
19.
go back to reference A. V. Silant’ev, “A dimer in the Hubbard model,” Izv. Vuzov. Povolzhskii Region. Fiz.-Mat. Nauki, No. 1, 168–182 (2015). A. V. Silant’ev, “A dimer in the Hubbard model,” Izv. Vuzov. Povolzhskii Region. Fiz.-Mat. Nauki, No. 1, 168–182 (2015).
20.
go back to reference V. V. Pokropivny and A. L. Ivanovskii, “New nanoforms of carbon and boron nitride,” Russ. Chem. Rev. 77, 837–873 (2008).CrossRef V. V. Pokropivny and A. L. Ivanovskii, “New nanoforms of carbon and boron nitride,” Russ. Chem. Rev. 77, 837–873 (2008).CrossRef
21.
go back to reference I. I. Sobel’man, Introduction to Theory of Atomic Spectra (Nauka, Moscow, 1977) [in Russian]. I. I. Sobel’man, Introduction to Theory of Atomic Spectra (Nauka, Moscow, 1977) [in Russian].
22.
go back to reference I. B. Bersuker, The Yahn–Teller Effect (Cambridge University, Cambridge, 2006).CrossRef I. B. Bersuker, The Yahn–Teller Effect (Cambridge University, Cambridge, 2006).CrossRef
23.
go back to reference E. P. Wigner, Group Theory and its Application to the Quantum Mechanics of Atomic Spectra (New York, Academic, 1959; Inostrannaya Leteratura, Moscow, 1961). E. P. Wigner, Group Theory and its Application to the Quantum Mechanics of Atomic Spectra (New York, Academic, 1959; Inostrannaya Leteratura, Moscow, 1961).
Metadata
Title
Energy Spectrum and Optical Properties of C24 Fullerene within the Hubbard Model
Author
A. V. Silant’ev
Publication date
01-03-2020
Publisher
Pleiades Publishing
Published in
Physics of Metals and Metallography / Issue 3/2020
Print ISSN: 0031-918X
Electronic ISSN: 1555-6190
DOI
https://doi.org/10.1134/S0031918X20010160

Other articles of this Issue 3/2020

Physics of Metals and Metallography 3/2020 Go to the issue