Skip to main content
Top
Published in: Physics of Metals and Metallography 3/2020

01-03-2020 | ELECTRICAL AND MAGNETIC PROPERTIES

Magnetization Induced in a Superconductor Due to the Effect of Proximity with a Ferromagnetic Dielectric

Authors: V. O. Yagovtsev, N. G. Pugach

Published in: Physics of Metals and Metallography | Issue 3/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This work investigates the magnetization of a superconductor induced by the proximity effect in bilayers containing a superconductor and a ferromagnetic insulator using the Green’s functions method. The simulation was carried out using the quasi-classical approximation; the Usadel equations were solved using boundary conditions specially developed for strongly ferromagnetic materials. The suppression of the superconducting order parameter as a result of the effect of the proximity to the ferromagnetic insulator has also been investigated.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference I. Žutić, J. Fabian, and S. Das Sarma, “Spintronics: Fundamentals and applications,” Rev. Mod. Phys. 76, 323–410 (2004).CrossRef I. Žutić, J. Fabian, and S. Das Sarma, “Spintronics: Fundamentals and applications,” Rev. Mod. Phys. 76, 323–410 (2004).CrossRef
2.
go back to reference J. Linder and J. W. A. Robinson, “Superconducting spintronics,” Nat. Phys. 11, 307–315 (2015).CrossRef J. Linder and J. W. A. Robinson, “Superconducting spintronics,” Nat. Phys. 11, 307–315 (2015).CrossRef
3.
go back to reference M. G. Blamire and J. W. A. Robinson, “The interface between superconductivity and magnetism: Understanding and device prospects,” J. Phys.: Condens. Matter. 26, 453201 (2014). M. G. Blamire and J. W. A. Robinson, “The interface between superconductivity and magnetism: Understanding and device prospects,” J. Phys.: Condens. Matter. 26, 453201 (2014).
4.
go back to reference A. I. Buzdin, “Proximity effects in superconductor–ferromagnet heterostructures,” Rev. Mod. Phys. 77, 935–976 (2005).CrossRef A. I. Buzdin, “Proximity effects in superconductor–ferromagnet heterostructures,” Rev. Mod. Phys. 77, 935–976 (2005).CrossRef
5.
go back to reference M. Eschrig, “Spin-polarized supercurrents for spintronics: A review of current progress,” Rep. Prog. Phys. 78, 104501 (2015).CrossRef M. Eschrig, “Spin-polarized supercurrents for spintronics: A review of current progress,” Rep. Prog. Phys. 78, 104501 (2015).CrossRef
6.
go back to reference D. M. Heim, N. G. Pugach, M. Y. Kupriyanov, E. Goldobin, D. Koelle, and R. Kleiner, “Ferromagnetic planar Josephson junction with transparent interfaces: A φ junction proposal,” J. Phys.: Condens. Matter. 25, 215701 (2013). D. M. Heim, N. G. Pugach, M. Y. Kupriyanov, E. Goldobin, D. Koelle, and R. Kleiner, “Ferromagnetic planar Josephson junction with transparent interfaces: A φ junction proposal,” J. Phys.: Condens. Matter. 25, 215701 (2013).
7.
go back to reference A. V. Vedyayev, N. V. Ryzhanova, and N. G. Pugach, “Critical current oscillations in S/F heterostructures in the presence of s–d scattering,” J. Magn. Magn. Mater. 305, 53–56 (2006).CrossRef A. V. Vedyayev, N. V. Ryzhanova, and N. G. Pugach, “Critical current oscillations in S/F heterostructures in the presence of s–d scattering,” J. Magn. Magn. Mater. 305, 53–56 (2006).CrossRef
8.
go back to reference A. Vedyayev, C. Lacroix, N. Pugach, and N. Ryzhanova, “Spin-valve magnetic sandwich in a Josephson junction,” Europhys. Lett. 71, 679–685 (2005).CrossRef A. Vedyayev, C. Lacroix, N. Pugach, and N. Ryzhanova, “Spin-valve magnetic sandwich in a Josephson junction,” Europhys. Lett. 71, 679–685 (2005).CrossRef
9.
go back to reference F. S. Bergeret, A. F. Volkov, and K. B. Efetov, “Odd triplet superconductivity and related phenomena in superconductor–ferromagnet structures,” Rev. Mod. Phys. 77, 1321–1373 (2005).CrossRef F. S. Bergeret, A. F. Volkov, and K. B. Efetov, “Odd triplet superconductivity and related phenomena in superconductor–ferromagnet structures,” Rev. Mod. Phys. 77, 1321–1373 (2005).CrossRef
10.
go back to reference N. G. Pugach, M. Safonchik, T. Champel, M. E. Zhitomirsky, E. Lähderanta, M. Eschrig, and C. Lacroix, “Superconducting spin valves controlled by spiral re-orientation in B20-family magnets,” Appl. Phys. Lett. 111, 162601 (2017).CrossRef N. G. Pugach, M. Safonchik, T. Champel, M. E. Zhitomirsky, E. Lähderanta, M. Eschrig, and C. Lacroix, “Superconducting spin valves controlled by spiral re-orientation in B20-family magnets,” Appl. Phys. Lett. 111, 162601 (2017).CrossRef
11.
go back to reference N. Klenov, V. Kornev, A. Vedyayev, N. Ryzhanova, N. Pugach, and T. Rumyantseva, “Examination of logic operations with silent phase qubit,” J. Phys.: Conf. Ser. 97, 012037 (2008). N. Klenov, V. Kornev, A. Vedyayev, N. Ryzhanova, N. Pugach, and T. Rumyantseva, “Examination of logic operations with silent phase qubit,” J. Phys.: Conf. Ser. 97, 012037 (2008).
12.
go back to reference F. S. Bergeret, A. F. Volkov, and K. B. Efetov, “Induced ferromagnetism due to superconductivity in superconductor–ferromagnet structures,” Phys. Rev. B 69, 174504 (2004).CrossRef F. S. Bergeret, A. F. Volkov, and K. B. Efetov, “Induced ferromagnetism due to superconductivity in superconductor–ferromagnet structures,” Phys. Rev. B 69, 174504 (2004).CrossRef
13.
go back to reference J. Linder, T. Yokoyama, and A. Sudbø, “Theory of superconducting and magnetic proximity effect in S/F structures with inhomogeneous magnetization textures and spin-active interfaces,” Phys. Rev. B 79, 054523 (2009).CrossRef J. Linder, T. Yokoyama, and A. Sudbø, “Theory of superconducting and magnetic proximity effect in S/F structures with inhomogeneous magnetization textures and spin-active interfaces,” Phys. Rev. B 79, 054523 (2009).CrossRef
14.
go back to reference T. Champel and M. Eschrig, “Effect of an inhomogeneous exchange field on the proximity effect in disordered superconductor–ferromagnet hybrid structures,” Phys. Rev. B 72, 054523 (2005).CrossRef T. Champel and M. Eschrig, “Effect of an inhomogeneous exchange field on the proximity effect in disordered superconductor–ferromagnet hybrid structures,” Phys. Rev. B 72, 054523 (2005).CrossRef
15.
go back to reference N. G. Pugach and A. I. Buzdin, “Magnetic moment manipulation by triplet Josephson current,” Appl. Phys. Lett. 101, 242602 (2012).CrossRef N. G. Pugach and A. I. Buzdin, “Magnetic moment manipulation by triplet Josephson current,” Appl. Phys. Lett. 101, 242602 (2012).CrossRef
16.
go back to reference Y. N. Khaydukov, V. L. Aksenov, Y. Nikitenko, K. N. Zhernenkov, B. Nagy, A. Teichert, R. Steitz, A. Rühm, and L. Bottyán, “Magnetic proximity effects in V/Fe superconductor/ferromagnet single bilayer revealed by waveguide-enhanced polarized neutron reflectometry,” J. Supercond. Novel. Magn. 24, 961–968 (2011).CrossRef Y. N. Khaydukov, V. L. Aksenov, Y. Nikitenko, K. N. Zhernenkov, B. Nagy, A. Teichert, R. Steitz, A. Rühm, and L. Bottyán, “Magnetic proximity effects in V/Fe superconductor/ferromagnet single bilayer revealed by waveguide-enhanced polarized neutron reflectometry,” J. Supercond. Novel. Magn. 24, 961–968 (2011).CrossRef
17.
go back to reference R. I. Salikhov, N. N. Garif’yanov, I. A. Garifullin, L. R. Tagirov, K. Westerholt, and H. Zabel, “Spin screening effect in superconductor/ferromagnet thin film heterostructures studied using nuclear magnetic resonance,” Phys. Rev. B 80, 214523 (2009).CrossRef R. I. Salikhov, N. N. Garif’yanov, I. A. Garifullin, L. R. Tagirov, K. Westerholt, and H. Zabel, “Spin screening effect in superconductor/ferromagnet thin film heterostructures studied using nuclear magnetic resonance,” Phys. Rev. B 80, 214523 (2009).CrossRef
18.
go back to reference X. Hao, J. S. Moodera, and R. Meservey, “Thin-film superconductor in an exchange field,” Phys. Rev. Lett. 67, 1342–1345 (1991).CrossRef X. Hao, J. S. Moodera, and R. Meservey, “Thin-film superconductor in an exchange field,” Phys. Rev. Lett. 67, 1342–1345 (1991).CrossRef
19.
go back to reference J. A. Ouassou, A. Pal, M. Blamire, M. Eschrig, and J. Linder, “Triplet Cooper pairs induced in diffusive s‑wave superconductors interfaced with strongly spin-polarized magnetic insulators or half-metallic ferromagnets,” Sci. Rep. 7, No. 1, 1932 (2017).CrossRef J. A. Ouassou, A. Pal, M. Blamire, M. Eschrig, and J. Linder, “Triplet Cooper pairs induced in diffusive s‑wave superconductors interfaced with strongly spin-polarized magnetic insulators or half-metallic ferromagnets,” Sci. Rep. 7, No. 1, 1932 (2017).CrossRef
20.
go back to reference F. Giazotto, P. Solinas, A. Braggio, and F. S. Bergeret, “Ferromagnetic-insulator-based superconducting junctions as sensitive electron thermometers,” Phys. Rev. Appl. 4, 044016 (2015).CrossRef F. Giazotto, P. Solinas, A. Braggio, and F. S. Bergeret, “Ferromagnetic-insulator-based superconducting junctions as sensitive electron thermometers,” Phys. Rev. Appl. 4, 044016 (2015).CrossRef
21.
go back to reference M. J. Wolf, C. Sürgers, G. Fischer, and D. Beckmann, “Spin-polarized quasiparticle transport in exchange-split superconducting aluminum on europium sulfide,” Phys. Rev. B 90, 144509 (2014).CrossRef M. J. Wolf, C. Sürgers, G. Fischer, and D. Beckmann, “Spin-polarized quasiparticle transport in exchange-split superconducting aluminum on europium sulfide,” Phys. Rev. B 90, 144509 (2014).CrossRef
22.
go back to reference A. Pal and M. G. Blamire, “Large interfacial exchange fields in a thick superconducting film coupled to a spin-filter tunnel barrier,” Phys. Rev. B 92, 180510 (2015).CrossRef A. Pal and M. G. Blamire, “Large interfacial exchange fields in a thick superconducting film coupled to a spin-filter tunnel barrier,” Phys. Rev. B 92, 180510 (2015).CrossRef
23.
go back to reference B. Li, N. Roschewsky, B. A. Assaf, M. Eich, M. Epstein-Martin, D. Heiman, M. Münzenberg, and J. S. Moodera, “Superconducting spin switch with infinite magnetoresistance induced by an internal exchange field,” Phys. Rev. Lett. 110, 097001 (2013).CrossRef B. Li, N. Roschewsky, B. A. Assaf, M. Eich, M. Epstein-Martin, D. Heiman, M. Münzenberg, and J. S. Moodera, “Superconducting spin switch with infinite magnetoresistance induced by an internal exchange field,” Phys. Rev. Lett. 110, 097001 (2013).CrossRef
24.
go back to reference M. Eschrig, A. Cottet, W. Belzig, and J. Linder, “General boundary conditions for quasiclassical theory of superconductivity in the diffusive limit: Application to strongly spin-polarized systems,” New J. Phys. 17, 083037 (2015).CrossRef M. Eschrig, A. Cottet, W. Belzig, and J. Linder, “General boundary conditions for quasiclassical theory of superconductivity in the diffusive limit: Application to strongly spin-polarized systems,” New J. Phys. 17, 083037 (2015).CrossRef
25.
go back to reference J. Linder, A. Sudbø, T. Yokoyama, R. Grein, and M. Eschrig, “Signature of odd-frequency pairing correlations induced by a magnetic interface,” Phys. Rev. B 81, 214504 (2010).CrossRef J. Linder, A. Sudbø, T. Yokoyama, R. Grein, and M. Eschrig, “Signature of odd-frequency pairing correlations induced by a magnetic interface,” Phys. Rev. B 81, 214504 (2010).CrossRef
26.
go back to reference T. Champel and M. Eschrig, “Switching superconductivity in superconductor/ferromagnet bilayers by multiple-domain structures,” Phys. Rev. B: Condens. Matter Mater. Phys. 71, 220506 (2005).CrossRef T. Champel and M. Eschrig, “Switching superconductivity in superconductor/ferromagnet bilayers by multiple-domain structures,” Phys. Rev. B: Condens. Matter Mater. Phys. 71, 220506 (2005).CrossRef
27.
go back to reference S. Mironov, A. S. Mel’nikov, and A. Buzdin, “Electromagnetic proximity effect in planar superconductor–ferromagnet structures,” Appl. Phys. Lett. 113, 022601 (2018).CrossRef S. Mironov, A. S. Mel’nikov, and A. Buzdin, “Electromagnetic proximity effect in planar superconductor–ferromagnet structures,” Appl. Phys. Lett. 113, 022601 (2018).CrossRef
28.
go back to reference M. G. Flokstra, T. C. Cunningham, J. Kim, N. Satchell, G. Burnell, P. J. Curran, S. J. Bending, C. J. Kinane, J. F. K. Cooper, S. Langridge, A. Isidori, N. Pugach, M. Eschrig, and S. L. Lee, “Controlled suppression of superconductivity by the generation of polarized Cooper pairs in spin-valve structures,” Phys. Rev. B: Condens. Matter Mater. Phys. 91, 060501 (2015).CrossRef M. G. Flokstra, T. C. Cunningham, J. Kim, N. Satchell, G. Burnell, P. J. Curran, S. J. Bending, C. J. Kinane, J. F. K. Cooper, S. Langridge, A. Isidori, N. Pugach, M. Eschrig, and S. L. Lee, “Controlled suppression of superconductivity by the generation of polarized Cooper pairs in spin-valve structures,” Phys. Rev. B: Condens. Matter Mater. Phys. 91, 060501 (2015).CrossRef
29.
go back to reference T. T. Heikkilä, R. Ojajärvi, I. J. Maasilta, E. Strambini, F. Giazotto, and F. S. Bergeret, “Thermoelectric radiation detector based on superconductor-ferromagnet systems,” Phys. Rev. Appl. 10, 034053 (2018).CrossRef T. T. Heikkilä, R. Ojajärvi, I. J. Maasilta, E. Strambini, F. Giazotto, and F. S. Bergeret, “Thermoelectric radiation detector based on superconductor-ferromagnet systems,” Phys. Rev. Appl. 10, 034053 (2018).CrossRef
30.
go back to reference F. Giazotto, J. W. A. Robinson, J. S. Moodera, and F. S. Bergeret, “Proposal for a phase-coherent thermoelectric transistor,” Appl. Phys. Lett. 105, 062602 (2014). F. Giazotto, J. W. A. Robinson, J. S. Moodera, and F. S. Bergeret, “Proposal for a phase-coherent thermoelectric transistor,” Appl. Phys. Lett. 105, 062602 (2014).
Metadata
Title
Magnetization Induced in a Superconductor Due to the Effect of Proximity with a Ferromagnetic Dielectric
Authors
V. O. Yagovtsev
N. G. Pugach
Publication date
01-03-2020
Publisher
Pleiades Publishing
Published in
Physics of Metals and Metallography / Issue 3/2020
Print ISSN: 0031-918X
Electronic ISSN: 1555-6190
DOI
https://doi.org/10.1134/S0031918X20030084

Other articles of this Issue 3/2020

Physics of Metals and Metallography 3/2020 Go to the issue