Skip to main content
Top

2020 | OriginalPaper | Chapter

6. Engineering of Dental Titanium Implants and Their Coating Techniques

Authors : Jonathan Wirth, Lobat Tayebi

Published in: Applications of Biomedical Engineering in Dentistry

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Coating can improve dental implant success rate in medically compromised patients, as it allows sustained delivery of medicaments and regenerative molecules to the implant site on a biomimetic matrix. There are many dimensions in which this technology can enhance implant treatments, with respect to improved blood clotting and bone formation via amplifying favorable properties—such as wettability, surface roughness, and biomimicry. Understanding the process of osseointegration will drive further research in the subject of bioengineering titanium implants with functionalized coats.
Coating techniques are variable among materials, mainly between organic and inorganic coats. The techniques are dependent on material properties and the integration of a variety of substrates. This chapter aims to describe physical and organic substrates, their individual coating mechanisms, and coating mechanisms that integrate a spectrum of biomaterials. This chapter also discusses, compares, and presents the additive coating techniques in dental titanium implants, their applications, and their rationale, as well as identifies the prospective trends.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Schroeder, A., et al. (1981). The reactions of bone, connective tissue, and epithelium to endosteal implants with titanium-sprayed surfaces. Journal of Maxillofacial Surgery, 9, 15–25.CrossRef Schroeder, A., et al. (1981). The reactions of bone, connective tissue, and epithelium to endosteal implants with titanium-sprayed surfaces. Journal of Maxillofacial Surgery, 9, 15–25.CrossRef
2.
go back to reference Tagliareni, J. M., & Clarkson, E. (2015). Basic concepts and techniques of dental implants. Dental Clinics, 59(2), 255–264. Tagliareni, J. M., & Clarkson, E. (2015). Basic concepts and techniques of dental implants. Dental Clinics, 59(2), 255–264.
3.
go back to reference Ripamonti, U. (2018). Functionalized surface geometries induce:“Bone: Formation by Autoinduction”. Frontiers in Physiology, 8, 1084.CrossRef Ripamonti, U. (2018). Functionalized surface geometries induce:“Bone: Formation by Autoinduction”. Frontiers in Physiology, 8, 1084.CrossRef
4.
go back to reference Ong, J. L., & Chan, D. C. (2000). Hydroxyapatite and their use as coatings in dental implants: a review. Critical Reviews™ in Biomedical Engineering, 28(5&6), 667.CrossRef Ong, J. L., & Chan, D. C. (2000). Hydroxyapatite and their use as coatings in dental implants: a review. Critical Reviews™ in Biomedical Engineering, 28(5&6), 667.CrossRef
5.
go back to reference Chouirfa, H., et al. (2019). Review of titanium surface modification techniques and coatings for antibacterial applications. Acta Biomaterialia, 83, 37–54.CrossRef Chouirfa, H., et al. (2019). Review of titanium surface modification techniques and coatings for antibacterial applications. Acta Biomaterialia, 83, 37–54.CrossRef
6.
go back to reference Ota-Tsuzuki, C., et al. (2011). Influence of titanium surface treatments on formation of the blood clot extension. Journal of Oral Implantology, 37(6), 641–647.CrossRef Ota-Tsuzuki, C., et al. (2011). Influence of titanium surface treatments on formation of the blood clot extension. Journal of Oral Implantology, 37(6), 641–647.CrossRef
7.
go back to reference Shibata, Y., & Tanimoto, Y. (2015). A review of improved fixation methods for dental implants. Part I: Surface optimization for rapid osseointegration. Journal of Prosthodontic Research, 59(1), 20–33.CrossRef Shibata, Y., & Tanimoto, Y. (2015). A review of improved fixation methods for dental implants. Part I: Surface optimization for rapid osseointegration. Journal of Prosthodontic Research, 59(1), 20–33.CrossRef
8.
go back to reference Damiati, L., et al. (2018). Impact of surface topography and coating on osteogenesis and bacterial attachment on titanium implants. Journal of Tissue Engineering, 9, 2041731418790694.CrossRef Damiati, L., et al. (2018). Impact of surface topography and coating on osteogenesis and bacterial attachment on titanium implants. Journal of Tissue Engineering, 9, 2041731418790694.CrossRef
9.
go back to reference Parnia, F., et al. (2017). Overview of nanoparticle coating of dental implants for enhanced osseointegration and antimicrobial purposes. Journal of Pharmacy & Pharmaceutical Sciences, 20, 148–160.CrossRef Parnia, F., et al. (2017). Overview of nanoparticle coating of dental implants for enhanced osseointegration and antimicrobial purposes. Journal of Pharmacy & Pharmaceutical Sciences, 20, 148–160.CrossRef
10.
go back to reference Graziani, G., et al. (2017). Ion-substituted calcium phosphate coatings deposited by plasma-assisted techniques: A review. Materials Science and Engineering: C, 74, 219–229.CrossRef Graziani, G., et al. (2017). Ion-substituted calcium phosphate coatings deposited by plasma-assisted techniques: A review. Materials Science and Engineering: C, 74, 219–229.CrossRef
11.
go back to reference Yu, P., et al. (2017). Self-assembled high-strength hydroxyapatite/graphene oxide/chitosan composite hydrogel for bone tissue engineering. Carbohydrate Polymers, 155, 507–515.CrossRef Yu, P., et al. (2017). Self-assembled high-strength hydroxyapatite/graphene oxide/chitosan composite hydrogel for bone tissue engineering. Carbohydrate Polymers, 155, 507–515.CrossRef
12.
go back to reference Norowski, P. A., et al. (2011). Chitosan coatings deliver antimicrobials from titanium implants: a preliminary study. Implant Dentistry, 20(1), 56–67.CrossRef Norowski, P. A., et al. (2011). Chitosan coatings deliver antimicrobials from titanium implants: a preliminary study. Implant Dentistry, 20(1), 56–67.CrossRef
13.
go back to reference Kubasiewicz-Ross, P., et al. (2017). Zirconium: The material of the future in modern implantology. Advances in Clinical and Experimental Medicine: Official Organ Wroclaw Medical University, 26(3), 533–537.CrossRef Kubasiewicz-Ross, P., et al. (2017). Zirconium: The material of the future in modern implantology. Advances in Clinical and Experimental Medicine: Official Organ Wroclaw Medical University, 26(3), 533–537.CrossRef
14.
go back to reference La, W.-G., et al. (2014). Delivery of bone morphogenetic protein-2 and substance P using graphene oxide for bone regeneration. International Journal of Nanomedicine, 9(Suppl 1), 107. La, W.-G., et al. (2014). Delivery of bone morphogenetic protein-2 and substance P using graphene oxide for bone regeneration. International Journal of Nanomedicine, 9(Suppl 1), 107.
15.
go back to reference Panayotov, I. V., et al. (2015). Strategies for immobilization of bioactive organic molecules on titanium implant surfaces–a review. Folia Medica, 57(1), 11–18.CrossRef Panayotov, I. V., et al. (2015). Strategies for immobilization of bioactive organic molecules on titanium implant surfaces–a review. Folia Medica, 57(1), 11–18.CrossRef
16.
go back to reference Meng, H.-W., Chien, E. Y., & Chien, H.-H. (2016). Dental implant bioactive surface modifications and their effects on osseointegration: a review. Biomarker Research, 4(1), 24.CrossRef Meng, H.-W., Chien, E. Y., & Chien, H.-H. (2016). Dental implant bioactive surface modifications and their effects on osseointegration: a review. Biomarker Research, 4(1), 24.CrossRef
17.
go back to reference Zafar, M. S., et al. (2019). Bioactive surface coatings for enhancing osseointegration of dental implants. In Biomedical, therapeutic and clinical applications of bioactive glasses (pp. 313–329). Amsterdam, Netherlands: Elsevier.CrossRef Zafar, M. S., et al. (2019). Bioactive surface coatings for enhancing osseointegration of dental implants. In Biomedical, therapeutic and clinical applications of bioactive glasses (pp. 313–329). Amsterdam, Netherlands: Elsevier.CrossRef
18.
go back to reference Goldman, M., Juodzbalys, G., & Vilkinis, V. (2014). Titanium surfaces with nanostructures influence on osteoblasts proliferation: a systematic review. Journal of Oral & Maxillofacial Research, 5(3), e1.CrossRef Goldman, M., Juodzbalys, G., & Vilkinis, V. (2014). Titanium surfaces with nanostructures influence on osteoblasts proliferation: a systematic review. Journal of Oral & Maxillofacial Research, 5(3), e1.CrossRef
19.
go back to reference Gomez-Florit, M., et al. (2016). Quercitrin-nanocoated titanium surfaces favour gingival cells against oral bacteria. Scientific Reports, 6, 22444.CrossRef Gomez-Florit, M., et al. (2016). Quercitrin-nanocoated titanium surfaces favour gingival cells against oral bacteria. Scientific Reports, 6, 22444.CrossRef
20.
go back to reference Satheeshababu, B., & Shivakumar, K. (2013). Synthesis of conjugated chitosan and its effect on drug permeation from transdermal patches. Indian Journal of Pharmaceutical Sciences, 75(2), 162. Satheeshababu, B., & Shivakumar, K. (2013). Synthesis of conjugated chitosan and its effect on drug permeation from transdermal patches. Indian Journal of Pharmaceutical Sciences, 75(2), 162.
21.
go back to reference Shi, Y., et al. (2016). Electrophoretic deposition of graphene oxide reinforced chitosan–hydroxyapatite nanocomposite coatings on Ti substrate. Journal of Materials Science: Materials in Medicine, 27(3), 48. Shi, Y., et al. (2016). Electrophoretic deposition of graphene oxide reinforced chitosan–hydroxyapatite nanocomposite coatings on Ti substrate. Journal of Materials Science: Materials in Medicine, 27(3), 48.
22.
go back to reference Eisenbarth, E., et al. (2004). Biocompatibility of β-stabilizing elements of titanium alloys. Biomaterials, 25(26), 5705–5713.CrossRef Eisenbarth, E., et al. (2004). Biocompatibility of β-stabilizing elements of titanium alloys. Biomaterials, 25(26), 5705–5713.CrossRef
23.
go back to reference Matsuno, H., et al. (2001). Biocompatibility and osteogenesis of refractory metal implants, titanium, hafnium, niobium, tantalum and rhenium. Biomaterials, 22(11), 1253–1262.CrossRef Matsuno, H., et al. (2001). Biocompatibility and osteogenesis of refractory metal implants, titanium, hafnium, niobium, tantalum and rhenium. Biomaterials, 22(11), 1253–1262.CrossRef
24.
go back to reference Braic, M., et al. (2011). Preparation and characterization of biocompatible Nb–C coatings. Thin Solid Films, 519(12), 4064–4068.CrossRef Braic, M., et al. (2011). Preparation and characterization of biocompatible Nb–C coatings. Thin Solid Films, 519(12), 4064–4068.CrossRef
25.
go back to reference Xu, Z., et al. (2019). Potential of niobium-based thin films as a protective and osteogenic coating for dental implants: The role of the nonmetal elements. Materials Science and Engineering: C, 96, 166–175.CrossRef Xu, Z., et al. (2019). Potential of niobium-based thin films as a protective and osteogenic coating for dental implants: The role of the nonmetal elements. Materials Science and Engineering: C, 96, 166–175.CrossRef
26.
go back to reference Kalisz, M., et al. (2015). Comparison of mechanical and corrosion properties of graphene monolayer on Ti–Al–V and nanometric Nb2O5 layer on Ti–Al–V alloy for dental implants applications. Thin Solid Films, 589, 356–363.CrossRef Kalisz, M., et al. (2015). Comparison of mechanical and corrosion properties of graphene monolayer on Ti–Al–V and nanometric Nb2O5 layer on Ti–Al–V alloy for dental implants applications. Thin Solid Films, 589, 356–363.CrossRef
27.
go back to reference He, J., et al. (2015). Killing dental pathogens using antibacterial graphene oxide. ACS Applied Materials & Interfaces, 7(9), 5605–5611.CrossRef He, J., et al. (2015). Killing dental pathogens using antibacterial graphene oxide. ACS Applied Materials & Interfaces, 7(9), 5605–5611.CrossRef
28.
go back to reference Li, M., et al. (2014). Graphene oxide/hydroxyapatite composite coatings fabricated by electrophoretic nanotechnology for biological applications. Carbon, 67, 185–197.CrossRef Li, M., et al. (2014). Graphene oxide/hydroxyapatite composite coatings fabricated by electrophoretic nanotechnology for biological applications. Carbon, 67, 185–197.CrossRef
29.
go back to reference La, W. G., et al. (2013). Delivery of a therapeutic protein for bone regeneration from a substrate coated with graphene oxide. Small, 9(23), 4051–4060.CrossRef La, W. G., et al. (2013). Delivery of a therapeutic protein for bone regeneration from a substrate coated with graphene oxide. Small, 9(23), 4051–4060.CrossRef
30.
go back to reference Jung, H. S., et al. (2015). Fabrication of gate-tunable graphene devices for scanning tunneling microscopy studies with Coulomb impurities. JoVE (Journal of Visualized Experiments), (101), e52711. Jung, H. S., et al. (2015). Fabrication of gate-tunable graphene devices for scanning tunneling microscopy studies with Coulomb impurities. JoVE (Journal of Visualized Experiments), (101), e52711.
31.
go back to reference Schliephake, H., et al. (2005). Effect of immobilized bone morphogenic protein 2 coating of titanium implants on peri-implant bone formation. Clinical Oral Implants Research, 16(5), 563–569.CrossRef Schliephake, H., et al. (2005). Effect of immobilized bone morphogenic protein 2 coating of titanium implants on peri-implant bone formation. Clinical Oral Implants Research, 16(5), 563–569.CrossRef
32.
go back to reference Youn, Y. H., et al. (2019). Simple and facile preparation of recombinant human bone morphogenetic protein-2 immobilized titanium implant via initiated chemical vapor deposition technique to promote osteogenesis for bone tissue engineering application. Materials Science and Engineering: C, 100, 949.CrossRef Youn, Y. H., et al. (2019). Simple and facile preparation of recombinant human bone morphogenetic protein-2 immobilized titanium implant via initiated chemical vapor deposition technique to promote osteogenesis for bone tissue engineering application. Materials Science and Engineering: C, 100, 949.CrossRef
33.
go back to reference de Jonge, L. T., et al. (2008). Organic–inorganic surface modifications for titanium implant surfaces. Pharmaceutical Research, 25(10), 2357–2369.CrossRef de Jonge, L. T., et al. (2008). Organic–inorganic surface modifications for titanium implant surfaces. Pharmaceutical Research, 25(10), 2357–2369.CrossRef
34.
go back to reference Ageitos, J., et al. (2017). Antimicrobial peptides (AMPs): Ancient compounds that represent novel weapons in the fight against bacteria. Biochemical Pharmacology, 133, 117–138.CrossRef Ageitos, J., et al. (2017). Antimicrobial peptides (AMPs): Ancient compounds that represent novel weapons in the fight against bacteria. Biochemical Pharmacology, 133, 117–138.CrossRef
35.
go back to reference Godoy-Gallardo, M., et al. (2016). Anhydride-functional silane immobilized onto titanium surfaces induces osteoblast cell differentiation and reduces bacterial adhesion and biofilm formation. Materials Science and Engineering: C, 59, 524–532.CrossRef Godoy-Gallardo, M., et al. (2016). Anhydride-functional silane immobilized onto titanium surfaces induces osteoblast cell differentiation and reduces bacterial adhesion and biofilm formation. Materials Science and Engineering: C, 59, 524–532.CrossRef
36.
go back to reference Sharonova, A., et al. (2019). Surface functionalization of titanium with silver nanoparticles. Journal of Physics: Conference Series. IOP Publishing. Sharonova, A., et al. (2019). Surface functionalization of titanium with silver nanoparticles. Journal of Physics: Conference Series. IOP Publishing.
37.
go back to reference Zhao, Q., et al. (2019). Surface functionalization of titanium with zinc/strontium-doped titanium dioxide microporous coating via microarc oxidation. Nanomedicine: Nanotechnology, Biology and Medicine, 16, 149–161.CrossRef Zhao, Q., et al. (2019). Surface functionalization of titanium with zinc/strontium-doped titanium dioxide microporous coating via microarc oxidation. Nanomedicine: Nanotechnology, Biology and Medicine, 16, 149–161.CrossRef
38.
go back to reference Ahmad, Z., et al. (2012). Antimicrobial properties of electrically formed elastomeric polyurethane–copper oxide nanocomposites for medical and dental applications. In Methods in enzymology (pp. 87–99). Amsterdam, Netherlands: Elsevier. Ahmad, Z., et al. (2012). Antimicrobial properties of electrically formed elastomeric polyurethane–copper oxide nanocomposites for medical and dental applications. In Methods in enzymology (pp. 87–99). Amsterdam, Netherlands: Elsevier.
39.
go back to reference Webster, T. J., & Ejiofor, J. U. (2004). Increased osteoblast adhesion on nanophase metals: Ti, Ti6Al4V, and CoCrMo. Biomaterials, 25(19), 4731–4739.CrossRef Webster, T. J., & Ejiofor, J. U. (2004). Increased osteoblast adhesion on nanophase metals: Ti, Ti6Al4V, and CoCrMo. Biomaterials, 25(19), 4731–4739.CrossRef
40.
go back to reference Bjursten, L. M., et al. (2010). Titanium dioxide nanotubes enhance bone bonding in vivo. Journal of Biomedical Materials Research Part A: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials, 92(3), 1218–1224. Bjursten, L. M., et al. (2010). Titanium dioxide nanotubes enhance bone bonding in vivo. Journal of Biomedical Materials Research Part A: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials, 92(3), 1218–1224.
41.
go back to reference Tan, A., et al. (2012). Review of titania nanotubes: Fabrication and cellular response. Ceramics International, 38(6), 4421–4435.CrossRef Tan, A., et al. (2012). Review of titania nanotubes: Fabrication and cellular response. Ceramics International, 38(6), 4421–4435.CrossRef
42.
go back to reference Goloshchapov, D., et al. (2019). Importance of defect nanocrystalline calcium hydroxyapatite characteristics for developing the dental biomimetic composites. In Results in Physics (p. 102158). Goloshchapov, D., et al. (2019). Importance of defect nanocrystalline calcium hydroxyapatite characteristics for developing the dental biomimetic composites. In Results in Physics (p. 102158).
43.
go back to reference Braga, N., et al. (2008). From micro to nanocrystalline transition in the diamond formation on porous pure titanium. Diamond and Related Materials, 17(11), 1891–1896.CrossRef Braga, N., et al. (2008). From micro to nanocrystalline transition in the diamond formation on porous pure titanium. Diamond and Related Materials, 17(11), 1891–1896.CrossRef
44.
go back to reference Cui, W., Cheng, J., & Liu, Z. (2019). Bio-tribocorrosion behavior of a nanocrystalline TiZrN coating on biomedical titanium alloy. Surface and Coatings Technology, 369, 79.CrossRef Cui, W., Cheng, J., & Liu, Z. (2019). Bio-tribocorrosion behavior of a nanocrystalline TiZrN coating on biomedical titanium alloy. Surface and Coatings Technology, 369, 79.CrossRef
45.
go back to reference Louarn, G., et al. (2019). Nanostructured surface coatings for titanium alloy implants. Journal of Materials Research, 34, 1–8.CrossRef Louarn, G., et al. (2019). Nanostructured surface coatings for titanium alloy implants. Journal of Materials Research, 34, 1–8.CrossRef
46.
go back to reference McCallion, C., et al. (2016). Graphene in therapeutics delivery: Problems, solutions and future opportunities. European Journal of Pharmaceutics and Biopharmaceutics, 104, 235–250.CrossRef McCallion, C., et al. (2016). Graphene in therapeutics delivery: Problems, solutions and future opportunities. European Journal of Pharmaceutics and Biopharmaceutics, 104, 235–250.CrossRef
47.
go back to reference Kulshrestha, S., et al. (2014). A graphene/zinc oxide nanocomposite film protects dental implant surfaces against cariogenic Streptococcus mutans. Biofouling, 30(10), 1281–1294.CrossRef Kulshrestha, S., et al. (2014). A graphene/zinc oxide nanocomposite film protects dental implant surfaces against cariogenic Streptococcus mutans. Biofouling, 30(10), 1281–1294.CrossRef
48.
go back to reference Olivares-Navarrete, R., et al. (2011). Biocompatibility of niobium coatings. Coatings, 1(1), 72–87.CrossRef Olivares-Navarrete, R., et al. (2011). Biocompatibility of niobium coatings. Coatings, 1(1), 72–87.CrossRef
49.
go back to reference Ramírez, G., et al. (2011). Niobium based coatings for dental implants. Applied Surface Science, 257(7), 2555–2559.CrossRef Ramírez, G., et al. (2011). Niobium based coatings for dental implants. Applied Surface Science, 257(7), 2555–2559.CrossRef
50.
go back to reference Manini, N., et al. (2017). Current trends in the physics of nanoscale friction. Advances in Physics: X, 2(3), 569–590. Manini, N., et al. (2017). Current trends in the physics of nanoscale friction. Advances in Physics: X, 2(3), 569–590.
51.
go back to reference Mas-Moruno, C., Su, B., & Dalby, M. J. (2019). Multifunctional coatings and nanotopographies: Toward cell instructive and antibacterial implants. Advanced Healthcare Materials, 8(1), 1801103.CrossRef Mas-Moruno, C., Su, B., & Dalby, M. J. (2019). Multifunctional coatings and nanotopographies: Toward cell instructive and antibacterial implants. Advanced Healthcare Materials, 8(1), 1801103.CrossRef
52.
go back to reference Das, D. (2019). Nanocrystalline diamond: a high-impact carbon nanomaterial for multifunctional applications including as nanofiller in biopolymeric matrices. In Carbon-based nanofillers and their rubber nanocomposites (pp. 123–181). Amsterdam, Netherlands: Elsevier.CrossRef Das, D. (2019). Nanocrystalline diamond: a high-impact carbon nanomaterial for multifunctional applications including as nanofiller in biopolymeric matrices. In Carbon-based nanofillers and their rubber nanocomposites (pp. 123–181). Amsterdam, Netherlands: Elsevier.CrossRef
Metadata
Title
Engineering of Dental Titanium Implants and Their Coating Techniques
Authors
Jonathan Wirth
Lobat Tayebi
Copyright Year
2020
DOI
https://doi.org/10.1007/978-3-030-21583-5_6