Skip to main content
Top
Published in: Metallurgist 9-10/2017

10-02-2017

Engineering Solutions for Cooling Aluminum Electrolyzer Exhaust Gases

Authors: S. G. Shakhrai, N. V. Nemchinova, V. V. Kondrat’ev, V. V. Mazurenko, E. L. Shcheglov

Published in: Metallurgist | Issue 9-10/2017

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

During aluminum production by self-fi ring anode technology, complete combustion of anode gas components (carbon monoxide, resin substances) is accomplished in electrolyzer burner units. With the aim of reducing combustion product temperature entering the gas conduit network of the electrolyzer body, air is fed into a burner unit in excess (α = 6). This amount considerably exceeds that recommended for burning gaseous fuel. As a result of the excessive air intake, excess air the temperature in the combustion zone may be reduced to 300°C. Unburned resin substance is carried with this into the gas exhaust system that is cooled, condensed, and together with dust particles contained in transported anode gases, is deposited on the walls of gas conduits reducing their useful cross section. An improvement in anode gas fuel component complete combustion by optimizing excess air within the limits of α = 1.5–1.2 provides a temperature within the combustion zone within the limits of 1270–1330°C. However, in the process the temperature of combustion products entering from a burner into the gas circuit increases to 1000°C and above, and this is connected with the risk of irreversible deformation of steel gas conduits and melting of gas cleaning unit (GCU) bag filters whose permissible operating temperature is in the range 140–160°C. Engineering solutions are proposed in this article aimed at providing safe operation of gas conduit circuits and electrolysis housing GCU with increased efficiency for burning resin substances in electrolyzer burner units.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference V. S. Burkat and V. A. Drukarev, Reduction in Discharges into the Atmosphere during Aluminum Production, Lyubavich, St. Petersburg (2005). V. S. Burkat and V. A. Drukarev, Reduction in Discharges into the Atmosphere during Aluminum Production, Lyubavich, St. Petersburg (2005).
2.
go back to reference S. G. Shakhrai, V. V. Korostovenko, and I. I. Rebrik, Improvement of Bell Gas-Suction Systems in Powerful Soderberg Electrolyzers, IPK SFU, Krasnoyarsk (2010). S. G. Shakhrai, V. V. Korostovenko, and I. I. Rebrik, Improvement of Bell Gas-Suction Systems in Powerful Soderberg Electrolyzers, IPK SFU, Krasnoyarsk (2010).
3.
go back to reference S. G. Shakhrai, A. P. Skurativ, A. V. Belyanin, et al., “Calculation of anode fi ring parameters for burning aluminum electrolyzer anode gases,” Proc. 7th Int. Congr. Nonferrous Metals and Minerals 2015, Krasnoyarsk (2015), pp. 146–147. S. G. Shakhrai, A. P. Skurativ, A. V. Belyanin, et al., “Calculation of anode fi ring parameters for burning aluminum electrolyzer anode gases,” Proc. 7th Int. Congr. Nonferrous Metals and Minerals 2015, Krasnoyarsk (2015), pp. 146–147.
4.
go back to reference B. P. Kulikov and S. P Istomin, Treatment of Aluminum Production Waste, Klassik Tsentr, Krasnoyarsk (2004). B. P. Kulikov and S. P Istomin, Treatment of Aluminum Production Waste, Klassik Tsentr, Krasnoyarsk (2004).
5.
go back to reference S. G. Shakhrai, A. P. Skuratov, V. V. Kondrat’ev, and V. A. Ershov, “Utilization of aluminum electrolyzer anode gas heat,” Tsvet. Metally, No. 2, 52–56 (2016).CrossRef S. G. Shakhrai, A. P. Skuratov, V. V. Kondrat’ev, and V. A. Ershov, “Utilization of aluminum electrolyzer anode gas heat,” Tsvet. Metally, No. 2, 52–56 (2016).CrossRef
6.
go back to reference B. P. Kulikov and Yu. I. Storozhev, Dust and Gas Discharge from Aluminum Electrolyzers with Self-Firing Anodes, Izd. FSU, Krasnoyarsk (2012). B. P. Kulikov and Yu. I. Storozhev, Dust and Gas Discharge from Aluminum Electrolyzers with Self-Firing Anodes, Izd. FSU, Krasnoyarsk (2012).
7.
go back to reference A. A. Lashchinskii and A. R. Tolchinskii, Bases of Construction and Design of Chemical Equipment: Handbook, Mashgiz, Moscow–Leningrad (1963). A. A. Lashchinskii and A. R. Tolchinskii, Bases of Construction and Design of Chemical Equipment: Handbook, Mashgiz, Moscow–Leningrad (1963).
8.
go back to reference E. H. Bouhabila, B. Cloutier, Th. Malard, et al., “Electrolytic cell gas cooling upstream of treatment center,” Light Metals, 545–550 (2012). E. H. Bouhabila, B. Cloutier, Th. Malard, et al., “Electrolytic cell gas cooling upstream of treatment center,” Light Metals, 545–550 (2012).
9.
go back to reference E. H. Bouhabila, E. Næss, V. Kielland Einejord, and K. Kristjansson, “An innovative compact heat exchanger solution for aluminum off-gas cooling and heat recovery,” Light Metals, 793–797 (2013). E. H. Bouhabila, E. Næss, V. Kielland Einejord, and K. Kristjansson, “An innovative compact heat exchanger solution for aluminum off-gas cooling and heat recovery,” Light Metals, 793–797 (2013).
10.
go back to reference P. Verbraak, T. Turco, P. Klut, et al., “Pot gas cooling technologies,” Light Metals, 635–639 (2014). P. Verbraak, T. Turco, P. Klut, et al., “Pot gas cooling technologies,” Light Metals, 635–639 (2014).
11.
go back to reference M. Bonnier, S. Massambi, J.-M. Jolas, et al., “Development of a system based on water atomization to decrease, prior to treatment, the temperature of the gas emitted from aluminum cells,” Light Metals, 193–197 (2007). M. Bonnier, S. Massambi, J.-M. Jolas, et al., “Development of a system based on water atomization to decrease, prior to treatment, the temperature of the gas emitted from aluminum cells,” Light Metals, 193–197 (2007).
12.
go back to reference S. G. Shakhrai, E. V. Sugak, V. K. Frizorger, et al., “Methods for improving the effi ciency of thermal decontamination of anode gases in electrolyzer burner units,” Proc. 13th Int. Conf. Aluminium Siberia-2007, Krasnoyarsk (2007), pp. 405–409. S. G. Shakhrai, E. V. Sugak, V. K. Frizorger, et al., “Methods for improving the effi ciency of thermal decontamination of anode gases in electrolyzer burner units,” Proc. 13th Int. Conf. Aluminium Siberia-2007, Krasnoyarsk (2007), pp. 405–409.
13.
go back to reference H. A. A. Qassab, S. S. A. A. Mohd, G. Wedde, and A. Sørhuus, “HEX retrofi t enables smelter capacity expansion,” Light Metals, 815–820 (2012). H. A. A. Qassab, S. S. A. A. Mohd, G. Wedde, and A. Sørhuus, “HEX retrofi t enables smelter capacity expansion,” Light Metals, 815–820 (2012).
14.
go back to reference K. F. Pavlov, P. G. Romankov, and A. A. Noskov, Examples and Problems for a Course of Chemical Technology, Processes, and Equipment: Teach. Aid, Khimiya, Leningrad (1987). K. F. Pavlov, P. G. Romankov, and A. A. Noskov, Examples and Problems for a Course of Chemical Technology, Processes, and Equipment: Teach. Aid, Khimiya, Leningrad (1987).
15.
go back to reference Yu. B. Borisoglebskii, G. V. Galevskii, N. M. Kulagin, et al., Aluminum Metallurgy, Nauka, Novosibirsk (1999). Yu. B. Borisoglebskii, G. V. Galevskii, N. M. Kulagin, et al., Aluminum Metallurgy, Nauka, Novosibirsk (1999).
Metadata
Title
Engineering Solutions for Cooling Aluminum Electrolyzer Exhaust Gases
Authors
S. G. Shakhrai
N. V. Nemchinova
V. V. Kondrat’ev
V. V. Mazurenko
E. L. Shcheglov
Publication date
10-02-2017
Publisher
Springer US
Published in
Metallurgist / Issue 9-10/2017
Print ISSN: 0026-0894
Electronic ISSN: 1573-8892
DOI
https://doi.org/10.1007/s11015-017-0394-z

Other articles of this Issue 9-10/2017

Metallurgist 9-10/2017 Go to the issue

Premium Partners