Skip to main content
Top
Published in: International Journal of Steel Structures 2/2021

11-02-2021

Enhanced Cross-Tension Property of the Resistance Spot Welded Medium-Mn Steel by In Situ Microstructure Tailoring

Authors: Bingge Zhao, Yuanfang Wang, Kai Ding, Guanzhi Wu, Tao Wei, Hua Pan, Yulai Gao

Published in: International Journal of Steel Structures | Issue 2/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Medium Mn steels, one of the most promising 3rd generation advanced high strength steels (AHSS), achieve an encouraging trade-off between the outstanding mechanical property and the production cost. As a typical medium Mn steel, 7Mn steels have superior mechanical property but their poor cross-tension property becomes the Achilles' heel, hindering the application in the automotive industry. The current study focuses on the cross-tension property of the resistance spot weld of 7Mn steel. Generally, martensite is produced in the nugget during the resistance spot welding (RSW). However, the microstructure in the weld nugget can be correspondingly tuned by directly optimizing the welding parameters. With post-weld pulses, in situ tempering occurs, which can decrease the segregation of Mn existing along martensite lath boundaries and facilitate the microstructure transition from martensite to tempered martensite. The tuning on the nugget microstructure facilitates the increase of cross-tension strength (CTS) from 1.5 to 3.7 kN. Although both cases fail in an interfacial fracture mode, a partial ductile fracture is demonstrated in the specimen with post-weld treatment, which is attributed to the occurrence of low-carbon α phase and second phase particles. This study elucidates that the decrease of segregation and the microstructure transition in the nugget are the dominant factor determining the CTS. It is therefore demonstrated that the reduction of Mn segregation and the formation of tempered martensite can increase the weldability of RSW joints of the medium Mn steels.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Aydin, H., Essadiqi, E., Jung, I. H., & Yue, S. (2013). Development of 3rd generation AHSS with medium Mn content alloying compositions. Materials Science and Engineering: A, 564, 501–508.CrossRef Aydin, H., Essadiqi, E., Jung, I. H., & Yue, S. (2013). Development of 3rd generation AHSS with medium Mn content alloying compositions. Materials Science and Engineering: A, 564, 501–508.CrossRef
go back to reference Baltazar Hernandez, V. H., Nayak, S. S., & Zhou, Y. (2011). Tempering of martensite in dual-phase steels and its effects on softening behavior. Metallurgical and Materials Transactions A, 42(10), 3115–3129.CrossRef Baltazar Hernandez, V. H., Nayak, S. S., & Zhou, Y. (2011). Tempering of martensite in dual-phase steels and its effects on softening behavior. Metallurgical and Materials Transactions A, 42(10), 3115–3129.CrossRef
go back to reference Chang, Y., Wang, C. Y., Zhao, K. M., Dong, H., & Yan, J. W. (2016). An introduction to medium-Mn steel: Metallurgy, mechanical properties and warm stamping process. Materials & Design, 94, 424–432.CrossRef Chang, Y., Wang, C. Y., Zhao, K. M., Dong, H., & Yan, J. W. (2016). An introduction to medium-Mn steel: Metallurgy, mechanical properties and warm stamping process. Materials & Design, 94, 424–432.CrossRef
go back to reference Chao, Y. J. (2003). Ultimate strength and failure mechanism of resistance spot weld subjected to tensile, shear, or combined tensile/shear loads. Journal of Engineering Materials and Technology, 125(2), 125–132.CrossRef Chao, Y. J. (2003). Ultimate strength and failure mechanism of resistance spot weld subjected to tensile, shear, or combined tensile/shear loads. Journal of Engineering Materials and Technology, 125(2), 125–132.CrossRef
go back to reference Chen, S., Rana, R., Haldar, A., & Ray, R. K. (2017). Current state of Fe-Mn-Al-C low density steels. Progress in Materials Science, 89, 345–391.CrossRef Chen, S., Rana, R., Haldar, A., & Ray, R. K. (2017). Current state of Fe-Mn-Al-C low density steels. Progress in Materials Science, 89, 345–391.CrossRef
go back to reference Gao, G., Gao, B., Gui, X., Hu, J., He, J., Tan, Z., & Bai, B. (2019a). Correlation between microstructure and yield strength of as-quenched and Q&P steels with different carbon content (0.06–0.42 wt%C). Materials Science and Engineering: A, 753, 1–10.CrossRef Gao, G., Gao, B., Gui, X., Hu, J., He, J., Tan, Z., & Bai, B. (2019a). Correlation between microstructure and yield strength of as-quenched and Q&P steels with different carbon content (0.06–0.42 wt%C). Materials Science and Engineering: A, 753, 1–10.CrossRef
go back to reference Gao, Y., Zhao, B., Vlassak, J. J., & Schick, C. (2019b). Nanocalorimetry: Door opened for in situ material characterization under extreme non-equilibrium conditions. Progress in Materials Science, 104, 53–137.CrossRef Gao, Y., Zhao, B., Vlassak, J. J., & Schick, C. (2019b). Nanocalorimetry: Door opened for in situ material characterization under extreme non-equilibrium conditions. Progress in Materials Science, 104, 53–137.CrossRef
go back to reference Gould, J. E., Khurana, S. P., & Li, T. (2006). Predictions of microstructures when welding automotive advanced high-strength steels. Welding Journal, 85(5), 111–116. Gould, J. E., Khurana, S. P., & Li, T. (2006). Predictions of microstructures when welding automotive advanced high-strength steels. Welding Journal, 85(5), 111–116.
go back to reference Han, D. T., Xu, Y. B., Peng, F., Zou, Y., & Misra, R. D. K. (2020). The determining role of pre-annealing on Mn partitioning behavior in medium-Mn-TRIP steel: experimental and numerical simulation. Journal of Materials Science, 55(10), 4437–4452.CrossRef Han, D. T., Xu, Y. B., Peng, F., Zou, Y., & Misra, R. D. K. (2020). The determining role of pre-annealing on Mn partitioning behavior in medium-Mn-TRIP steel: experimental and numerical simulation. Journal of Materials Science, 55(10), 4437–4452.CrossRef
go back to reference Kujanpää, V. P., & David, S. A. (1986). Microsegregation in high-molybdenum austenitic stainless steel laser beam and gas tungsten arc welds. International Congress on Applications of Lasers & Electro-Optics, 1986(S2), 63–69. Kujanpää, V. P., & David, S. A. (1986). Microsegregation in high-molybdenum austenitic stainless steel laser beam and gas tungsten arc welds. International Congress on Applications of Lasers & Electro-Optics, 1986(S2), 63–69.
go back to reference Kurz, W., Giovanola, B., & Trivedi, R. (1986). Theory of microstructural development during rapid solidification. Acta Metallurgica, 34(5), 823–830.CrossRef Kurz, W., Giovanola, B., & Trivedi, R. (1986). Theory of microstructural development during rapid solidification. Acta Metallurgica, 34(5), 823–830.CrossRef
go back to reference Kuziak, R., Kawalla, R., & Waengler, S. (2008). Advanced high strength steels for automotive industry. Archives of Civil and Mechanical Engineering, 8(2), 103–117.CrossRef Kuziak, R., Kawalla, R., & Waengler, S. (2008). Advanced high strength steels for automotive industry. Archives of Civil and Mechanical Engineering, 8(2), 103–117.CrossRef
go back to reference Lee, Y. K., & Han, J. (2015). Current opinion in medium manganese steel. Materials Science and Technology, 31(7), 843–856.CrossRef Lee, Y. K., & Han, J. (2015). Current opinion in medium manganese steel. Materials Science and Technology, 31(7), 843–856.CrossRef
go back to reference Lesch, C., Kwiaton, N., & Klose, F. B. (2017). Advanced high strength steels (AHSS) for automotive applications-tailored properties by smart microstructural adjustments. Steel Research International, 88(10), 1700210.CrossRef Lesch, C., Kwiaton, N., & Klose, F. B. (2017). Advanced high strength steels (AHSS) for automotive applications-tailored properties by smart microstructural adjustments. Steel Research International, 88(10), 1700210.CrossRef
go back to reference Li, S., Yang, S., Lu, Q., Luo, H., & Tao, W. (2019). A novel shim-assisted resistance spot welding process to improve weldability of medium-Mn transformation-induced plasticity steel. Metallurgical and Materials Transactions B, 50(1), 1–9.CrossRef Li, S., Yang, S., Lu, Q., Luo, H., & Tao, W. (2019). A novel shim-assisted resistance spot welding process to improve weldability of medium-Mn transformation-induced plasticity steel. Metallurgical and Materials Transactions B, 50(1), 1–9.CrossRef
go back to reference Li, Y., Li, W., Liu, W., Wang, X., Hua, X., Liu, H., & Jin, X. (2018). The austenite reversion and co-precipitation behavior of an ultra-low carbon medium manganese quenching-partitioning-tempering steel. Acta Materialia, 146, 126–141.CrossRef Li, Y., Li, W., Liu, W., Wang, X., Hua, X., Liu, H., & Jin, X. (2018). The austenite reversion and co-precipitation behavior of an ultra-low carbon medium manganese quenching-partitioning-tempering steel. Acta Materialia, 146, 126–141.CrossRef
go back to reference Park, G., Kim, K., Uhm, S., & Lee, C. (2019). A comparison of cross-tension properties and fracture behavior between similar and dissimilar resistance spot-weldments in medium-Mn TRIP steel. Materials Science and Engineering: A, 752, 206–216.CrossRef Park, G., Kim, K., Uhm, S., & Lee, C. (2019). A comparison of cross-tension properties and fracture behavior between similar and dissimilar resistance spot-weldments in medium-Mn TRIP steel. Materials Science and Engineering: A, 752, 206–216.CrossRef
go back to reference Pouranvari, M., Aghajani, H., & Ghasemi, A. (2020). Enhanced mechanical properties of martensitic stainless steels resistance spot welds enabled by in situ rapid tempering. Science and Technology of Welding and Joining, 25(2), 119–126.CrossRef Pouranvari, M., Aghajani, H., & Ghasemi, A. (2020). Enhanced mechanical properties of martensitic stainless steels resistance spot welds enabled by in situ rapid tempering. Science and Technology of Welding and Joining, 25(2), 119–126.CrossRef
go back to reference Pouranvari, M., Asgari, H. R., Mosavizadch, S. M., Marashi, P. H., & Goodarzi, M. (2007). Effect of weld nugget size on overload failure mode of resistance spot welds. Science and Technology of Welding and Joining, 12(3), 217–225.CrossRef Pouranvari, M., Asgari, H. R., Mosavizadch, S. M., Marashi, P. H., & Goodarzi, M. (2007). Effect of weld nugget size on overload failure mode of resistance spot welds. Science and Technology of Welding and Joining, 12(3), 217–225.CrossRef
go back to reference Pouranvari, M., & Marashi, S. P. H. (2013). Critical review of automotive steels spot welding: Process, structure and properties. Science and Technology of Welding and Joining, 18(5), 361–403.CrossRef Pouranvari, M., & Marashi, S. P. H. (2013). Critical review of automotive steels spot welding: Process, structure and properties. Science and Technology of Welding and Joining, 18(5), 361–403.CrossRef
go back to reference Pouranvari, M., Sobhani, S., & Goodarzi, F. (2018). Resistance spot welding of MS1200 martensitic advanced high strength steel: Microstructure-properties relationship. Journal of Manufacturing Processes, 31, 867–874.CrossRef Pouranvari, M., Sobhani, S., & Goodarzi, F. (2018). Resistance spot welding of MS1200 martensitic advanced high strength steel: Microstructure-properties relationship. Journal of Manufacturing Processes, 31, 867–874.CrossRef
go back to reference Saha, D. C., Cho, Y., & Park, Y. D. (2013). Metallographic and fracture characteristics of resistance spot welded TWIP steels. Science and Technology of Welding and Joining, 18(8), 711–720.CrossRef Saha, D. C., Cho, Y., & Park, Y. D. (2013). Metallographic and fracture characteristics of resistance spot welded TWIP steels. Science and Technology of Welding and Joining, 18(8), 711–720.CrossRef
go back to reference Sajjadi-Nikoo, S., Pouranvari, M., Abedi, A., & Ghaderi, A. A. (2018). In situ postweld heat treatment of transformation induced plasticity steel resistance spot welds. Science and Technology of Welding and Joining, 23(1), 71–78.CrossRef Sajjadi-Nikoo, S., Pouranvari, M., Abedi, A., & Ghaderi, A. A. (2018). In situ postweld heat treatment of transformation induced plasticity steel resistance spot welds. Science and Technology of Welding and Joining, 23(1), 71–78.CrossRef
go back to reference Sawanishi, C., Ogura, T., Taniguchi, K., Ikeda, R., Oi, K., Yasuda, K., & Hirose, A. (2014). Mechanical properties and microstructures of resistance spot welded DP980 steel joints using pulsed current pattern. Science and Technology of Welding and Joining, 19(1), 52–59.CrossRef Sawanishi, C., Ogura, T., Taniguchi, K., Ikeda, R., Oi, K., Yasuda, K., & Hirose, A. (2014). Mechanical properties and microstructures of resistance spot welded DP980 steel joints using pulsed current pattern. Science and Technology of Welding and Joining, 19(1), 52–59.CrossRef
go back to reference Seo, C. H., Kwon, K. H., Choi, K., Kim, K. H., Kwak, J. H., Lee, S., & Kim, N. J. (2012). Deformation behavior of ferrite-austenite duplex lightweight Fe-Mn-Al-C steel. Scripta Materialia, 66(8), 519–522.CrossRef Seo, C. H., Kwon, K. H., Choi, K., Kim, K. H., Kwak, J. H., Lee, S., & Kim, N. J. (2012). Deformation behavior of ferrite-austenite duplex lightweight Fe-Mn-Al-C steel. Scripta Materialia, 66(8), 519–522.CrossRef
go back to reference Shirmohammadi, D., Movahedi, M., & Pouranvari, M. (2017). Resistance spot welding of martensitic stainless steel: Effect of initial base metal microstructure on weld microstructure and mechanical performance. Materials Science and Engineering: A, 703, 154–161.CrossRef Shirmohammadi, D., Movahedi, M., & Pouranvari, M. (2017). Resistance spot welding of martensitic stainless steel: Effect of initial base metal microstructure on weld microstructure and mechanical performance. Materials Science and Engineering: A, 703, 154–161.CrossRef
go back to reference Shterner, V., Molotnikov, A., Timokhina, I., Estrin, Y., & Beladi, H. (2014). A constitutive model of the deformation behaviour of twinning induced plasticity (TWIP) steel at different temperatures. Materials Science and Engineering: A, 613, 224–231.CrossRef Shterner, V., Molotnikov, A., Timokhina, I., Estrin, Y., & Beladi, H. (2014). A constitutive model of the deformation behaviour of twinning induced plasticity (TWIP) steel at different temperatures. Materials Science and Engineering: A, 613, 224–231.CrossRef
go back to reference Stadler, M., Gruber, M., Schnitzer, R., & Hofer, C. (2020). Microstructural characterization of a double pulse resistance spot welded 1200 MPa TBF steel. Welding in the World, 64(2), 335–343.CrossRef Stadler, M., Gruber, M., Schnitzer, R., & Hofer, C. (2020). Microstructural characterization of a double pulse resistance spot welded 1200 MPa TBF steel. Welding in the World, 64(2), 335–343.CrossRef
go back to reference Uijl, N., Smith S., & Moolevliet, T. (2008). Failure modes of resistance spot welded advanced high strength steels (pp. 78–104). Uijl, N., Smith S., & Moolevliet, T. (2008). Failure modes of resistance spot welded advanced high strength steels (pp. 78–104).
go back to reference Wang, Y., Ding, K., Zhao, B., Zhang, Y., Wu, G., Wei, T., Pan, H., & Gao, Y. (2020). Highly enhanced cross tensile strength of the resistance spot welded medium manganese steel by optimized post-heating pulse. In TMS 2020 149th annual meeting & exhibition supplemental proceedings (pp. 1871–1880). Wang, Y., Ding, K., Zhao, B., Zhang, Y., Wu, G., Wei, T., Pan, H., & Gao, Y. (2020). Highly enhanced cross tensile strength of the resistance spot welded medium manganese steel by optimized post-heating pulse. In TMS 2020 149th annual meeting & exhibition supplemental proceedings (pp. 1871–1880).
go back to reference Wei, P. S., & Wu, T. H. (2014). Electrode geometry effects on microstructure determined by heat transfer and solidification rate during resistance spot welding. International Journal of Heat and Mass Transfer, 79, 408–416.CrossRef Wei, P. S., & Wu, T. H. (2014). Electrode geometry effects on microstructure determined by heat transfer and solidification rate during resistance spot welding. International Journal of Heat and Mass Transfer, 79, 408–416.CrossRef
go back to reference Yang, F., Luo, H., Hu, C., Pu, E., & Dong, H. (2017). Effects of intercritical annealing process on microstructures and tensile properties of cold-rolled 7Mn steel. Materials Science and Engineering: A, 685, 115–122.CrossRef Yang, F., Luo, H., Hu, C., Pu, E., & Dong, H. (2017). Effects of intercritical annealing process on microstructures and tensile properties of cold-rolled 7Mn steel. Materials Science and Engineering: A, 685, 115–122.CrossRef
go back to reference Zhao, C., Zhang, C., Cao, W., & Yang, Z. (2016). Variation in retained austenite content and mechanical properties of 0.2C–7Mn steel after intercritical annealing. International Journal of Minerals, Metallurgy, and Materials, 23(2), 161–167.CrossRef Zhao, C., Zhang, C., Cao, W., & Yang, Z. (2016). Variation in retained austenite content and mechanical properties of 0.2C–7Mn steel after intercritical annealing. International Journal of Minerals, Metallurgy, and Materials, 23(2), 161–167.CrossRef
go back to reference Zou, D. Q., Li, S. H., He, J., Gu, B., & Li, Y. F. (2018). The deformation induced martensitic transformation and mechanical behavior of quenching and partitioning steels under complex loading process. Materials Science and Engineering: A, 715, 243–256.CrossRef Zou, D. Q., Li, S. H., He, J., Gu, B., & Li, Y. F. (2018). The deformation induced martensitic transformation and mechanical behavior of quenching and partitioning steels under complex loading process. Materials Science and Engineering: A, 715, 243–256.CrossRef
Metadata
Title
Enhanced Cross-Tension Property of the Resistance Spot Welded Medium-Mn Steel by In Situ Microstructure Tailoring
Authors
Bingge Zhao
Yuanfang Wang
Kai Ding
Guanzhi Wu
Tao Wei
Hua Pan
Yulai Gao
Publication date
11-02-2021
Publisher
Korean Society of Steel Construction
Published in
International Journal of Steel Structures / Issue 2/2021
Print ISSN: 1598-2351
Electronic ISSN: 2093-6311
DOI
https://doi.org/10.1007/s13296-021-00464-3

Other articles of this Issue 2/2021

International Journal of Steel Structures 2/2021 Go to the issue

Premium Partners