Skip to main content
Top
Published in: Journal of Materials Science: Materials in Electronics 20/2021

20-09-2021

Enhanced magnetoelectric coupling in environmental friendly lead-free Ni0.8Zn0.2Fe2O4–Ba0.85Ca0.15Zr0.1Ti0.9O3 laminate composites

Authors: Pankhuri Bansal, Rajat Syal, Arun Kumar Singh, Sanjeev Kumar

Published in: Journal of Materials Science: Materials in Electronics | Issue 20/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Lead-free piezomagnetic–piezoelectric, Ni0.8Zn0.2Fe2O4(NZFO)–Ba0.85Ca0.15Zr0.1Ti0.9O3(BCZT) laminate composites featuring improved magnetoelectric (ME) properties are reported. The solid-state method has been used for the synthesis of NZFO and BCZT. Sintered layers were laminated using silver epoxy with a 2–2 connectivity scheme. The refined profiles of X-ray diffraction patterns support the coexistence of tetragonal and rhombohedral phases in BCZT and spinel cubic phase in NZFO. Scanning electron microscopy with elemental mapping revealed prepared sample's surface morphology and chemical composition. BCZT exhibited a high value of dielectric constant at TC (ɛ ~ 11,200 at 100 Hz), the significant value of electromechanical coupling factor (KP ~ 51.2%), and well-saturated polarization (P) vs applied electric field (E) loops. Ferri-magnetic NZFO also exhibits a large value of saturation magnetization (MS ~ 62.10 emu/g), and plot between the derivative of the square of magnetization (dM2/dH) vs applied magnetic field (H) follows the same trend as that of observed field-dependent ME coupling coefficient for layered composites. The layered composites demonstrated low leakage current and high dielectric constant, which further favours stronger ME coupling. At lower magnetic fields, tri-layer (NZFO/BCZT/NZFO) and bi-layer (BCZT/NZFO) laminate composites respond with ME coupling coefficients αME ~ 600 mV/cm-Oe and 128 mV/cm-Oe, respectively, making them excellent lead-free material for future multifunctional devices.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference J. Ma, J. Hu, Z. Li, C. Nan, Recent progress in multiferroic magnetoelectric composites: from bulk to thin films. J. Adv. Mater. 23, 1062–1087 (2011) J. Ma, J. Hu, Z. Li, C. Nan, Recent progress in multiferroic magnetoelectric composites: from bulk to thin films. J. Adv. Mater. 23, 1062–1087 (2011)
2.
go back to reference D.I. Khomskii, Multiferroics: different ways to combine magnetism and ferroelectricity. J. Magn. Magn. Mater. 306, 1–8 (2006) D.I. Khomskii, Multiferroics: different ways to combine magnetism and ferroelectricity. J. Magn. Magn. Mater. 306, 1–8 (2006)
4.
go back to reference C.W. Nan, Magnetoelectric effect in composites of piezoelectric and piezomagnetic phases. Phys. Rev. B. 50, 6082–6088 (1994) C.W. Nan, Magnetoelectric effect in composites of piezoelectric and piezomagnetic phases. Phys. Rev. B. 50, 6082–6088 (1994)
5.
go back to reference L.W. Martin, S.P. Crane, Y.H. Chu, M.B. Holcomb, M. Gajek, M. Huijben, C.H. Yang, N. Balke, R. Ramesh, Multiferroics and magnetoelectrics: Thin films and nanostructures. J. Phys. Condens. Matter. 20, 434220 (2008) L.W. Martin, S.P. Crane, Y.H. Chu, M.B. Holcomb, M. Gajek, M. Huijben, C.H. Yang, N. Balke, R. Ramesh, Multiferroics and magnetoelectrics: Thin films and nanostructures. J. Phys. Condens. Matter. 20, 434220 (2008)
6.
go back to reference S. Srikari, Composites and Applications, Graphene Sci. Handb. (2016) 505–506. S. Srikari, Composites and Applications, Graphene Sci. Handb. (2016) 505–506.
7.
go back to reference N.A. Spaldin, S. Cheong, R. Ramesh, Multiferroics: past, present, and future additional resources for physics today. Cit. Phys. Today. 63, 38 (2010) N.A. Spaldin, S. Cheong, R. Ramesh, Multiferroics: past, present, and future additional resources for physics today. Cit. Phys. Today. 63, 38 (2010)
8.
go back to reference A.S. Kumar, C.S.C. Lekha, S. Vivek, V. Saravanan, K. Nandakumar, S.S. Nair, Multiferroic and magnetoelectric properties of Ba0.85Ca0.15Zr0.1Ti09O3–CoFe2O4 core-shell nanocomposite. J. Magn. Mater. 418, 294–299 (2016) A.S. Kumar, C.S.C. Lekha, S. Vivek, V. Saravanan, K. Nandakumar, S.S. Nair, Multiferroic and magnetoelectric properties of Ba0.85Ca0.15Zr0.1Ti09O3–CoFe2O4 core-shell nanocomposite. J. Magn. Mater. 418, 294–299 (2016)
9.
go back to reference R. Ade, T. Karthik, J. Kolte, V. Sambasiva, A.R. Kulkarni, N. Venkataramani, Room temperature magnetoelectric and magnetodielectric properties of 2–2 bilayer 0.50Pb(Ni1/3Nb2/3)O3–0.35PbTiO3–0.15PbZrO3/CoFe2O4 thin film. Scripta Mater. 150, 125–129 (2018) R. Ade, T. Karthik, J. Kolte, V. Sambasiva, A.R. Kulkarni, N. Venkataramani, Room temperature magnetoelectric and magnetodielectric properties of 2–2 bilayer 0.50Pb(Ni1/3Nb2/3)O3–0.35PbTiO3–0.15PbZrO3/CoFe2O4 thin film. Scripta Mater. 150, 125–129 (2018)
10.
go back to reference S. Dash, R.N.P. Choudhary, M.N. Goswami, Enhanced dielectric and ferroelectric properties of PVDF-BiFeO3 composites in 0–3 connectivity. J. Alloys Compd. 715, 29–36 (2017) S. Dash, R.N.P. Choudhary, M.N. Goswami, Enhanced dielectric and ferroelectric properties of PVDF-BiFeO3 composites in 0–3 connectivity. J. Alloys Compd. 715, 29–36 (2017)
11.
go back to reference V.M. Petrov, G. Srinivasan, Enhancement of magnetoelectric coupling in functionally graded ferroelectric and ferromagnetic bilayers. Phys. Rev. B. 78, 1–8 (2008) V.M. Petrov, G. Srinivasan, Enhancement of magnetoelectric coupling in functionally graded ferroelectric and ferromagnetic bilayers. Phys. Rev. B. 78, 1–8 (2008)
12.
go back to reference N.S. Sowmya, A. Srinivas, P. Saravanan, K.V.G. Reddy, S.V. Kamat, J.P. Praveen, D. Das, G. Murugesan, S.D. Kumar, V. Subramanian, Studies on magnetoelectric coupling in lead-free [(0.5) BCT-(0.5) BZT]-NiFe2O4 laminated composites at low and EMR frequencies. J. Alloys Compd. 743, 240–248 (2017) N.S. Sowmya, A. Srinivas, P. Saravanan, K.V.G. Reddy, S.V. Kamat, J.P. Praveen, D. Das, G. Murugesan, S.D. Kumar, V. Subramanian, Studies on magnetoelectric coupling in lead-free [(0.5) BCT-(0.5) BZT]-NiFe2O4 laminated composites at low and EMR frequencies. J. Alloys Compd. 743, 240–248 (2017)
13.
go back to reference N.S. Sowmya, A. Srinivas, K.V.G. Reddy, J.P. Praveen, D. Das, S.D. Kumar, V. Subramanian, S.V. Kamat, Magnetoelectric coupling studies on (x) (0.5BZT-0.5BCT)–(100–x)NiFe2O4 [x=90−70wt%] particulate composite. Ceram. Int. 43, 2523–2528 (2017) N.S. Sowmya, A. Srinivas, K.V.G. Reddy, J.P. Praveen, D. Das, S.D. Kumar, V. Subramanian, S.V. Kamat, Magnetoelectric coupling studies on (x) (0.5BZT-0.5BCT)–(100–x)NiFe2O4 [x=90−70wt%] particulate composite. Ceram. Int. 43, 2523–2528 (2017)
14.
go back to reference P. Bansal, M. Kumar, R. Syal et al., Magnetoelectric coupling enhancement in lead-free BCTZ–xNZFO composites. J Mater Sci Mater Electron 32, 17512–17523 (2021) P. Bansal, M. Kumar, R. Syal et al., Magnetoelectric coupling enhancement in lead-free BCTZ–xNZFO composites. J Mater Sci Mater Electron 32, 17512–17523 (2021)
15.
go back to reference R.A. Islam, S. Priya, Progress in dual (piezoelectric-magnetostrictive) phase magnetoelectric sintered composites. Adv. Cond. Matter Phys. 2012, 320612 (2012) R.A. Islam, S. Priya, Progress in dual (piezoelectric-magnetostrictive) phase magnetoelectric sintered composites. Adv. Cond. Matter Phys. 2012, 320612 (2012)
16.
go back to reference J.P. Praveen, V.R. Monaji, S.D. Kumar, V. Subramanian, D. Das, Enhanced magnetoelectric response from lead-free (Ba0.85Ca0.15)(Zr0.1Ti0.9)O3–CoFe2O4 laminate and particulate composites. Ceram. Int. 44, 4298–4306 (2018) J.P. Praveen, V.R. Monaji, S.D. Kumar, V. Subramanian, D. Das, Enhanced magnetoelectric response from lead-free (Ba0.85Ca0.15)(Zr0.1Ti0.9)O3–CoFe2O4 laminate and particulate composites. Ceram. Int. 44, 4298–4306 (2018)
17.
go back to reference N.S. Negi, A. Sharma, J. Shah, R.K. Kotnala, Investigation on impedance response, magnetic and ferroelectric properties of 0.20(Co1-xZnxFe2yMnyO4)-0.80(Pb0.70Ca0.30TiO3) magnetoelectric composites. Mater. Chem. Phys. 148, 1221–1229 (2014) N.S. Negi, A. Sharma, J. Shah, R.K. Kotnala, Investigation on impedance response, magnetic and ferroelectric properties of 0.20(Co1-xZnxFe2yMnyO4)-0.80(Pb0.70Ca0.30TiO3) magnetoelectric composites. Mater. Chem. Phys. 148, 1221–1229 (2014)
18.
go back to reference D.A. Sanchez, N. Ortega, A. Kumar, R. Roque-Malherbe, R. Polanco, J.F. Scott, R.S. Katiyar, Symmetries and multiferroic properties of novel room-temperature magnetoelectrics: lead iron tantalate—lead zirconate titanate (PFT/PZT). AIP Adv. 1, 1–14 (2011) D.A. Sanchez, N. Ortega, A. Kumar, R. Roque-Malherbe, R. Polanco, J.F. Scott, R.S. Katiyar, Symmetries and multiferroic properties of novel room-temperature magnetoelectrics: lead iron tantalate—lead zirconate titanate (PFT/PZT). AIP Adv. 1, 1–14 (2011)
19.
go back to reference R. Gupta, M. Tomar, A. Kumar, V. Gupta, Performance of magnetoelectric PZT/Ni multiferroic system for energy harvesting application. Smart Mater. Struct. 26, 035002 (2017) R. Gupta, M. Tomar, A. Kumar, V. Gupta, Performance of magnetoelectric PZT/Ni multiferroic system for energy harvesting application. Smart Mater. Struct. 26, 035002 (2017)
20.
go back to reference J.P. Praveen, V.R. Monaji, E. Chandrakala, S. Indla, S.D. Kumar, V. Subramanian, D. Das, Enhanced magnetoelectric coupling in Ti and Ce substituted lead-free CFO-BCZT laminate composites. J. Alloys Compd. 750, 392–400 (2018) J.P. Praveen, V.R. Monaji, E. Chandrakala, S. Indla, S.D. Kumar, V. Subramanian, D. Das, Enhanced magnetoelectric coupling in Ti and Ce substituted lead-free CFO-BCZT laminate composites. J. Alloys Compd. 750, 392–400 (2018)
21.
go back to reference J.A. Bartkowska, The magnetoelectric coupling effect in multiferroic composites based on PZT-ferrite. J. Magn. Magn. Mater. 374, 703–706 (2015) J.A. Bartkowska, The magnetoelectric coupling effect in multiferroic composites based on PZT-ferrite. J. Magn. Magn. Mater. 374, 703–706 (2015)
22.
go back to reference N. Ortega, A. Kumar, R.S. Katiyar, C. Rinaldi, Dynamic magnetoelectric multiferroics PZT/CFO multilayered nanostructure. J. Mater. Sci. 44, 5127–5142 (2009) N. Ortega, A. Kumar, R.S. Katiyar, C. Rinaldi, Dynamic magnetoelectric multiferroics PZT/CFO multilayered nanostructure. J. Mater. Sci. 44, 5127–5142 (2009)
23.
go back to reference R.A. Islam, S. Priya, Magnetoelectric properties of the lead–free cofired BaTiO3 – ( Ni0.8 Zn 0.2) Fe2O4 bilayer composite. Appl. Phys. Lett. 89, 152911 (2006) R.A. Islam, S. Priya, Magnetoelectric properties of the lead–free cofired BaTiO3 – ( Ni0.8 Zn 0.2) Fe2O4 bilayer composite. Appl. Phys. Lett. 89, 152911 (2006)
24.
go back to reference G. Herrera-Pérez, D. Morales, F. Paraguay-Delgado, R. Borja-Urby, A. Reyes-Rojas, L.E. Fuentes-Cobas, Structural analysis, optical and dielectric function of (Ba0.9Ca0.1)(Ti9Zr0.1)O3 nanocrystals. J. Appl. Phys. 120, 1–7 (2016) G. Herrera-Pérez, D. Morales, F. Paraguay-Delgado, R. Borja-Urby, A. Reyes-Rojas, L.E. Fuentes-Cobas, Structural analysis, optical and dielectric function of (Ba0.9Ca0.1)(Ti9Zr0.1)O3 nanocrystals. J. Appl. Phys. 120, 1–7 (2016)
25.
go back to reference M. Aggarwal, M. Kumar, R. Syal, V.P. Singh, A.K. Singh, S. Dhiman, S. Kumar, Enhanced pyroelectric figure of merits in Sr and Zr co-doped porous BaTiO3 ceramics. J. Mater. Sci. Mater. Electron. 31, 2337–2346 (2020) M. Aggarwal, M. Kumar, R. Syal, V.P. Singh, A.K. Singh, S. Dhiman, S. Kumar, Enhanced pyroelectric figure of merits in Sr and Zr co-doped porous BaTiO3 ceramics. J. Mater. Sci. Mater. Electron. 31, 2337–2346 (2020)
26.
go back to reference W. Liu, X. Ren, Large piezoelectric effect in Pb-free ceramics. Phys. Rev. Lett. 10, 1–4 (2009) W. Liu, X. Ren, Large piezoelectric effect in Pb-free ceramics. Phys. Rev. Lett. 10, 1–4 (2009)
27.
go back to reference R. Syal, M. Kumar, A.K. Singh, A. De, O.P. Thakur, S. Kumar, Enhancement in the piezoelectric properties in lead-free BZT-xBCT dense ceramics. J. Mater. Sci. Mater. Electron. 31, 21651–21660 (2020) R. Syal, M. Kumar, A.K. Singh, A. De, O.P. Thakur, S. Kumar, Enhancement in the piezoelectric properties in lead-free BZT-xBCT dense ceramics. J. Mater. Sci. Mater. Electron. 31, 21651–21660 (2020)
28.
go back to reference P. Wang, Y. Li, Y. Lu, Enhanced piezoelectric properties of (Ba0.85Ca0.15)(Ti0.9Zr0.1)O3 lead-free ceramics by optimizing calcination and sintering temperature. J. Eur. Ceram. Soc. 31, 2005–2012 (2011) P. Wang, Y. Li, Y. Lu, Enhanced piezoelectric properties of (Ba0.85Ca0.15)(Ti0.9Zr0.1)O3 lead-free ceramics by optimizing calcination and sintering temperature. J. Eur. Ceram. Soc. 31, 2005–2012 (2011)
29.
go back to reference J. Rani, V.K. Kushwaha, J. Kolte, C.V. Tomy, Structural, dielectric and magnetoelectric studies of [0.5Ba(Zr0.2Ti0.8)O3–0.5(Ba0.7Ca0.3)TiO3]-Ni0.8Zn0.2Fe2O4 multiferroic composites. J. Alloys Compd. 696, 266–275 (2017) J. Rani, V.K. Kushwaha, J. Kolte, C.V. Tomy, Structural, dielectric and magnetoelectric studies of [0.5Ba(Zr0.2Ti0.8)O3–0.5(Ba0.7Ca0.3)TiO3]-Ni0.8Zn0.2Fe2O4 multiferroic composites. J. Alloys Compd. 696, 266–275 (2017)
30.
go back to reference N.N. Jiang, Y. Yang, Y.X. Zhang, J.P. Zhou, P. Liu, C.Y. Deng, Influence of zinc concentration on structure, complex permittivity and permeability of Ni-Zn ferrites at high frequency. J. Magn. Magn. Mater. 401, 370–377 (2016) N.N. Jiang, Y. Yang, Y.X. Zhang, J.P. Zhou, P. Liu, C.Y. Deng, Influence of zinc concentration on structure, complex permittivity and permeability of Ni-Zn ferrites at high frequency. J. Magn. Magn. Mater. 401, 370–377 (2016)
31.
go back to reference M. Atif, M. Nadeem, R. Grössinger, R.S. Tortelli, Studies on the magnetic, magnetostrictive, and electrical properties of sol-gel synthesized Zn doped nickel ferrite. J. Alloys Compd. 509, 5720–5724 (2011) M. Atif, M. Nadeem, R. Grössinger, R.S. Tortelli, Studies on the magnetic, magnetostrictive, and electrical properties of sol-gel synthesized Zn doped nickel ferrite. J. Alloys Compd. 509, 5720–5724 (2011)
32.
go back to reference J. Rani, V.K. Kushwaha, P.K. Patel, C.V. Tomy, Room temperature magnetoelectric properties of [Ba(Zr0.2Ti0.8)O30.5(Ba0.7Ca0.3)TiO3]/Ni0.8Zn0.2Fe2O4] bilayer thin films deposited by laser ablation. Mater. Chem. Phys. 256, 123692 (2020) J. Rani, V.K. Kushwaha, P.K. Patel, C.V. Tomy, Room temperature magnetoelectric properties of [Ba(Zr0.2Ti0.8)O30.5(Ba0.7Ca0.3)TiO3]/Ni0.8Zn0.2Fe2O4] bilayer thin films deposited by laser ablation. Mater. Chem. Phys. 256, 123692 (2020)
33.
go back to reference Z. Hanani, D. Mezzane, M. Amjoud et al., Structural, dielectric, and ferroelectric properties of lead-free BCZT ceramics elaborated by low-temperature hydrothermal processing. J Mater Sci Mater Electron. 31, 10096–10104 (2020) Z. Hanani, D. Mezzane, M. Amjoud et al., Structural, dielectric, and ferroelectric properties of lead-free BCZT ceramics elaborated by low-temperature hydrothermal processing. J Mater Sci Mater Electron. 31, 10096–10104 (2020)
34.
go back to reference J.P. Praveen, T. Karthik, A.R. James, E. Chandrakala, S. Asthana, D. Das, Effect of poling process on piezoelectric properties of sol-gel derived BZT-BCT ceramics. J. Eur. Ceram. Soc. 35, 1785–1798 (2014) J.P. Praveen, T. Karthik, A.R. James, E. Chandrakala, S. Asthana, D. Das, Effect of poling process on piezoelectric properties of sol-gel derived BZT-BCT ceramics. J. Eur. Ceram. Soc. 35, 1785–1798 (2014)
35.
go back to reference J.J. Thomas, A.B. Shinde, P.S.R. Krishna, N. Kalarikkal, Cation distribution and micro-level magnetic alignments in the nanosized nickel-zinc ferrite. J. Alloys Compd. 546, 77–83 (2013) J.J. Thomas, A.B. Shinde, P.S.R. Krishna, N. Kalarikkal, Cation distribution and micro-level magnetic alignments in the nanosized nickel-zinc ferrite. J. Alloys Compd. 546, 77–83 (2013)
36.
go back to reference Z. Hanani, S. Merselmiz, A. Danine, N. Stein, D. Mezzane, M. Amjad, M. Lahcini, Y. Gagou, M. Spreitzer, D. Vengust, Z. Kutnjak, M. El Marssi, I.A. Luk’yanchuk, M. Gouné, Enhanced dielectric and electrocaloric properties in lead-free rod-like BCZT ceramics. J. Adv. Ceram. 9, 210–219 (2020) Z. Hanani, S. Merselmiz, A. Danine, N. Stein, D. Mezzane, M. Amjad, M. Lahcini, Y. Gagou, M. Spreitzer, D. Vengust, Z. Kutnjak, M. El Marssi, I.A. Luk’yanchuk, M. Gouné, Enhanced dielectric and electrocaloric properties in lead-free rod-like BCZT ceramics. J. Adv. Ceram. 9, 210–219 (2020)
37.
go back to reference D.E. Newbury, N.W.M. Ritchie, Elemental mapping of microstructures by scanning electron microscopy-energy dispersive X-ray spectrometry (SEM-EDS): extraordinary advances with the silicon drift detector (SDD). J. Anal. At. Spectrom. 28, 973 (2013) D.E. Newbury, N.W.M. Ritchie, Elemental mapping of microstructures by scanning electron microscopy-energy dispersive X-ray spectrometry (SEM-EDS): extraordinary advances with the silicon drift detector (SDD). J. Anal. At. Spectrom. 28, 973 (2013)
38.
go back to reference S.D. Kumar, J. Magesh, V. Subramanian, Temperature-dependent magnetoelectric studies in co-fired bilayer laminate composites. J. Alloys Compd 753, 595–600 (2018) S.D. Kumar, J. Magesh, V. Subramanian, Temperature-dependent magnetoelectric studies in co-fired bilayer laminate composites. J. Alloys Compd 753, 595–600 (2018)
39.
go back to reference K. Okazaki, K. Nagata, Effects of grain size and porosity on electrical and optical properties of PLZT ceramics. J. Am. Ceram. Soc. 56, 82–86 (1973) K. Okazaki, K. Nagata, Effects of grain size and porosity on electrical and optical properties of PLZT ceramics. J. Am. Ceram. Soc. 56, 82–86 (1973)
40.
go back to reference D. Damjanovic, A. Biancoli, L. Batooli, A. Vahabzadeh, J. Trodahl, Elastic, dielectric, and piezoelectric anomalies and Raman spectroscopy of 0.5Ba(Ti0.8Zr0.2)O3–0.5(Ba0.7Ca0.3)-TiO3. Appl. Phys. Lett. 100, 192907 (2012) D. Damjanovic, A. Biancoli, L. Batooli, A. Vahabzadeh, J. Trodahl, Elastic, dielectric, and piezoelectric anomalies and Raman spectroscopy of 0.5Ba(Ti0.8Zr0.2)O3–0.5(Ba0.7Ca0.3)-TiO3. Appl. Phys. Lett. 100, 192907 (2012)
41.
go back to reference X. Liu, Z. Chen, B. Fang, J. Ding, X. Zhao, H. Xu, H. Luo, Enhancing piezoelectric properties of BCZT ceramics by Sr and Sn co-doping. J. Alloys Compd. 640, 128–133 (2015) X. Liu, Z. Chen, B. Fang, J. Ding, X. Zhao, H. Xu, H. Luo, Enhancing piezoelectric properties of BCZT ceramics by Sr and Sn co-doping. J. Alloys Compd. 640, 128–133 (2015)
42.
go back to reference D. Bao, Multilayered dielectric/ferroelectric thin films and superlattices. Curr. Opin. Solid State Mater. Sci. 12, 55–61 (2008) D. Bao, Multilayered dielectric/ferroelectric thin films and superlattices. Curr. Opin. Solid State Mater. Sci. 12, 55–61 (2008)
43.
go back to reference R. Xu, M. Shen, S. Ge, Z. Gan, W. Cao, Dielectric enhancement of sol-gel derived BaTiO3/SrTiO3 multilayered thin films. Thin Solid Films 406, 113–117 (2002) R. Xu, M. Shen, S. Ge, Z. Gan, W. Cao, Dielectric enhancement of sol-gel derived BaTiO3/SrTiO3 multilayered thin films. Thin Solid Films 406, 113–117 (2002)
44.
go back to reference F.C. Sun, M.T. Kesim, Y. Espinal, S.P. Alpay, Are ferroelectric multilayers capacitors in series. J. Mater. Sci. 51, 499–505 (2015) F.C. Sun, M.T. Kesim, Y. Espinal, S.P. Alpay, Are ferroelectric multilayers capacitors in series. J. Mater. Sci. 51, 499–505 (2015)
45.
go back to reference M. Shen, S. Ge, W. Cao, Dielectric enhancement and Maxwell-Wagner effects in polycrystalline ferroelectric multilayered thin films. J. Phys. D. Appl. Phys. 34, 2935–2938 (2001) M. Shen, S. Ge, W. Cao, Dielectric enhancement and Maxwell-Wagner effects in polycrystalline ferroelectric multilayered thin films. J. Phys. D. Appl. Phys. 34, 2935–2938 (2001)
46.
go back to reference K. Thakur, S. Kumar, N. Thakur, Investigation of structural, dielectric, and magnetoelectric properties of K0.5Na0.5NbO3–MnFe2O4 lead-free composite system. J. Alloys Compd. 857, 158251 (2021) K. Thakur, S. Kumar, N. Thakur, Investigation of structural, dielectric, and magnetoelectric properties of K0.5Na0.5NbO3–MnFe2O4 lead-free composite system. J. Alloys Compd. 857, 158251 (2021)
47.
go back to reference J. Rani, V.K. Kushwaha, P.K. Patel, C.V. Tomy, Exploring magnetoelectric coupling in trilayer [Ba(Zr0.2Ti0.8)O3–0.5(Ba0.7Ca0.3)TiO3]/CoFe2O4/[Ba(Zr0.2Ti0.8)O3–0.5(Ba0.7Ca0.3)TiO3] thin film. J. Alloys Compd. 863, 157702 (2021) J. Rani, V.K. Kushwaha, P.K. Patel, C.V. Tomy, Exploring magnetoelectric coupling in trilayer [Ba(Zr0.2Ti0.8)O3–0.5(Ba0.7Ca0.3)TiO3]/CoFe2O4/[Ba(Zr0.2Ti0.8)O3–0.5(Ba0.7Ca0.3)TiO3] thin film. J. Alloys Compd. 863, 157702 (2021)
48.
go back to reference H. Yang, J. Zhang, Y. Lin et al., High Curie temperature and enhanced magnetoelectric properties of the laminated Li0.058(Na0.535K0.48)0.942NbO3/Co0.6 Zn0.4Fe1.7Mn0.3O4 composites. Sci Rep. 7, 44855 (2017) H. Yang, J. Zhang, Y. Lin et al., High Curie temperature and enhanced magnetoelectric properties of the laminated Li0.058(Na0.535K0.48)0.942NbO3/Co0.6 Zn0.4Fe1.7Mn0.3O4 composites. Sci Rep. 7, 44855 (2017)
49.
go back to reference C. Wang, M. Takahashi, H. Fujino, X. Zhao, E. Kume et al., Leakage current of multiferroic (Bi0.6Tb0.3La0.1)FeO3 thin films grown at various oxygen pressures by pulsed laser deposition and annealing effect. J. Appl. Phys. 99, 054104 (2006) C. Wang, M. Takahashi, H. Fujino, X. Zhao, E. Kume et al., Leakage current of multiferroic (Bi0.6Tb0.3La0.1)FeO3 thin films grown at various oxygen pressures by pulsed laser deposition and annealing effect. J. Appl. Phys. 99, 054104 (2006)
50.
go back to reference J. Hao, W. Bai, W. Li, J. Zhai, Correlation between the microstructure and electrical properties in high-performance (Ba0.85 Ca0.15)(Zr0.1 Ti0.9) O3 lead-free piezoelectric ceramics. J. Am. Ceram. Soc. 95, 1998–2006 (2012) J. Hao, W. Bai, W. Li, J. Zhai, Correlation between the microstructure and electrical properties in high-performance (Ba0.85 Ca0.15)(Zr0.1 Ti0.9) O3 lead-free piezoelectric ceramics. J. Am. Ceram. Soc. 95, 1998–2006 (2012)
51.
go back to reference S. Lu, Z. Xu, S. Su, R. Zuo, Temperature driven nano-domain evolution in lead-free Ba(Zr0.2Ti0.8)O3–50(Ba0.7Ca0.3)TiO3 piezoceramics. Appl. Phys. Lett. 105, 1–4 (2014) S. Lu, Z. Xu, S. Su, R. Zuo, Temperature driven nano-domain evolution in lead-free Ba(Zr0.2Ti0.8)O3–50(Ba0.7Ca0.3)TiO3 piezoceramics. Appl. Phys. Lett. 105, 1–4 (2014)
52.
go back to reference J. Gao, D. Xue, Y. Wang, D. Wang, L. Zhang, H. Wu, S. Guo, H. Bao, C. Zhou, W. Liu, S. Hou, G. Xiao, X. Ren, Microstructure basis for strong piezoelectricity in Pb-free Ba(Zr0.2Ti0.8)O3-(Ba0.7Ca0.3)TiO3 ceramics. Appl. Phys. Lett. 99, 2012–2015 (2011) J. Gao, D. Xue, Y. Wang, D. Wang, L. Zhang, H. Wu, S. Guo, H. Bao, C. Zhou, W. Liu, S. Hou, G. Xiao, X. Ren, Microstructure basis for strong piezoelectricity in Pb-free Ba(Zr0.2Ti0.8)O3-(Ba0.7Ca0.3)TiO3 ceramics. Appl. Phys. Lett. 99, 2012–2015 (2011)
53.
go back to reference P. Bharathi, K.B.R. Varma, Grain and the concomitant ferroelectric domain size-dependent physical properties of Ba0.85Ca0.15Zr0.1Ti0.9O3 ceramics fabricated using powders derived from oxalate precursor route. J. Appl. Phys. 116, 1–10 (2014) P. Bharathi, K.B.R. Varma, Grain and the concomitant ferroelectric domain size-dependent physical properties of Ba0.85Ca0.15Zr0.1Ti0.9O3 ceramics fabricated using powders derived from oxalate precursor route. J. Appl. Phys. 116, 1–10 (2014)
54.
go back to reference G. Viola, K. Boon Chong, M. Eriksson, Effect of grain size on domain structures, dielectric and thermal deploying of Nd-substituted bismuth titanate ceramics. Appl. Phys. Lett. 103, 1–4 (2013) G. Viola, K. Boon Chong, M. Eriksson, Effect of grain size on domain structures, dielectric and thermal deploying of Nd-substituted bismuth titanate ceramics. Appl. Phys. Lett. 103, 1–4 (2013)
55.
go back to reference T.T. Le, Z. Valdez-Nava, T. Lebey, F. Mazaleyrat, Influence of cold isostatic pressing on the magnetic properties of Ni-Zn-Cu ferrite. AIP Adv. 8, 047806 (2018) T.T. Le, Z. Valdez-Nava, T. Lebey, F. Mazaleyrat, Influence of cold isostatic pressing on the magnetic properties of Ni-Zn-Cu ferrite. AIP Adv. 8, 047806 (2018)
56.
go back to reference S. Premkumar, S.A. Raut, D. Ghone, V.L. Mathe, Magnetic and magnetostrictive properties of tape casted free-standing NZFO thick films and its composite with piezoelectric phase. J. Magn. Magn. Mater. 490, 2–8 (2019) S. Premkumar, S.A. Raut, D. Ghone, V.L. Mathe, Magnetic and magnetostrictive properties of tape casted free-standing NZFO thick films and its composite with piezoelectric phase. J. Magn. Magn. Mater. 490, 2–8 (2019)
57.
go back to reference A. Jain, Y.G. Wang, N. Wang, Y. Li, F.L. Wang, Influence of individual phases on the magnetoelectric coupling and electromechanical response in (1–x)Ba0.83Ca0.10Sr0.07TiO3-xBiFeO3 (x = 0–0.30) multiferroic composites. J. Magn. Magn. Mater. 495, 165905 (2020) A. Jain, Y.G. Wang, N. Wang, Y. Li, F.L. Wang, Influence of individual phases on the magnetoelectric coupling and electromechanical response in (1–x)Ba0.83Ca0.10Sr0.07TiO3-xBiFeO3 (x = 0–0.30) multiferroic composites. J. Magn. Magn. Mater. 495, 165905 (2020)
58.
go back to reference C.S. Park, A. Khachaturyan, S. Priya, Giant magnetoelectric coupling in laminate thin-film structure grown on magnetostrictive substrate. Appl. Phys. Lett. 100, 1–5 (2012) C.S. Park, A. Khachaturyan, S. Priya, Giant magnetoelectric coupling in laminate thin-film structure grown on magnetostrictive substrate. Appl. Phys. Lett. 100, 1–5 (2012)
59.
go back to reference A.B. Swain, S. Dinesh Kumar, V. Subramanian, P. Murugavel, Engineering resonance modes for enhanced magnetoelectric coupling in bilayer laminate composites for energy harvesting applications. Phys. Rev. Appl. 13, 024026 (2020) A.B. Swain, S. Dinesh Kumar, V. Subramanian, P. Murugavel, Engineering resonance modes for enhanced magnetoelectric coupling in bilayer laminate composites for energy harvesting applications. Phys. Rev. Appl. 13, 024026 (2020)
60.
go back to reference G. Srinivasan, E.T. Rasmussen, J. Gallegos, R. Srinivasan, Magnetoelectric bilayer and multilayer structures of magnetostrictive and piezoelectric oxides. Phys. Rev. B. 64, 029902 (2002) G. Srinivasan, E.T. Rasmussen, J. Gallegos, R. Srinivasan, Magnetoelectric bilayer and multilayer structures of magnetostrictive and piezoelectric oxides. Phys. Rev. B. 64, 029902 (2002)
61.
go back to reference Y. Wang, Y. Pu, Y. Tian, X. Li, Z. Wang, Y. Shi, J. Zhang, G. Zhang, Enhanced magnetoelectric properties of the laminated Ba0.9Ca0.1Ti0.9Zr0.1O3/Co0.8Ni0.1Zn0.1Fe2O4 composites. J. Alloys Compd. 696, 1307–1313 (2017) Y. Wang, Y. Pu, Y. Tian, X. Li, Z. Wang, Y. Shi, J. Zhang, G. Zhang, Enhanced magnetoelectric properties of the laminated Ba0.9Ca0.1Ti0.9Zr0.1O3/Co0.8Ni0.1Zn0.1Fe2O4 composites. J. Alloys Compd. 696, 1307–1313 (2017)
62.
go back to reference J. Rani, V.K. Kushwaha, J. Kolte, C.V. Tomy, Strong magnetoelectric effect in pulsed laser deposited [Ba(Zr0.2Ti0.8)O3–0.5(Ba0.7Ca0.3)TiO3]/CoFe2O4 bilayer thin film. J. Am. Ceram. Soc. 101, 5651–5658 (2018) J. Rani, V.K. Kushwaha, J. Kolte, C.V. Tomy, Strong magnetoelectric effect in pulsed laser deposited [Ba(Zr0.2Ti0.8)O3–0.5(Ba0.7Ca0.3)TiO3]/CoFe2O4 bilayer thin film. J. Am. Ceram. Soc. 101, 5651–5658 (2018)
Metadata
Title
Enhanced magnetoelectric coupling in environmental friendly lead-free Ni0.8Zn0.2Fe2O4–Ba0.85Ca0.15Zr0.1Ti0.9O3 laminate composites
Authors
Pankhuri Bansal
Rajat Syal
Arun Kumar Singh
Sanjeev Kumar
Publication date
20-09-2021
Publisher
Springer US
Published in
Journal of Materials Science: Materials in Electronics / Issue 20/2021
Print ISSN: 0957-4522
Electronic ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-021-07012-z

Other articles of this Issue 20/2021

Journal of Materials Science: Materials in Electronics 20/2021 Go to the issue