Skip to main content
Top
Published in: Journal of Materials Engineering and Performance 6/2020

25-06-2020

Enhanced Mechanical Properties of a Gradient Nanostructured Medium Manganese Steel and Its Grain Refinement Mechanism

Authors: Lei Wang, Meiyu Li, Hao Tan, Yueming Feng, Yuntao Xi

Published in: Journal of Materials Engineering and Performance | Issue 6/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

As the third generation of advanced high strength steel (AHSS), medium manganese steel (MMS) has been widely emphasized by scholars around the world. Presently, we applied sliding friction treatment (SFT) of severe plastic deformation (SPD) on the surface of MMS to form surface gradient nanostructures, the formation mechanism of microstructure and the corresponding mechanical behavior was studied. The results show that the deformation layer can be divided into nano-grain (NG), submicron grain (SMG) and coarse grain (CG) in terms of grain size. It has been demonstrated that in the CG layer and a part of SMG layer, new fine grains can be formed through discontinuous dynamic recrystallization (DDR) mechanism, while continuous dynamic recrystallization (CDR) is a favorable nucleation mechanism for the new formed small grains in the SMG layer and the NG layer. The SFT process increases microhardness sharply in the surface region. Compared with conventional MMS, it is apparent that the yield strength (YS) and the ultimate tensile strength (UTS) of gradient medium manganese steel specimens have been greatly improved, while the elongation does not decrease significantly. Fracture surface analysis demonstrates that the fracture morphology of different layers can be generally characterized by different fracture mechanisms, i.e., cleavage, quasi-cleavage and dimple.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference T.H. Fang, W.L. Li, N.R. Tao, and K. Lu, Revealing Extraordinary Intrinsic Tensile Plasticity in Gradient Nano-grained Copper, Science, 2011, 331, p 1587–1589CrossRef T.H. Fang, W.L. Li, N.R. Tao, and K. Lu, Revealing Extraordinary Intrinsic Tensile Plasticity in Gradient Nano-grained Copper, Science, 2011, 331, p 1587–1589CrossRef
2.
go back to reference H.Y. Yi, F.K. Yan, N.R. Tao, and K. Lu, Work Hardening Behavior of Nanotwinned Austenitic Grains in a Metastable Austenitic Stainless Steel, Scr. Mater., 2016, 114, p 133–136CrossRef H.Y. Yi, F.K. Yan, N.R. Tao, and K. Lu, Work Hardening Behavior of Nanotwinned Austenitic Grains in a Metastable Austenitic Stainless Steel, Scr. Mater., 2016, 114, p 133–136CrossRef
3.
go back to reference L. Wang, J.A. Benito, J. Calvo, and J.M. Cabrera, Twin-Induced Plasticity of an ECAP-Processed TWIP Steel, J. Mater. Eng. Perform., 2017, 26(2), p 554–562CrossRef L. Wang, J.A. Benito, J. Calvo, and J.M. Cabrera, Twin-Induced Plasticity of an ECAP-Processed TWIP Steel, J. Mater. Eng. Perform., 2017, 26(2), p 554–562CrossRef
4.
go back to reference L. Wang, J.A. Benito, J. Calvo, and J.M. Cabrera, Equal Channel Angular Pressing of a TWIP Steel: Microstructure and Mechanical Response, J. Mater. Sci., 2017, 52(11), p 6291–6309CrossRef L. Wang, J.A. Benito, J. Calvo, and J.M. Cabrera, Equal Channel Angular Pressing of a TWIP Steel: Microstructure and Mechanical Response, J. Mater. Sci., 2017, 52(11), p 6291–6309CrossRef
5.
go back to reference Y.J. Wei, Y.Q. Li, L.C. Zhu, Y. Liu, X.Q. Lei, G. Wang, Y.X. Wu, Z.L. Mi, J.B. Liu, H.T. Wang, and H.J. Gao, Evading the Strength-Ductility Trade-Off Dilemma in Steel Through Gradient Hierarchical Nanotwins, Nat. Commun., 2014, 5, p 3580–3581CrossRef Y.J. Wei, Y.Q. Li, L.C. Zhu, Y. Liu, X.Q. Lei, G. Wang, Y.X. Wu, Z.L. Mi, J.B. Liu, H.T. Wang, and H.J. Gao, Evading the Strength-Ductility Trade-Off Dilemma in Steel Through Gradient Hierarchical Nanotwins, Nat. Commun., 2014, 5, p 3580–3581CrossRef
6.
go back to reference K. Lu, Making Strong Nanomaterials Ductile with Gradients, Science, 2014, 345, p 1455–1456CrossRef K. Lu, Making Strong Nanomaterials Ductile with Gradients, Science, 2014, 345, p 1455–1456CrossRef
7.
go back to reference C.W. Shao, P. Zhang, Y.K. Zhu, Z.J. Zhang, Y.Z. Tian, and Z.F. Zhang, Simultaneous Improvement of Strength and Plasticity: Additional Work-Hardening from Gradient Microstructure, Acta Mater., 2018, 145, p 413–428CrossRef C.W. Shao, P. Zhang, Y.K. Zhu, Z.J. Zhang, Y.Z. Tian, and Z.F. Zhang, Simultaneous Improvement of Strength and Plasticity: Additional Work-Hardening from Gradient Microstructure, Acta Mater., 2018, 145, p 413–428CrossRef
8.
go back to reference X.P. Yong, “Master Thesis”, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 2001 X.P. Yong, “Master Thesis”, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 2001
9.
go back to reference T. Roland, D. Retraint, K. Lu, and J. Lu, Enhanced Mechanical Behavior of a Nanocrystallised Stainless Steel and Its Thermal Stability, Mater. Sci. Eng. A, 2007, 445–446, p 281–288CrossRef T. Roland, D. Retraint, K. Lu, and J. Lu, Enhanced Mechanical Behavior of a Nanocrystallised Stainless Steel and Its Thermal Stability, Mater. Sci. Eng. A, 2007, 445–446, p 281–288CrossRef
10.
go back to reference X.L. Wu, P. Jiang, L. Chen, F.P. Yuan, and Y.T. Zhu, Extraordinary Strain Hardening by Gradient Structure, Proc. Natl. Acad. Sci. United State Am., 2014, 111(20), p 7197–7201CrossRef X.L. Wu, P. Jiang, L. Chen, F.P. Yuan, and Y.T. Zhu, Extraordinary Strain Hardening by Gradient Structure, Proc. Natl. Acad. Sci. United State Am., 2014, 111(20), p 7197–7201CrossRef
11.
go back to reference R. Kalsar and S. Suwas, A Novel Way to Enhance the Strength of Twinning Induced Plasticity (TWIP) Steels, Scr. Mater., 2018, 154, p 207–211CrossRef R. Kalsar and S. Suwas, A Novel Way to Enhance the Strength of Twinning Induced Plasticity (TWIP) Steels, Scr. Mater., 2018, 154, p 207–211CrossRef
12.
go back to reference D. Ba, F. Meng, and X. Liu, Friction and Wear Behaviors of Surface Nanocrystalline Layer Prepared on Medium Manganese Surfacing Layer Under Oil Lubrication, Tribol. Int., 2014, 80, p 210–215CrossRef D. Ba, F. Meng, and X. Liu, Friction and Wear Behaviors of Surface Nanocrystalline Layer Prepared on Medium Manganese Surfacing Layer Under Oil Lubrication, Tribol. Int., 2014, 80, p 210–215CrossRef
13.
go back to reference W. He, W. Ma, and W. Pantleon, Microstructure of Individual Grains in Cold-Rolled Aluminium from Orientation Inhomogeneities Resolved by Electron Backscattering Diffraction, Mater. Sci. Eng. A, 2008, 494, p 21–27CrossRef W. He, W. Ma, and W. Pantleon, Microstructure of Individual Grains in Cold-Rolled Aluminium from Orientation Inhomogeneities Resolved by Electron Backscattering Diffraction, Mater. Sci. Eng. A, 2008, 494, p 21–27CrossRef
14.
go back to reference W.Q. Cao, C. Wang, J. Shi, M.Q. Wang, W.J. Hui, and H. Dong, Microstructure and Mechanical Properties of Fe–0.2C–5Mn Steel Processed by ART-Annealing, Mater. Sci. Eng. A, 2011, 528(22–23), p 6661–6666CrossRef W.Q. Cao, C. Wang, J. Shi, M.Q. Wang, W.J. Hui, and H. Dong, Microstructure and Mechanical Properties of Fe–0.2C–5Mn Steel Processed by ART-Annealing, Mater. Sci. Eng. A, 2011, 528(22–23), p 6661–6666CrossRef
15.
go back to reference W. Zhan, L.Q. Cao, J. Hu, W.Q. Cao, J. Li, and H. Dong, Intercritical Rolling Induced Ultrafine Lamellar Structure and Enhanced Mechanical Properties of Medium Mn Steel, J. Iron. Steel Res. Int., 2014, 21(5), p 551–558CrossRef W. Zhan, L.Q. Cao, J. Hu, W.Q. Cao, J. Li, and H. Dong, Intercritical Rolling Induced Ultrafine Lamellar Structure and Enhanced Mechanical Properties of Medium Mn Steel, J. Iron. Steel Res. Int., 2014, 21(5), p 551–558CrossRef
16.
go back to reference J. Hu, W.Q. Cao, C.Y. Wang, H. Dong, and J. Li, Austenite Stability and Its Effect on the Ductility of the Cold-Rolled Medium-Mn Steel, ISIJ Int., 2014, 54(8), p 1952–1957CrossRef J. Hu, W.Q. Cao, C.Y. Wang, H. Dong, and J. Li, Austenite Stability and Its Effect on the Ductility of the Cold-Rolled Medium-Mn Steel, ISIJ Int., 2014, 54(8), p 1952–1957CrossRef
17.
go back to reference Y.B. Lei, Z.B. Wang, J.L. Xu, and K. Lu, Simultaneous enhancement of stress- and strain-controlled fatigue properties in 316L stainless steel with gradient nanostructure, Acta Mater., 2019, 168, p 133–142CrossRef Y.B. Lei, Z.B. Wang, J.L. Xu, and K. Lu, Simultaneous enhancement of stress- and strain-controlled fatigue properties in 316L stainless steel with gradient nanostructure, Acta Mater., 2019, 168, p 133–142CrossRef
18.
go back to reference X.L. Wu, P. Jiang, L. Chen, F.P. Yuan, and Y.T. Zhu, Extraordinary Strain Hardening by Gradient Structure, Proc. Natl. Acad. Sci. USA, 2014, 111(20), p 7197–7201CrossRef X.L. Wu, P. Jiang, L. Chen, F.P. Yuan, and Y.T. Zhu, Extraordinary Strain Hardening by Gradient Structure, Proc. Natl. Acad. Sci. USA, 2014, 111(20), p 7197–7201CrossRef
19.
go back to reference G. Frommeyer, E.J. Drewes, and B. Engl, Physical and Mechanical Properties of Iron-Aluminium-(Mn, Si) Lightweight Steels, Revue de Metall., 2000, 97(10), p 1245–1253CrossRef G. Frommeyer, E.J. Drewes, and B. Engl, Physical and Mechanical Properties of Iron-Aluminium-(Mn, Si) Lightweight Steels, Revue de Metall., 2000, 97(10), p 1245–1253CrossRef
20.
go back to reference C.I. Chang, C.J. Lee, and J.C. Huang, Relationship Between Grain Size and Zener-Holloman Parameter during Friction Stir Processing in AZ31 Mg Alloys, Scr. Mater., 2004, 51, p 509–514CrossRef C.I. Chang, C.J. Lee, and J.C. Huang, Relationship Between Grain Size and Zener-Holloman Parameter during Friction Stir Processing in AZ31 Mg Alloys, Scr. Mater., 2004, 51, p 509–514CrossRef
21.
go back to reference A.H. Ammouri, G. Kridli, G. Ayoub, and R.F. Hamade, Relating Grain Size to the Zener-Hollomon Parameter for Twin-Roll-Cast AZ31B Alloy Refined by Friction Stir Processing, J. Mater. Process. Tech., 2015, 222, p 301–306CrossRef A.H. Ammouri, G. Kridli, G. Ayoub, and R.F. Hamade, Relating Grain Size to the Zener-Hollomon Parameter for Twin-Roll-Cast AZ31B Alloy Refined by Friction Stir Processing, J. Mater. Process. Tech., 2015, 222, p 301–306CrossRef
22.
go back to reference R.D. Doherty, D.A. Hughes, F.J. Humphreys, J.J. Jonas, D.J. Jensen, M.E. Kassner, W.E. King, T.R. McNelley, H.J. McQueen, and A.D. Rollett, Current Issues in Recrystallization: A Review, Mater. Sci. Eng. A, 1997, 238, p 219–274CrossRef R.D. Doherty, D.A. Hughes, F.J. Humphreys, J.J. Jonas, D.J. Jensen, M.E. Kassner, W.E. King, T.R. McNelley, H.J. McQueen, and A.D. Rollett, Current Issues in Recrystallization: A Review, Mater. Sci. Eng. A, 1997, 238, p 219–274CrossRef
23.
go back to reference T. Sakai, A. Belyakov, R. Kaibyshev, H. Miura, and J.J. Jonas, Dynamic and Post-dynamic Recrystallization under Hot, Cold and Severe Plastic Deformation Conditions, Prog. Mater. Sci., 2014, 60, p 130–207CrossRef T. Sakai, A. Belyakov, R. Kaibyshev, H. Miura, and J.J. Jonas, Dynamic and Post-dynamic Recrystallization under Hot, Cold and Severe Plastic Deformation Conditions, Prog. Mater. Sci., 2014, 60, p 130–207CrossRef
24.
go back to reference F. Humphreys and M. Hatherly, Recrystallization and Related Annealing Phenomena, Elsevier, New York, 2004 F. Humphreys and M. Hatherly, Recrystallization and Related Annealing Phenomena, Elsevier, New York, 2004
25.
go back to reference W. Zhang, J.W. Lu, W.T. Huo, Y.S. Zhang, and Q. Wei, Microstructural Evolution of AZ31 Magnesium Alloy Subjected to Sliding Friction Treatment, Philos. Mag., 2018, 98(17), p 1576–1593CrossRef W. Zhang, J.W. Lu, W.T. Huo, Y.S. Zhang, and Q. Wei, Microstructural Evolution of AZ31 Magnesium Alloy Subjected to Sliding Friction Treatment, Philos. Mag., 2018, 98(17), p 1576–1593CrossRef
26.
go back to reference Y.H. Wei, B.S. Liu, L.F. Hou, B.S. Xu, and G. Liu, Characterization and Properties of Nanocrystalline Surface Layer in Mg Alloy Induced by Surface Mechanical Attrition Treatment, J. Alloys Compd., 2008, 452, p 336–342CrossRef Y.H. Wei, B.S. Liu, L.F. Hou, B.S. Xu, and G. Liu, Characterization and Properties of Nanocrystalline Surface Layer in Mg Alloy Induced by Surface Mechanical Attrition Treatment, J. Alloys Compd., 2008, 452, p 336–342CrossRef
27.
go back to reference M. Dao, L. Lu, R.J. Asaro, J.T.M. De Hosson, and E. Ma, Toward a Quantitative Understanding of Mechanical Behavior of Nanocrystalline Metals, Acta Mater., 2007, 55, p 4041–4065CrossRef M. Dao, L. Lu, R.J. Asaro, J.T.M. De Hosson, and E. Ma, Toward a Quantitative Understanding of Mechanical Behavior of Nanocrystalline Metals, Acta Mater., 2007, 55, p 4041–4065CrossRef
28.
go back to reference B. Arifvianto, Mahardika M. Suyitno, P. Dewo, P.T. Iswanto, and U.A. Salim, Effect of Surface Mechanical Attrition Treatment (SMAT) on Microhardness, Surface Roughness and Wettability of AISI, 316L, Mater. Chem. Phys., 2011, 2011(125), p 418–426CrossRef B. Arifvianto, Mahardika M. Suyitno, P. Dewo, P.T. Iswanto, and U.A. Salim, Effect of Surface Mechanical Attrition Treatment (SMAT) on Microhardness, Surface Roughness and Wettability of AISI, 316L, Mater. Chem. Phys., 2011, 2011(125), p 418–426CrossRef
29.
go back to reference N.R. Tao, H.W. Zhang, J. Lu, and K. Lu, Development of Nanostructures in Metallic Materials with Low Stacking Fault Energies during Surface Mechanical Attrition Treatment (SMAT) (Overview), Mater. Trans., 2003, 44, p 1919–1925CrossRef N.R. Tao, H.W. Zhang, J. Lu, and K. Lu, Development of Nanostructures in Metallic Materials with Low Stacking Fault Energies during Surface Mechanical Attrition Treatment (SMAT) (Overview), Mater. Trans., 2003, 44, p 1919–1925CrossRef
30.
go back to reference G. Niu, H.B. Wu, D. Zhang, and N. Gong, Hybrid Nanostructure Stainless Steel with Super-High Strength and Toughness, Procedia Eng., 2017, 207, p 1791–1796CrossRef G. Niu, H.B. Wu, D. Zhang, and N. Gong, Hybrid Nanostructure Stainless Steel with Super-High Strength and Toughness, Procedia Eng., 2017, 207, p 1791–1796CrossRef
31.
go back to reference Y.F. Wang, M.S. Wang, X.T. Fang, F.J. Guo, H.Q. Liu, R.O. Scattergood, C.X. Huang, and Y.T. Zhu, Extra Strengthening in a Coarse/Ultrafine Grained Laminate: Role of Gradient Interfaces, Int. J. Plast., 2019, 123, p 196–207CrossRef Y.F. Wang, M.S. Wang, X.T. Fang, F.J. Guo, H.Q. Liu, R.O. Scattergood, C.X. Huang, and Y.T. Zhu, Extra Strengthening in a Coarse/Ultrafine Grained Laminate: Role of Gradient Interfaces, Int. J. Plast., 2019, 123, p 196–207CrossRef
32.
go back to reference X.C. Meng, M. Duan, L. Luo, D.C. Zhan, B. Jin, Y.H. Jin, X.X. Rao, Y. Liu, and J. Lu, The Deformation Behavior of AZ31 Mg Alloy with Surface Mechanical Attrition Treatment, Mater. Sci. Eng. A, 2017, 707, p 636–646CrossRef X.C. Meng, M. Duan, L. Luo, D.C. Zhan, B. Jin, Y.H. Jin, X.X. Rao, Y. Liu, and J. Lu, The Deformation Behavior of AZ31 Mg Alloy with Surface Mechanical Attrition Treatment, Mater. Sci. Eng. A, 2017, 707, p 636–646CrossRef
33.
go back to reference X.L. Wu, P. Jiang, L. Chen, J.F. Zhang, F.P. Yuan, and Y.T. Zhu, Synergetic Strengthening by Gradient Structure, Mater. Res. Lett., 2014, 2, p 185–191CrossRef X.L. Wu, P. Jiang, L. Chen, J.F. Zhang, F.P. Yuan, and Y.T. Zhu, Synergetic Strengthening by Gradient Structure, Mater. Res. Lett., 2014, 2, p 185–191CrossRef
34.
go back to reference H.J. Gao and Y.G. Huang, Geometrically Necessary Dislocation and Size-Dependent Plasticity, Scr. Mater., 2003, 48(2), p 113–118CrossRef H.J. Gao and Y.G. Huang, Geometrically Necessary Dislocation and Size-Dependent Plasticity, Scr. Mater., 2003, 48(2), p 113–118CrossRef
35.
go back to reference D.A. Hughes, N. Hansen, and D.J. Bammann, Geometrically Necessary Boundaries, Incidental Dislocation Boundaries and Geometrically Necessary Dislocations, Scr. Mater., 2003, 48(2), p 147–153CrossRef D.A. Hughes, N. Hansen, and D.J. Bammann, Geometrically Necessary Boundaries, Incidental Dislocation Boundaries and Geometrically Necessary Dislocations, Scr. Mater., 2003, 48(2), p 147–153CrossRef
Metadata
Title
Enhanced Mechanical Properties of a Gradient Nanostructured Medium Manganese Steel and Its Grain Refinement Mechanism
Authors
Lei Wang
Meiyu Li
Hao Tan
Yueming Feng
Yuntao Xi
Publication date
25-06-2020
Publisher
Springer US
Published in
Journal of Materials Engineering and Performance / Issue 6/2020
Print ISSN: 1059-9495
Electronic ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-020-04903-w

Other articles of this Issue 6/2020

Journal of Materials Engineering and Performance 6/2020 Go to the issue

Premium Partners