Skip to main content
Top
Published in: Journal of Materials Science: Materials in Electronics 16/2018

28-06-2018

Enhancement in conductivity and dielectric properties of rare-earth (Gd3+) substituted nano-sized CoFe2O4

Authors: Krutika L. Routray, Dhrubananda Behera

Published in: Journal of Materials Science: Materials in Electronics | Issue 16/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Cobalt ferrites nanoparticles doped with gadolinium CoFe2−xGdxO4, referred to as CFGO (x = 0.0, 0.1, 0.3, 0.5 and 0.7) was achieved by glycine nitrate process. The phase confirmation and crystallite size were obtained from X-ray diffraction spectra and their variation with dopants content was determined. The Williamson–Hall plot was used to investigate the individual contributions of crystallite sizes and lattice strain on the peak broadening of the CFGO nanoparticles. Further confirmation of the spinel structure was done by Fourier transform infrared spectra. Dielectric properties such as dielectric constant (ε′) and dielectric loss (ε″) have been investigated in the frequency range 100 Hz–1 MHz. The dielectric constant (ε′) dispersion for CFGO nanoferrites is fitted in accordance with the modified Debye’s function. The complex impedances and complex modulus analysis confirm a grain interior mechanism contributing to the dielectric properties. The electrical behaviour of the CFGO nanoferrites exhibited small polaron conduction mechanism. From the temperature dependence curve of dielectric relaxation, activation energies for CFGO samples have been calculated. The low loss dielectric makes these samples promising materials to be used at high frequencies.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference M. Rahimi-Nasrabadi, M. Behpour, A. Sobhani-Nasab, S.M. Hosseinpour-Mashkani, ZnFe2 − xLaxO4 nanostructure: synthesis, characterization, and its magnetic properties. J. Mater. Sci. Mater. Electron. 26(12), 9776–9781 (2015)CrossRef M. Rahimi-Nasrabadi, M. Behpour, A. Sobhani-Nasab, S.M. Hosseinpour-Mashkani, ZnFe2 − xLaxO4 nanostructure: synthesis, characterization, and its magnetic properties. J. Mater. Sci. Mater. Electron. 26(12), 9776–9781 (2015)CrossRef
2.
go back to reference A. Javidan, S. Rafizadeh, S.M. Hosseinpour-Mashkani, Strontium ferrite nanoparticle study: thermal decomposition synthesis, characterization, and optical and magnetic properties. Mater. Sci. Semicond. Process. 27, 468–473 (2014)CrossRef A. Javidan, S. Rafizadeh, S.M. Hosseinpour-Mashkani, Strontium ferrite nanoparticle study: thermal decomposition synthesis, characterization, and optical and magnetic properties. Mater. Sci. Semicond. Process. 27, 468–473 (2014)CrossRef
3.
go back to reference A. Samavati, A.F. Ismail, Antibacterial properties of copper-substituted cobalt ferrite nanoparticles synthesized by co-precipitation method. Particuology 30, 158–163 (2017)CrossRef A. Samavati, A.F. Ismail, Antibacterial properties of copper-substituted cobalt ferrite nanoparticles synthesized by co-precipitation method. Particuology 30, 158–163 (2017)CrossRef
4.
go back to reference T.E. Quickel, V.H. Le, T. Brezesinski, S.H. Tolbert, On the correlation between nanoscale structure and magnetic properties in ordered mesoporous cobalt ferrite (CoFe2O4) thin films. Nano Lett. 10(8), 2982–2988 (2010)CrossRef T.E. Quickel, V.H. Le, T. Brezesinski, S.H. Tolbert, On the correlation between nanoscale structure and magnetic properties in ordered mesoporous cobalt ferrite (CoFe2O4) thin films. Nano Lett. 10(8), 2982–2988 (2010)CrossRef
5.
go back to reference X. Liu, Synthesis, Fabrication and Characterization of Magnetic and Dielectric Nanoparticles and Nanocomposite Films (City University of New York, 2014) X. Liu, Synthesis, Fabrication and Characterization of Magnetic and Dielectric Nanoparticles and Nanocomposite Films (City University of New York, 2014)
6.
go back to reference R. Sharma, P. Thakur, M. Kumar, N. Thakur, N.S. Negi, P. Sharma, V. Sharma, Improvement in magnetic behaviour of cobalt doped magnesium zinc nano-ferrites via co-precipitation route. J. Alloys Compd 684, 569–581 (2016)CrossRef R. Sharma, P. Thakur, M. Kumar, N. Thakur, N.S. Negi, P. Sharma, V. Sharma, Improvement in magnetic behaviour of cobalt doped magnesium zinc nano-ferrites via co-precipitation route. J. Alloys Compd 684, 569–581 (2016)CrossRef
7.
go back to reference R. Nongjai, S. Khan, K. Asokan, H. Ahmed, I. Khan, Magnetic and electrical properties of In doped cobalt ferrite nanoparticles. J. Appl. Phys. 112(8), 084321 (2012)CrossRef R. Nongjai, S. Khan, K. Asokan, H. Ahmed, I. Khan, Magnetic and electrical properties of In doped cobalt ferrite nanoparticles. J. Appl. Phys. 112(8), 084321 (2012)CrossRef
8.
go back to reference C.H. Kim, Y. Myung, Y.J. Cho, H.S. Kim, S.H. Park, J. Park, J.Y. Kim, B. Kim, Electronic structure of vertically aligned Mn-doped CoFe2O4 nanowires and their application as humidity sensors and photodetectors. J. Phys. Chem. C 113(17), 7085–7090 (2009)CrossRef C.H. Kim, Y. Myung, Y.J. Cho, H.S. Kim, S.H. Park, J. Park, J.Y. Kim, B. Kim, Electronic structure of vertically aligned Mn-doped CoFe2O4 nanowires and their application as humidity sensors and photodetectors. J. Phys. Chem. C 113(17), 7085–7090 (2009)CrossRef
9.
go back to reference V. Pillai, D.O. Shah, Synthesis of high-coercivity cobalt ferrite particles using water-in-oil microemulsions. J. Magn. Magn. Mater. 163(1–2), 243–248 (1996)CrossRef V. Pillai, D.O. Shah, Synthesis of high-coercivity cobalt ferrite particles using water-in-oil microemulsions. J. Magn. Magn. Mater. 163(1–2), 243–248 (1996)CrossRef
10.
go back to reference J.W. Martens, Magneto-optical properties of substituted cobalt ferrites: CoFe2 − xMexO4 (Me = Rh3+, Mn3+, Ti4++ Co2+). J. Appl. Phys. 59(11), 3820–3823 (1986)CrossRef J.W. Martens, Magneto-optical properties of substituted cobalt ferrites: CoFe2 − xMexO4 (Me = Rh3+, Mn3+, Ti4++ Co2+). J. Appl. Phys. 59(11), 3820–3823 (1986)CrossRef
11.
go back to reference M. Pardavi-Horvath, Microwave applications of soft ferrites. J. Magn. Magn. Mater. 215, 171–183 (2000)CrossRef M. Pardavi-Horvath, Microwave applications of soft ferrites. J. Magn. Magn. Mater. 215, 171–183 (2000)CrossRef
12.
go back to reference H. Wu, G. Liu, X. Wang, J. Zhang, Y. Chen, J. Shi, H. Yang, H. Hu, S. Yang, Solvothermal synthesis of cobalt ferrite nanoparticles loaded on multiwalled carbon nanotubes for magnetic resonance imaging and drug delivery. Acta biomater. 7(9), 3496–3504 (2011)CrossRef H. Wu, G. Liu, X. Wang, J. Zhang, Y. Chen, J. Shi, H. Yang, H. Hu, S. Yang, Solvothermal synthesis of cobalt ferrite nanoparticles loaded on multiwalled carbon nanotubes for magnetic resonance imaging and drug delivery. Acta biomater. 7(9), 3496–3504 (2011)CrossRef
13.
go back to reference M. Maddahfar, M. Ramezani, S.M. Hosseinpour-Mashkani, Barium hexaferrite/graphene oxide: controlled synthesis and characterization and investigation of its magnetic properties. Appl. Phys. A 122(8), 752 (2016)CrossRef M. Maddahfar, M. Ramezani, S.M. Hosseinpour-Mashkani, Barium hexaferrite/graphene oxide: controlled synthesis and characterization and investigation of its magnetic properties. Appl. Phys. A 122(8), 752 (2016)CrossRef
14.
go back to reference M. Kooti, S. Saiahi, H. Motamedi, Fabrication of silver-coated cobalt ferrite nanocomposite and the study of its antibacterial activity. J. Magn. Magn. Mater. 333, 138–143 (2013)CrossRef M. Kooti, S. Saiahi, H. Motamedi, Fabrication of silver-coated cobalt ferrite nanocomposite and the study of its antibacterial activity. J. Magn. Magn. Mater. 333, 138–143 (2013)CrossRef
15.
go back to reference A.R. Reddy, G.R. Mohan, D. Ravinder, B.S. Boyanov, High-frequency dielectric behaviour of polycrystalline zinc substituted cobalt ferrites. J. Mater. Sci. 34(13), 3169–3176 (1999)CrossRef A.R. Reddy, G.R. Mohan, D. Ravinder, B.S. Boyanov, High-frequency dielectric behaviour of polycrystalline zinc substituted cobalt ferrites. J. Mater. Sci. 34(13), 3169–3176 (1999)CrossRef
16.
go back to reference O.F. Caltun, G.S. Rao, K.H. Rao, B.P. Rao, C. Kim, C.O. Kim, I. Dumitru, N. Lupu, H. Chiriac, High magnetostrictive cobalt ferrite for sensor applications. Sens. Lett. 5(1), 45–47 (2007)CrossRef O.F. Caltun, G.S. Rao, K.H. Rao, B.P. Rao, C. Kim, C.O. Kim, I. Dumitru, N. Lupu, H. Chiriac, High magnetostrictive cobalt ferrite for sensor applications. Sens. Lett. 5(1), 45–47 (2007)CrossRef
17.
go back to reference S.R. Naik, A.V. Salker, Change in the magnetostructural properties of rare earth doped cobalt ferrites relative to the magnetic anisotropy. J. Mater. Chem. 22(6), 2740–2750 (2012)CrossRef S.R. Naik, A.V. Salker, Change in the magnetostructural properties of rare earth doped cobalt ferrites relative to the magnetic anisotropy. J. Mater. Chem. 22(6), 2740–2750 (2012)CrossRef
18.
go back to reference L. Zhao, H. Yang, X. Zhao, L. Yu, Y. Cui, S. Feng, Magnetic properties of CoFe2O4 ferrite doped with rare earth ion. Mater. Lett. 60(1), 1–6 (2006)CrossRef L. Zhao, H. Yang, X. Zhao, L. Yu, Y. Cui, S. Feng, Magnetic properties of CoFe2O4 ferrite doped with rare earth ion. Mater. Lett. 60(1), 1–6 (2006)CrossRef
19.
go back to reference R.C. Kambale, K.M. Song, Y.S. Koo, N. Hur, Low temperature synthesis of nanocrystalline Dy3+ doped cobalt ferrite: structural and magnetic properties. J. Appl. Phys. 110(5), 053910 (2011)CrossRef R.C. Kambale, K.M. Song, Y.S. Koo, N. Hur, Low temperature synthesis of nanocrystalline Dy3+ doped cobalt ferrite: structural and magnetic properties. J. Appl. Phys. 110(5), 053910 (2011)CrossRef
20.
go back to reference J. Peng, M. Hojamberdiev, Y. Xu, B. Cao, J. Wang, H. Wu, Hydrothermal synthesis and magnetic properties of gadolinium-doped CoFe2O4 nanoparticles. J. Magn. Magn. Mater. 323(1), 133–137 (2011)CrossRef J. Peng, M. Hojamberdiev, Y. Xu, B. Cao, J. Wang, H. Wu, Hydrothermal synthesis and magnetic properties of gadolinium-doped CoFe2O4 nanoparticles. J. Magn. Magn. Mater. 323(1), 133–137 (2011)CrossRef
21.
go back to reference X. Zhao, W. Wang, Y. Zhang, S. Wu, F. Li, J.P. Liu, Synthesis and characterization of gadolinium doped cobalt ferrite nanoparticles with enhanced adsorption capability for congo red. Chem. Eng. 250, 16474 (2014) X. Zhao, W. Wang, Y. Zhang, S. Wu, F. Li, J.P. Liu, Synthesis and characterization of gadolinium doped cobalt ferrite nanoparticles with enhanced adsorption capability for congo red. Chem. Eng. 250, 16474 (2014)
22.
go back to reference C. Yang, J. Jiang, X. Liu, C. Yin, C. Deng, Rare earth ions doped polyaniline/cobalt ferrite nanocomposites via a novel coordination-oxidative polymerization-hydrothermal route: preparation and microwave-absorbing properties. J. Magn. Magn. Mater. 404, 45–52 (2016)CrossRef C. Yang, J. Jiang, X. Liu, C. Yin, C. Deng, Rare earth ions doped polyaniline/cobalt ferrite nanocomposites via a novel coordination-oxidative polymerization-hydrothermal route: preparation and microwave-absorbing properties. J. Magn. Magn. Mater. 404, 45–52 (2016)CrossRef
23.
go back to reference R. Manjula, V.R. Murthy, J. Sobhanadri, Electrical conductivity and thermoelectric power measurements of some lithium–titanium ferrites. J. Appl. Phys. 59(8), 2929–2932 (1986)CrossRef R. Manjula, V.R. Murthy, J. Sobhanadri, Electrical conductivity and thermoelectric power measurements of some lithium–titanium ferrites. J. Appl. Phys. 59(8), 2929–2932 (1986)CrossRef
24.
go back to reference K.K. Bamzai, G. Kour, B. Kaur, S.D. Kulkarni, Effect of cation distribution on structural and magnetic properties of Dy substituted magnesium ferrite. J. Magn. Magn. Mater. 327, 159–166 (2013)CrossRef K.K. Bamzai, G. Kour, B. Kaur, S.D. Kulkarni, Effect of cation distribution on structural and magnetic properties of Dy substituted magnesium ferrite. J. Magn. Magn. Mater. 327, 159–166 (2013)CrossRef
25.
go back to reference K.L. Routray, D. Sanyal, D. Behera, Dielectric, magnetic, ferroelectric, and Mossbauer properties of bismuth substituted nanosized cobalt ferrites through glycine nitrate synthesis method. J. Appl. Phys. 122(22), 224104 (2017)CrossRef K.L. Routray, D. Sanyal, D. Behera, Dielectric, magnetic, ferroelectric, and Mossbauer properties of bismuth substituted nanosized cobalt ferrites through glycine nitrate synthesis method. J. Appl. Phys. 122(22), 224104 (2017)CrossRef
26.
go back to reference A.L. Patterson, The Scherrer formula for X-ray particle size determination. Phys. Rev. 56(10), 978 (1939)CrossRef A.L. Patterson, The Scherrer formula for X-ray particle size determination. Phys. Rev. 56(10), 978 (1939)CrossRef
27.
go back to reference S. Anjum, A. Rashid, F. Bashir, S. Riaz, M. Pervaiz, R. Zia, Effect of Cu-doped nickel ferrites on structural, magnetic, and dielectric properties. IEEE Trans. Magn. 50(8), 1–4 (2014)CrossRef S. Anjum, A. Rashid, F. Bashir, S. Riaz, M. Pervaiz, R. Zia, Effect of Cu-doped nickel ferrites on structural, magnetic, and dielectric properties. IEEE Trans. Magn. 50(8), 1–4 (2014)CrossRef
28.
go back to reference B.R. Kumar, B. Hymavathi, X-ray peak profile analysis of solid-state sintered alumina doped zinc oxide ceramics by Williamson–Hall and size-strain plot methods. J. Asian Ceram. Soc. 5(2), 94–103 (2017)CrossRef B.R. Kumar, B. Hymavathi, X-ray peak profile analysis of solid-state sintered alumina doped zinc oxide ceramics by Williamson–Hall and size-strain plot methods. J. Asian Ceram. Soc. 5(2), 94–103 (2017)CrossRef
29.
go back to reference V. Senthilkumar, P. Vickraman, M. Jayachandran, C. Sanjeeviraja, Structural and electrical studies of nano structured Sn1 − xSbxO2 (x = 0.0, 1, 2.5, 4.5 and 7 at%) prepared by co-precipitation method. J. Mater. Sci. Mater. Electron. 21(4), 343–348 (2010)CrossRef V. Senthilkumar, P. Vickraman, M. Jayachandran, C. Sanjeeviraja, Structural and electrical studies of nano structured Sn1 − xSbxO2 (x = 0.0, 1, 2.5, 4.5 and 7 at%) prepared by co-precipitation method. J. Mater. Sci. Mater. Electron. 21(4), 343–348 (2010)CrossRef
30.
go back to reference R.R. Prabhu, M.A. Khadar, Study of optical phonon modes of CdS nanoparticles using Raman spectroscopy. Bull. Mater. Sci. 31(3), 511–515 (2008)CrossRef R.R. Prabhu, M.A. Khadar, Study of optical phonon modes of CdS nanoparticles using Raman spectroscopy. Bull. Mater. Sci. 31(3), 511–515 (2008)CrossRef
31.
go back to reference M. Srivastava, A.K. Ojha, S. Chaubey, A. Materny, Synthesis and optical characterization of nanocrystalline NiFe2O4 structures. J. Alloys Compd 481(1–2), 515–519 (2009)CrossRef M. Srivastava, A.K. Ojha, S. Chaubey, A. Materny, Synthesis and optical characterization of nanocrystalline NiFe2O4 structures. J. Alloys Compd 481(1–2), 515–519 (2009)CrossRef
32.
go back to reference S. Amiri, H. Shokrollahi, Magnetic and structural properties of RE doped Co-ferrite (RE = Nd, Eu, and Gd) nano-particles synthesized by co-precipitation. J. Magn. Magn. Mater. 345, 18–23 (2013)CrossRef S. Amiri, H. Shokrollahi, Magnetic and structural properties of RE doped Co-ferrite (RE = Nd, Eu, and Gd) nano-particles synthesized by co-precipitation. J. Magn. Magn. Mater. 345, 18–23 (2013)CrossRef
33.
go back to reference S.G. Kakade, Y.R. Ma, R.S. Devan, Y.D. Kolekar, C.V. Ramana, Dielectric, complex impedance, and electrical transport properties of erbium (Er3+) ion-substituted nanocrystalline, cobalt-rich ferrite (Co1.1Fe1.9 − xErxO4). J. Phys. Chem. C 120(10), 5682–5693 (2016)CrossRef S.G. Kakade, Y.R. Ma, R.S. Devan, Y.D. Kolekar, C.V. Ramana, Dielectric, complex impedance, and electrical transport properties of erbium (Er3+) ion-substituted nanocrystalline, cobalt-rich ferrite (Co1.1Fe1.9 − xErxO4). J. Phys. Chem. C 120(10), 5682–5693 (2016)CrossRef
34.
go back to reference G.H. Jonker, Analysis of the semiconducting properties of cobalt ferrite. J. Phys. Chem. Solids 9(2), 165–175 (1959)CrossRef G.H. Jonker, Analysis of the semiconducting properties of cobalt ferrite. J. Phys. Chem. Solids 9(2), 165–175 (1959)CrossRef
35.
go back to reference K.S. Cole, R.H. Cole, Dispersion and absorption in dielectrics I. Alternating current characteristics. J. Chem. Phys. 9(4), 341–351 (1941)CrossRef K.S. Cole, R.H. Cole, Dispersion and absorption in dielectrics I. Alternating current characteristics. J. Chem. Phys. 9(4), 341–351 (1941)CrossRef
36.
go back to reference J.C. Anderson, Dielectrics (Spottiswoode, Ballantyne and Co Ltd., London, 1964) J.C. Anderson, Dielectrics (Spottiswoode, Ballantyne and Co Ltd., London, 1964)
37.
go back to reference K.K. Bharathi, G. Markandeyulu, C.V. Ramana, Structural, magnetic, electrical, and magnetoelectric properties of Sm- and Ho-substituted nickel ferrites. J. Phys. Chem. C 115(2), 554–560 (2010)CrossRef K.K. Bharathi, G. Markandeyulu, C.V. Ramana, Structural, magnetic, electrical, and magnetoelectric properties of Sm- and Ho-substituted nickel ferrites. J. Phys. Chem. C 115(2), 554–560 (2010)CrossRef
38.
go back to reference N.B. Velhal, N.D. Patil, A.R. Shelke, N.G. Deshpande, V.R. Puri, Structural, dielectric and magnetic properties of nickel substituted cobalt ferrite nanoparticles: effect of nickel concentration. AIP Adv. 5(9), 097166 (2015)CrossRef N.B. Velhal, N.D. Patil, A.R. Shelke, N.G. Deshpande, V.R. Puri, Structural, dielectric and magnetic properties of nickel substituted cobalt ferrite nanoparticles: effect of nickel concentration. AIP Adv. 5(9), 097166 (2015)CrossRef
39.
go back to reference E. Manova, B. Kunev, D. Paneva, I. Mitov, L. Petrov, C. Estournès, C. D’Orléan, J.L. Rehspringer, M. Kurmoo, Mechano-synthesis, characterization, and magnetic properties of nanoparticles of cobalt ferrite, CoFe2O4. Chem. Mater. 16(26), 5689–5696 (2004)CrossRef E. Manova, B. Kunev, D. Paneva, I. Mitov, L. Petrov, C. Estournès, C. D’Orléan, J.L. Rehspringer, M. Kurmoo, Mechano-synthesis, characterization, and magnetic properties of nanoparticles of cobalt ferrite, CoFe2O4. Chem. Mater. 16(26), 5689–5696 (2004)CrossRef
40.
go back to reference C.G. Koops, On the dispersion of resistivity and dielectric constant of some semiconductors at audio frequencies. Phys. Rev. 83(1), 121 (1951)CrossRef C.G. Koops, On the dispersion of resistivity and dielectric constant of some semiconductors at audio frequencies. Phys. Rev. 83(1), 121 (1951)CrossRef
41.
go back to reference S.S. Jadhav, S.E. Shirsath, B.G. Toksha, D.R. Shengule, K.M. Jadhav, Structural and dielectric properties of Ni–Zn ferrite nanoparticles prepared by co-precipitation method. J. Optoelectron. Adv. Mater. 10(10), 2644–2648 (2008) S.S. Jadhav, S.E. Shirsath, B.G. Toksha, D.R. Shengule, K.M. Jadhav, Structural and dielectric properties of Ni–Zn ferrite nanoparticles prepared by co-precipitation method. J. Optoelectron. Adv. Mater. 10(10), 2644–2648 (2008)
42.
go back to reference J.C. Maxwell, A Treatise on Electricity and Magnetism (Clarendon Press, Oxford, 1881) J.C. Maxwell, A Treatise on Electricity and Magnetism (Clarendon Press, Oxford, 1881)
43.
go back to reference K.W. Wagner, Zurtheorie der unvollkommenen dielektrika. Ann. Phys. 40, 817–855 (1913)CrossRef K.W. Wagner, Zurtheorie der unvollkommenen dielektrika. Ann. Phys. 40, 817–855 (1913)CrossRef
44.
go back to reference N. Rezlescu, E. Rezlescu, Dielectric properties of copper containing ferrites. Phys. Status Solidi (a) 23(2), 575–582 (1974)CrossRef N. Rezlescu, E. Rezlescu, Dielectric properties of copper containing ferrites. Phys. Status Solidi (a) 23(2), 575–582 (1974)CrossRef
45.
go back to reference N. Sivakumar, A. Narayanasamy, C.N. Chinnasamy, B. Jeyadevan, Influence of thermal annealing on the dielectric properties and electrical relaxation behaviour in nanostructured CoFe2O4 ferrite. J. Phys. Condens. Matter 19(38), 386201 (2007)CrossRef N. Sivakumar, A. Narayanasamy, C.N. Chinnasamy, B. Jeyadevan, Influence of thermal annealing on the dielectric properties and electrical relaxation behaviour in nanostructured CoFe2O4 ferrite. J. Phys. Condens. Matter 19(38), 386201 (2007)CrossRef
46.
go back to reference K. Iwauchi, Dielectric properties of fine particles of Fe3O4 and some ferrites. Jpn. J. Appl. Phys. 10(11), 1520 (1971)CrossRef K. Iwauchi, Dielectric properties of fine particles of Fe3O4 and some ferrites. Jpn. J. Appl. Phys. 10(11), 1520 (1971)CrossRef
47.
go back to reference C. Murugesan, G. Chandrasekaran, Impact of Gd3+ substitution on the structural, magnetic and electrical properties of cobalt ferrite nanoparticles. RSC Adv. 5(90), 73714–73725 (2015)CrossRef C. Murugesan, G. Chandrasekaran, Impact of Gd3+ substitution on the structural, magnetic and electrical properties of cobalt ferrite nanoparticles. RSC Adv. 5(90), 73714–73725 (2015)CrossRef
48.
go back to reference E. Pervaiz, I.H. Gul, Influence of rare earth (Gd3+) on structural, gigahertz dielectric and magnetic studies of cobalt ferrite. J. Phys. Conf. Ser. 439(1), 012015 (2013)CrossRef E. Pervaiz, I.H. Gul, Influence of rare earth (Gd3+) on structural, gigahertz dielectric and magnetic studies of cobalt ferrite. J. Phys. Conf. Ser. 439(1), 012015 (2013)CrossRef
49.
go back to reference S. Chakrabarty, A. Dutta, M. Pal, Effect of Mn and Ni codoping on ion dynamics of nanocrystalline cobalt ferrite: a structure property correlation study. Electrochim. Acta 184, 70–79 (2015)CrossRef S. Chakrabarty, A. Dutta, M. Pal, Effect of Mn and Ni codoping on ion dynamics of nanocrystalline cobalt ferrite: a structure property correlation study. Electrochim. Acta 184, 70–79 (2015)CrossRef
50.
go back to reference R. Bergman, General susceptibility functions for relaxations in disordered systems. J. Appl. Phys. 88(3), 1356–1365 (2000)CrossRef R. Bergman, General susceptibility functions for relaxations in disordered systems. J. Appl. Phys. 88(3), 1356–1365 (2000)CrossRef
51.
go back to reference U.B. Shinde, S.E. Shirsath, S.M. Patange, S.P. Jadhav, K.M. Jadhav, V.L. Patil, Preparation and characterization of Co2+ substituted Li–Dy ferrite ceramics. Ceram. Int. 39(5), 5227–5234 (2013)CrossRef U.B. Shinde, S.E. Shirsath, S.M. Patange, S.P. Jadhav, K.M. Jadhav, V.L. Patil, Preparation and characterization of Co2+ substituted Li–Dy ferrite ceramics. Ceram. Int. 39(5), 5227–5234 (2013)CrossRef
Metadata
Title
Enhancement in conductivity and dielectric properties of rare-earth (Gd3+) substituted nano-sized CoFe2O4
Authors
Krutika L. Routray
Dhrubananda Behera
Publication date
28-06-2018
Publisher
Springer US
Published in
Journal of Materials Science: Materials in Electronics / Issue 16/2018
Print ISSN: 0957-4522
Electronic ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-018-9558-2

Other articles of this Issue 16/2018

Journal of Materials Science: Materials in Electronics 16/2018 Go to the issue