Skip to main content
Top
Published in: Journal of Materials Science 15/2018

24-04-2018 | Energy materials

Enhancement of electrochemical performance of lithium-ion battery by single-ion conducting polymer addition in ceramic-coated separator

Authors: Dan Li, Dejun Qin, Feng Nie, Lele Wen, Lixin Xue

Published in: Journal of Materials Science | Issue 15/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Single-ion conducting polymers have been widely reported in the literature as solid polymer electrolytes, but their low ionic conductivity has limited industrial applications at ambient temperature. Here, we employed a perfluoroalkyl sulfonamide-based single-ion conducting polymer-lithiated poly(perfluoroalkylsulfonyl)imide (LiPFSI) to promote the migration of free Li-ions and diminish cell polarization in lithium-ion batteries. After blending with Al2O3 powder, the LiPFSI/Al2O3 composite was coated on a commercial polyethylene separator. Adding the high surface energy of Al2O3 particles and the exceptional ionic conductivity of LiPFSI resulted in a LiPFSI/Al2O3 composite-coated separator with excellent wettability and low impedance. A LiFePO4/Li half-cell with this separator showed a highly improved charge–discharge cyclability up to 130 mAh/g that maintained 98% retention of the original reversible capacity after 220 charge–discharge cycles at a high current rate of 2 C (1 C = 170 mAh/g). Even at a high rate of 5 C, the cell capacity could be maintained above 100 mAh/g. Herein, we present a simple and effective method to optimize the separator with the LiPFSI/Al2O3 composite and thus improve the high rate charge–discharge performance of Li-ion batteries.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Goodenough JB, Park KS (2013) The Li-ion rechargeable battery: a perspective. J Am Chem Soc 135:1167–1176CrossRef Goodenough JB, Park KS (2013) The Li-ion rechargeable battery: a perspective. J Am Chem Soc 135:1167–1176CrossRef
2.
go back to reference Etacheri V, Marom R, Elazari R, Salitra G, Aurbach D (2011) Challenges in the development of advanced Li-ion batteries: a review. Energy Environ Sci 4:243–3262CrossRef Etacheri V, Marom R, Elazari R, Salitra G, Aurbach D (2011) Challenges in the development of advanced Li-ion batteries: a review. Energy Environ Sci 4:243–3262CrossRef
3.
go back to reference Scrosati B, Hassounab J, Sun YK (2011) Lithium-ion batteries. a look into the future. Energy Environ Sci 4:3287–3295CrossRef Scrosati B, Hassounab J, Sun YK (2011) Lithium-ion batteries. a look into the future. Energy Environ Sci 4:3287–3295CrossRef
4.
go back to reference Armand M, Tarascon JM (2008) Building better batteries. Nature 451:652–657CrossRef Armand M, Tarascon JM (2008) Building better batteries. Nature 451:652–657CrossRef
5.
go back to reference Pereira JN, Costa CM, Mendez SL (2015) Polymer composites and blends for battery separators: state of the art, challenges and future trends. J Power Sources 281:378–398CrossRef Pereira JN, Costa CM, Mendez SL (2015) Polymer composites and blends for battery separators: state of the art, challenges and future trends. J Power Sources 281:378–398CrossRef
6.
go back to reference Lee H, Yanilmaz M, Toprakci O, Fu K, Zhang X (2014) A review of recent developments in membrane separators for rechargeable lithium-ion batteries. Energy Environ Sci 7:3857–3886CrossRef Lee H, Yanilmaz M, Toprakci O, Fu K, Zhang X (2014) A review of recent developments in membrane separators for rechargeable lithium-ion batteries. Energy Environ Sci 7:3857–3886CrossRef
7.
8.
go back to reference Zhang Y, Wang Z, Xiang H, Shi P, Wang H (2016) A thin inorganic composite separator for lithium-ion batteries. J Membr Sci 509:19–26CrossRef Zhang Y, Wang Z, Xiang H, Shi P, Wang H (2016) A thin inorganic composite separator for lithium-ion batteries. J Membr Sci 509:19–26CrossRef
9.
go back to reference Fang J, Kelarakis A, Lin YW, Kang CY, Yang MH, Cheng CL, Wang Y, Giannelis EP, Tsai LD (2011) Nanoparticle-coated separators for lithium-ion batteries with advanced electrochemical performance. Phys Chem Chem Phys 13:14457–14461CrossRef Fang J, Kelarakis A, Lin YW, Kang CY, Yang MH, Cheng CL, Wang Y, Giannelis EP, Tsai LD (2011) Nanoparticle-coated separators for lithium-ion batteries with advanced electrochemical performance. Phys Chem Chem Phys 13:14457–14461CrossRef
10.
go back to reference Li B, Li Y, Dai D, Chang K, Tang H, Chang Z, Wang C, Yuan X, Wang H (2015) Facile and nonradiation pretreated membrane as a high conductive separator for Li-ion batteries. ACS Appl Mater Interfaces 7:20184–20189CrossRef Li B, Li Y, Dai D, Chang K, Tang H, Chang Z, Wang C, Yuan X, Wang H (2015) Facile and nonradiation pretreated membrane as a high conductive separator for Li-ion batteries. ACS Appl Mater Interfaces 7:20184–20189CrossRef
11.
go back to reference Lee JY, Lee YM, Bhattacharya B, Nho YC, Park JK (2009) Separator grafted with siloxane by electron beam irradiation for lithium secondary batteries. Electrochim Acta 54:4312–4315CrossRef Lee JY, Lee YM, Bhattacharya B, Nho YC, Park JK (2009) Separator grafted with siloxane by electron beam irradiation for lithium secondary batteries. Electrochim Acta 54:4312–4315CrossRef
12.
go back to reference Ryou MH, Lee Y, Park JK, Choi J (2011) Mussel-inspired polydopamine-treated polyethylene separators for high-power Li-ion batteries. Adv Mater 23:3066–3070CrossRef Ryou MH, Lee Y, Park JK, Choi J (2011) Mussel-inspired polydopamine-treated polyethylene separators for high-power Li-ion batteries. Adv Mater 23:3066–3070CrossRef
13.
go back to reference Kim JY, Lee Y, Lim DY (2009) Plasma-modified polyethylene membrane as a separator for lithium-ion polymer battery. Electrochim Acta 54:3714–3719CrossRef Kim JY, Lee Y, Lim DY (2009) Plasma-modified polyethylene membrane as a separator for lithium-ion polymer battery. Electrochim Acta 54:3714–3719CrossRef
14.
go back to reference Zhang J, Liu Z, Kong Q, Zhang C, Pang S, Yue L, Wang X, Yao J, Cui G (2013) Renewable and superior thermal-resistant cellulose-based composite nonwoven as lithium-ion battery separator. ACS Appl Mater Interfaces 5:128–134CrossRef Zhang J, Liu Z, Kong Q, Zhang C, Pang S, Yue L, Wang X, Yao J, Cui G (2013) Renewable and superior thermal-resistant cellulose-based composite nonwoven as lithium-ion battery separator. ACS Appl Mater Interfaces 5:128–134CrossRef
15.
go back to reference Cheruvally G, Kima JK, Choi JW, Ahn JH, Shin YJ, Manuel J, Raghavan P, Kim KW, Ahn HJ, Choi DS, Song CE (2007) Electrospun polymer membrane activated with room temperature ionic liquid: novel polymer electrolytes for lithium batteries. J Power Sources 172:863–869CrossRef Cheruvally G, Kima JK, Choi JW, Ahn JH, Shin YJ, Manuel J, Raghavan P, Kim KW, Ahn HJ, Choi DS, Song CE (2007) Electrospun polymer membrane activated with room temperature ionic liquid: novel polymer electrolytes for lithium batteries. J Power Sources 172:863–869CrossRef
16.
go back to reference Liu K, Liu W, Qiu Y, Kong B, Sun Y, Chen Z, Zhuo D, Lin D, Cui Y (2017) Electrospun core-shell microfiber separator with thermal-triggered flame-retardant properties for lithium-ion batteries. Sci Adv 3:e1601978CrossRef Liu K, Liu W, Qiu Y, Kong B, Sun Y, Chen Z, Zhuo D, Lin D, Cui Y (2017) Electrospun core-shell microfiber separator with thermal-triggered flame-retardant properties for lithium-ion batteries. Sci Adv 3:e1601978CrossRef
17.
go back to reference Zhu X, Jiang X, Ai X, Yang H, Cao Y (2005) A highly thermostable ceramic-grafted microporous polyethylene separator for safer lithium-ion batteries. ACS Appl Mater Interfaces 7:24119–24126CrossRef Zhu X, Jiang X, Ai X, Yang H, Cao Y (2005) A highly thermostable ceramic-grafted microporous polyethylene separator for safer lithium-ion batteries. ACS Appl Mater Interfaces 7:24119–24126CrossRef
18.
go back to reference Jeong H S, Lee S Y (2011) Closely packed SiO2 nanoparticles/poly(vinylidene fluoride-hexafluoropropylene) layers-coated polyethylene separators for lithium-ion batteries. J Power Source 196:6716-6722 Jeong H S, Lee S Y (2011) Closely packed SiO2 nanoparticles/poly(vinylidene fluoride-hexafluoropropylene) layers-coated polyethylene separators for lithium-ion batteries. J Power Source 196:6716-6722
19.
go back to reference Jung YS, Cavanagh AS, Gedvilas L, Widjonarko NE, Scott ID, Lee SH, Kim GH, George SM, Dillon AC (2012) Improved functionality of lithium-ion batteries enabled by atomic layer deposition on the porous microstructure of polymer separators and coating electrodes. Adv Energy Mater 2:1022–1027CrossRef Jung YS, Cavanagh AS, Gedvilas L, Widjonarko NE, Scott ID, Lee SH, Kim GH, George SM, Dillon AC (2012) Improved functionality of lithium-ion batteries enabled by atomic layer deposition on the porous microstructure of polymer separators and coating electrodes. Adv Energy Mater 2:1022–1027CrossRef
20.
go back to reference Choi J, Kim SH, Kim DW (2010) Enhancement of thermal stability and cycling performance in lithium-ion cells through the use of ceramic-coated separators. J Power Sources 195:6192–6196CrossRef Choi J, Kim SH, Kim DW (2010) Enhancement of thermal stability and cycling performance in lithium-ion cells through the use of ceramic-coated separators. J Power Sources 195:6192–6196CrossRef
21.
go back to reference Fu D, Luan B, Argue S, Bureau MN, Davidson IJ (2012) Nano SiO2 particle formation and deposition on polypropylene separators for lithium-ion batteries. J Power Sources 206:325–333CrossRef Fu D, Luan B, Argue S, Bureau MN, Davidson IJ (2012) Nano SiO2 particle formation and deposition on polypropylene separators for lithium-ion batteries. J Power Sources 206:325–333CrossRef
22.
go back to reference Choi ES, Lee SY (2011) Particle size-dependent, tunable porous structure of a SiO2/poly(vinylidene fluoride-hexafluoropropylene)-coated poly(ethylene terephthalate) nonwoven composite separator for a lithium-ion battery. J Mater Chem 21:14747–14754CrossRef Choi ES, Lee SY (2011) Particle size-dependent, tunable porous structure of a SiO2/poly(vinylidene fluoride-hexafluoropropylene)-coated poly(ethylene terephthalate) nonwoven composite separator for a lithium-ion battery. J Mater Chem 21:14747–14754CrossRef
23.
go back to reference Ma Q, Zhang H, Zhou CW, Zheng LP, Cheng PF, Nie J, Feng WF, Hu YS, Li H, Huang XJ, Chen LQ, Armand M, Zhou ZB (2016) A single lithium-ion conducting polymer electrolytes based on a super-delocalized polyanion. Angew Chem Int Ed 55:2521–2525CrossRef Ma Q, Zhang H, Zhou CW, Zheng LP, Cheng PF, Nie J, Feng WF, Hu YS, Li H, Huang XJ, Chen LQ, Armand M, Zhou ZB (2016) A single lithium-ion conducting polymer electrolytes based on a super-delocalized polyanion. Angew Chem Int Ed 55:2521–2525CrossRef
24.
go back to reference Porcarelli L, Shaplov AS, Salsamendi M, Nair JR, Vygodskii YS, Mecerreyes D, Gerbaldi C (2016) Single-ion block copoly(ionic liquid)s as electrolytes for all-solid state lithium batteries. ACS Appl Mater Interfaces 8:10350–10359CrossRef Porcarelli L, Shaplov AS, Salsamendi M, Nair JR, Vygodskii YS, Mecerreyes D, Gerbaldi C (2016) Single-ion block copoly(ionic liquid)s as electrolytes for all-solid state lithium batteries. ACS Appl Mater Interfaces 8:10350–10359CrossRef
25.
go back to reference Bouchet R, Maria S, Meziane R, Aboulaich A, Lienafa L, Bonnet JP, Phan NT, Bertin D, Gigmes D, Devaux D, Denoyel R, Armand M (2013) Single-ion BAB triblock copolymers as highly efficient electrolytes for lithium-metal batteries. Nat Mater 12:452–457CrossRef Bouchet R, Maria S, Meziane R, Aboulaich A, Lienafa L, Bonnet JP, Phan NT, Bertin D, Gigmes D, Devaux D, Denoyel R, Armand M (2013) Single-ion BAB triblock copolymers as highly efficient electrolytes for lithium-metal batteries. Nat Mater 12:452–457CrossRef
26.
go back to reference Bernhard R, Latini A, Panero S, Scrosati B, Hassoun J (2013) Poly(ethylenglycol)dimethylether–lithium bis(trifluoromethanesulfonyl)imide, PEG500DME-LiTFSI, as high viscosity electrolyte for lithium ion batteries. J Power Sources 226:329–333CrossRef Bernhard R, Latini A, Panero S, Scrosati B, Hassoun J (2013) Poly(ethylenglycol)dimethylether–lithium bis(trifluoromethanesulfonyl)imide, PEG500DME-LiTFSI, as high viscosity electrolyte for lithium ion batteries. J Power Sources 226:329–333CrossRef
27.
go back to reference Shi Q, Xue L, Wei Z, Liu F, Du X, DesMarteau DD (2013) Improvement in LiFePO4–Li battery performance via poly(perfluoroalkylsulfonyl)imide (PFSI) based ionene composite binder. J Mater Chem A 1:15016–15021CrossRef Shi Q, Xue L, Wei Z, Liu F, Du X, DesMarteau DD (2013) Improvement in LiFePO4–Li battery performance via poly(perfluoroalkylsulfonyl)imide (PFSI) based ionene composite binder. J Mater Chem A 1:15016–15021CrossRef
28.
go back to reference Cao C, Li Y, Feng Y, Long P, An H, Qin C, Han J, Li S, Feng W (2017) A sulfonimide-based alternating copolymer as a single-ion polymer electrolyte for high-performance lithium-ion batteries. J Mater Chem A 5:22519–22526CrossRef Cao C, Li Y, Feng Y, Long P, An H, Qin C, Han J, Li S, Feng W (2017) A sulfonimide-based alternating copolymer as a single-ion polymer electrolyte for high-performance lithium-ion batteries. J Mater Chem A 5:22519–22526CrossRef
29.
go back to reference Strauss E, Menkin S, Golodnitsky D (2017) On the way to high-conductivity single lithium-ion conductors. J Solid State Electrochem 21(1):1–27CrossRef Strauss E, Menkin S, Golodnitsky D (2017) On the way to high-conductivity single lithium-ion conductors. J Solid State Electrochem 21(1):1–27CrossRef
30.
go back to reference Li J, Huang Y, Zhang S, Jia W, Wang X, Guo T (2017) Decoration of silica nanoparticles on polypropylene separator for lithium–sulfur batteries. ACS Appl Mater Interfaces 9:7499–7504CrossRef Li J, Huang Y, Zhang S, Jia W, Wang X, Guo T (2017) Decoration of silica nanoparticles on polypropylene separator for lithium–sulfur batteries. ACS Appl Mater Interfaces 9:7499–7504CrossRef
31.
go back to reference Xue L, DesMarteau DD, Pennington WT (1997) Perfectly staggered and twisted difluoromethylene groups in perfluoroalkyl chains: structure of M[C4F9SO2NSO2C4F9] (M = Na+, K+). Angew Chem Int Ed 36:1331–1333CrossRef Xue L, DesMarteau DD, Pennington WT (1997) Perfectly staggered and twisted difluoromethylene groups in perfluoroalkyl chains: structure of M[C4F9SO2NSO2C4F9] (M = Na+, K+). Angew Chem Int Ed 36:1331–1333CrossRef
32.
go back to reference Wei Z, Xue L, Nie F, Sheng J, Shi Q, Zhao X (2014) Study of sulfonated polyether ether ketone with pendant lithiated fluorinated sulfonic groups as ion conducting binder in lithium-ion batteries. J Power Sources 256:28–31CrossRef Wei Z, Xue L, Nie F, Sheng J, Shi Q, Zhao X (2014) Study of sulfonated polyether ether ketone with pendant lithiated fluorinated sulfonic groups as ion conducting binder in lithium-ion batteries. J Power Sources 256:28–31CrossRef
33.
go back to reference Qin D, Xue L, Du B, Wang J, Nie F, Wen L (2015) Flexible fluorine containing ionic binders to mitigate the negative impact caused by the drastic volume fluctuation from silicon nano-particles in high capacity anodes of lithium-ion batteries. J Mater Chem A 3:10928–10934CrossRef Qin D, Xue L, Du B, Wang J, Nie F, Wen L (2015) Flexible fluorine containing ionic binders to mitigate the negative impact caused by the drastic volume fluctuation from silicon nano-particles in high capacity anodes of lithium-ion batteries. J Mater Chem A 3:10928–10934CrossRef
34.
go back to reference Shi Q, Xue L, Qin D, Du B, Wang J, Chen L (2014) Single ion solid-state composite electrolytes with high electrochemical stability based on a poly(perfluoroalkylsulfonyl)-imide ionene polymer. J Mater Chem A 2:15952–15957CrossRef Shi Q, Xue L, Qin D, Du B, Wang J, Chen L (2014) Single ion solid-state composite electrolytes with high electrochemical stability based on a poly(perfluoroalkylsulfonyl)-imide ionene polymer. J Mater Chem A 2:15952–15957CrossRef
35.
go back to reference Bruce PG, Vincent CA (1978) Steady-state current flow in solid binary electrolyte cells. J Electroanal Chem 225:1–17CrossRef Bruce PG, Vincent CA (1978) Steady-state current flow in solid binary electrolyte cells. J Electroanal Chem 225:1–17CrossRef
36.
go back to reference Zhang Z, Hu L, Wu H, Weng W, Koh M, Redfern PC, Curtissb LA, Aminead K (2013) Fluorinated electrolytes for 5 V lithium-ion battery chemistry. Energy Environ Sci 6:1806–1810CrossRef Zhang Z, Hu L, Wu H, Weng W, Koh M, Redfern PC, Curtissb LA, Aminead K (2013) Fluorinated electrolytes for 5 V lithium-ion battery chemistry. Energy Environ Sci 6:1806–1810CrossRef
37.
go back to reference Jin Z, Xie K, Hong X (2013) Synthesis and electrochemical properties of a perfluorinated ionomer with lithium sulfonyl dicyanomethide functional groups. J Mater Chem A 1:342–347CrossRef Jin Z, Xie K, Hong X (2013) Synthesis and electrochemical properties of a perfluorinated ionomer with lithium sulfonyl dicyanomethide functional groups. J Mater Chem A 1:342–347CrossRef
38.
go back to reference Mostafavi M, Douki T (2008) Radiation chemistry: from basics to applications in material and life science. EDP Sciences, Les Ulis Mostafavi M, Douki T (2008) Radiation chemistry: from basics to applications in material and life science. EDP Sciences, Les Ulis
39.
go back to reference Zhu Y, Wang F, Liu L, Xiao S, Chang Z, Wu Y (2013) Composite of a nonwoven fabric with poly(vinylidene fluoride) as a gel membrane of high safety for lithium ion battery. Energy Environ Sci 6:618–624CrossRef Zhu Y, Wang F, Liu L, Xiao S, Chang Z, Wu Y (2013) Composite of a nonwoven fabric with poly(vinylidene fluoride) as a gel membrane of high safety for lithium ion battery. Energy Environ Sci 6:618–624CrossRef
40.
go back to reference Yanilmaz M, Lu Y, Dirican M, Fu K, Zhang X (2014) Nanoparticle-on-nanofiber hybrid membrane separators for lithium-ion batteries via combining electrospraying and electrospinning techniques. J Membr Sci 456:57–65CrossRef Yanilmaz M, Lu Y, Dirican M, Fu K, Zhang X (2014) Nanoparticle-on-nanofiber hybrid membrane separators for lithium-ion batteries via combining electrospraying and electrospinning techniques. J Membr Sci 456:57–65CrossRef
41.
go back to reference Diederichsen KM, McShane EJ, McClosky BD (2017) Promising routes to a high Li+ transference number electrolyte for lithium ion batteries. ACS Energy Lett 2:2563–2575CrossRef Diederichsen KM, McShane EJ, McClosky BD (2017) Promising routes to a high Li+ transference number electrolyte for lithium ion batteries. ACS Energy Lett 2:2563–2575CrossRef
42.
go back to reference Zhang X, Li Y, Khan SA, Fedkiw PS (2004) Inhibition of lithium dendrites by fumed silica-based composite electrolytes. J Electrochem Soc 151:A1257–A1263CrossRef Zhang X, Li Y, Khan SA, Fedkiw PS (2004) Inhibition of lithium dendrites by fumed silica-based composite electrolytes. J Electrochem Soc 151:A1257–A1263CrossRef
43.
go back to reference Kim KJ, Park MS, Yim T, Yu JS, Kim YJ (2014) Electron beam-irradiated polyethylene membrane with improved electrochemical and thermal properties for lithium-ion batteries. J Appl Electrochem 44:345–352CrossRef Kim KJ, Park MS, Yim T, Yu JS, Kim YJ (2014) Electron beam-irradiated polyethylene membrane with improved electrochemical and thermal properties for lithium-ion batteries. J Appl Electrochem 44:345–352CrossRef
Metadata
Title
Enhancement of electrochemical performance of lithium-ion battery by single-ion conducting polymer addition in ceramic-coated separator
Authors
Dan Li
Dejun Qin
Feng Nie
Lele Wen
Lixin Xue
Publication date
24-04-2018
Publisher
Springer US
Published in
Journal of Materials Science / Issue 15/2018
Print ISSN: 0022-2461
Electronic ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-018-2353-x

Other articles of this Issue 15/2018

Journal of Materials Science 15/2018 Go to the issue

Premium Partners