Skip to main content
Top
Published in:

01-05-2019 | ORIGINAL PAPER

Enhancement of stiffness and dynamic mechanical properties of polymers using single-walled-carbon-nanotube – a multiscale finite element formulation study

Authors: Jorge Alberto Palacios, Rajamohan Ganesan

Published in: Journal of Polymer Research | Issue 5/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The static and dynamic mechanical properties of polymeric materials can greatly be enhanced by using carbon nanotubes as reinforcement material. However, studies still need to be carried out to characterize the dynamic mechanical properties of the Carbon-Nanotube-Reinforced-Polymer (CNRP) material. Experimental investigations for this purpose have severe limitations and, in most cases, appropriate and reliable experimental work could not be carried out. Computational modelling and simulation encompassing multiscale material behavior provides an alternate approach to study the material behavior. The objective of the present work is to study the enhancement of stiffness and dynamic mechanical properties of Carbon-Nanotube-Reinforced-Polymer (CNRP) material by using a 3D multiscale finite-element model of the representative volume element of the CNRP material. A composite material model consisting of a polymer matrix, an interface region, and a Single-Walled Carbon Nanotube (SWCNT) is constructed for this purpose. The polymer matrix is modeled with the Mooney-Rivlin strain energy function to calculate its non-linear response and the interface region is modeled via van der Waals links. The SWCNT is modeled as a space frame structure by using the Morse potential and as a thin shell model based on Donnell’s Shell Theory. The stiffness response of the CNRP is calculated and the natural frequencies of the CNRP are also determined. The viscoplastic behavior of the polymer matrix material is considered and the rate-dependent characteristics of the CNRP are studied. The damping properties of the CNRP are investigated based on its viscous and structural damping mechanisms. The effectiveness of the SWCNT reinforcement is quantified and characterized.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Anand P, Rajesh D, Senthil Kumar M, Saran Raj I (2018) Investigations on the performances of treated jute/Kenaf hybrid natural fiber reinforced epoxy composite. J Polym Res 25(94):1–9 Anand P, Rajesh D, Senthil Kumar M, Saran Raj I (2018) Investigations on the performances of treated jute/Kenaf hybrid natural fiber reinforced epoxy composite. J Polym Res 25(94):1–9
2.
go back to reference Wang X, Wang L, Lian W, Zhou A, Cao X, Hu Q (2018) The influence of carbon spheres on thermal and mechanical properties of epoxy composites. J Polym Res 25(223):1–7 Wang X, Wang L, Lian W, Zhou A, Cao X, Hu Q (2018) The influence of carbon spheres on thermal and mechanical properties of epoxy composites. J Polym Res 25(223):1–7
3.
go back to reference Yuan R, Liu H, Yu P, Wang H, Liu J (2018) Enhancement of adhesion, mechanical strength and anti-corrosion by multilayer superhydrophobic coating embedded electroactive PANI/CNF nanocomposite. J Polym Res 25(151):1–14 Yuan R, Liu H, Yu P, Wang H, Liu J (2018) Enhancement of adhesion, mechanical strength and anti-corrosion by multilayer superhydrophobic coating embedded electroactive PANI/CNF nanocomposite. J Polym Res 25(151):1–14
4.
go back to reference Kostromin S, Saprykina N, Vlasova E, Ţîmpu D, Cozan V, Bronnikov S (2017) Nanocomposite polyazomethine/reduced graphene oxide with enhanced conductivity. J Polym Res 24(211):1–12 Kostromin S, Saprykina N, Vlasova E, Ţîmpu D, Cozan V, Bronnikov S (2017) Nanocomposite polyazomethine/reduced graphene oxide with enhanced conductivity. J Polym Res 24(211):1–12
5.
go back to reference Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354(568):56–58CrossRef Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354(568):56–58CrossRef
6.
go back to reference Pal G, Kumar S (2016) Modeling of carbon nanotubes and carbon nanotube–polymer composites. Prog Aerosp Sci 80:33–58CrossRef Pal G, Kumar S (2016) Modeling of carbon nanotubes and carbon nanotube–polymer composites. Prog Aerosp Sci 80:33–58CrossRef
7.
go back to reference Shan Z, Gokhale AM (2002) Representative volume element for non-uniform micro-structure. Comput Mater Sci 24:361–379CrossRef Shan Z, Gokhale AM (2002) Representative volume element for non-uniform micro-structure. Comput Mater Sci 24:361–379CrossRef
8.
go back to reference Li C, Chou T-W (2003) A structural mechanics approach for the analysis of carbon nanotubes. Int J Solids Struct 40(10):2487–2499CrossRef Li C, Chou T-W (2003) A structural mechanics approach for the analysis of carbon nanotubes. Int J Solids Struct 40(10):2487–2499CrossRef
9.
go back to reference Li C, Chou T (2006) Multiscale modeling of compressive behavior of carbon nanotube/polymer composites. Compos Sci Technol 66(14):2409–2414CrossRef Li C, Chou T (2006) Multiscale modeling of compressive behavior of carbon nanotube/polymer composites. Compos Sci Technol 66(14):2409–2414CrossRef
10.
go back to reference Georgantzinos S, Giannopoulos G, Anifantis N (2009) Investigation of stress–strain behavior of single walled carbon nanotube/rubber composites by a multi-scale finite element method. Theor Appl Fract Mech 52(3):158–164CrossRef Georgantzinos S, Giannopoulos G, Anifantis N (2009) Investigation of stress–strain behavior of single walled carbon nanotube/rubber composites by a multi-scale finite element method. Theor Appl Fract Mech 52(3):158–164CrossRef
11.
go back to reference Mohammadpour E, Awang M, Kakooei S, Akilb HM (2014) Modeling the tensile stress-strain response of carbon nanotube/polypropylene nanocomposites using nonlinear representative volume element. Mater Des 58(1):36–42CrossRef Mohammadpour E, Awang M, Kakooei S, Akilb HM (2014) Modeling the tensile stress-strain response of carbon nanotube/polypropylene nanocomposites using nonlinear representative volume element. Mater Des 58(1):36–42CrossRef
12.
go back to reference Wernik JM, Meguid SA (2011) Multiscale modeling of the nonlinear response of nano-reinforced polymers. Acta Mech 217(1–2):1–16CrossRef Wernik JM, Meguid SA (2011) Multiscale modeling of the nonlinear response of nano-reinforced polymers. Acta Mech 217(1–2):1–16CrossRef
13.
go back to reference Sadek EM, El-Nashar DE, Ward AA, Ahmed SM (2018) Study on the properties of multi-walled carbon nanotubes reinforced poly (vinyl alcohol) composites. J Polym Res 25(249):1–13 Sadek EM, El-Nashar DE, Ward AA, Ahmed SM (2018) Study on the properties of multi-walled carbon nanotubes reinforced poly (vinyl alcohol) composites. J Polym Res 25(249):1–13
14.
go back to reference Latibari ST, Mehrali M, Mottahedin L, Fereidoon A, Cornelis Metselaar HS (2013) Investigation of interfacial damping nanotube-based composite. Compos Part B 50:354–361CrossRef Latibari ST, Mehrali M, Mottahedin L, Fereidoon A, Cornelis Metselaar HS (2013) Investigation of interfacial damping nanotube-based composite. Compos Part B 50:354–361CrossRef
15.
go back to reference Jamal-Omidi M, ShayanMehr M, Mosalmani R (2015) Investigating the effect of interphase and surrounding resin on carbon nanotube free vibration behavior. Physica E 68:42–52CrossRef Jamal-Omidi M, ShayanMehr M, Mosalmani R (2015) Investigating the effect of interphase and surrounding resin on carbon nanotube free vibration behavior. Physica E 68:42–52CrossRef
16.
go back to reference Qi-lin X, Xin T (2017) Effect of polymer matrix and nanofiller on non-bonding interfacial properties of nanocomposites. J Polym Res 24(15):1–9 Qi-lin X, Xin T (2017) Effect of polymer matrix and nanofiller on non-bonding interfacial properties of nanocomposites. J Polym Res 24(15):1–9
17.
go back to reference Ogden RW (1997) Non-linear elastic deformations. Dover Publications, New York Ogden RW (1997) Non-linear elastic deformations. Dover Publications, New York
18.
go back to reference Donnell LH (1976) Beams, plates and shells. McGraw-Hill Book Company, New York Donnell LH (1976) Beams, plates and shells. McGraw-Hill Book Company, New York
19.
go back to reference Li C, Chou TW (2003) Elastic moduli of multi-walled carbon nanotubes and the effect of Van der Waals forces. Compos Sci Technol 63(11):1517–1524CrossRef Li C, Chou TW (2003) Elastic moduli of multi-walled carbon nanotubes and the effect of Van der Waals forces. Compos Sci Technol 63(11):1517–1524CrossRef
20.
go back to reference El-Qoubaa Z, Othman R (2015) Characterization and modeling of the strain rate sensitivity of polyetheretherketone’s compressive yield stress. Mater Des 66:336–345CrossRef El-Qoubaa Z, Othman R (2015) Characterization and modeling of the strain rate sensitivity of polyetheretherketone’s compressive yield stress. Mater Des 66:336–345CrossRef
21.
go back to reference Kołoczek J, Kwon Y-K, Burian A (2001) Characterization of spatial correlations in carbon nanotubes-modelling studies. J Alloys Compd 328(1–2):222–225CrossRef Kołoczek J, Kwon Y-K, Burian A (2001) Characterization of spatial correlations in carbon nanotubes-modelling studies. J Alloys Compd 328(1–2):222–225CrossRef
22.
go back to reference Lee JH, Lee BS (2012) Modal analysis of carbon nanotubes and Nanocones using FEM. Comput Mater Sci 51(1):30–42CrossRef Lee JH, Lee BS (2012) Modal analysis of carbon nanotubes and Nanocones using FEM. Comput Mater Sci 51(1):30–42CrossRef
23.
go back to reference Yakobson BI, Brabec CJ, Bernholc J (1996) Nanomechanics of carbon tubes: instabilities beyond linear response. Phys Rev Lett 76(14):2511–2514CrossRef Yakobson BI, Brabec CJ, Bernholc J (1996) Nanomechanics of carbon tubes: instabilities beyond linear response. Phys Rev Lett 76(14):2511–2514CrossRef
24.
go back to reference Gupta SS, Bosco FG, Batra BC (2014) Wall thickness and elastic moduli of single-walled carbon nanotubes from frequencies of axial, torsional and inextensional modes of vibration. Comput Mater Sci 47(4):1049–1059CrossRef Gupta SS, Bosco FG, Batra BC (2014) Wall thickness and elastic moduli of single-walled carbon nanotubes from frequencies of axial, torsional and inextensional modes of vibration. Comput Mater Sci 47(4):1049–1059CrossRef
25.
go back to reference Arriaga A, Pagaldai R, Zaldua AM, Chrysostomou A, O’Brien M (2010) Impact testing and simulation of a polypropylene component. Correlation with strain rate sensitive constitutive models in ANSYS and LS-DYNA. Polym Test 29:170–180CrossRef Arriaga A, Pagaldai R, Zaldua AM, Chrysostomou A, O’Brien M (2010) Impact testing and simulation of a polypropylene component. Correlation with strain rate sensitive constitutive models in ANSYS and LS-DYNA. Polym Test 29:170–180CrossRef
26.
go back to reference Perzyna P (1966) Fundamental problems in viscoplasticity. Adv Appl Mech 10(2):243–377CrossRef Perzyna P (1966) Fundamental problems in viscoplasticity. Adv Appl Mech 10(2):243–377CrossRef
27.
go back to reference Galliot C, Luchsinger RH (2011) Uniaxial and biaxial mechanical properties of ETFE foils. Polym Test 30(4):356–365CrossRef Galliot C, Luchsinger RH (2011) Uniaxial and biaxial mechanical properties of ETFE foils. Polym Test 30(4):356–365CrossRef
28.
go back to reference Vasiukov D, Panier S, Hachemi A (2015) Non-linear material modeling of fiber-reinforced polymers based on coupled viscoelasticity–viscoplasticity with anisotropic continuous damage mechanics. Compos Struct 132:527–535CrossRef Vasiukov D, Panier S, Hachemi A (2015) Non-linear material modeling of fiber-reinforced polymers based on coupled viscoelasticity–viscoplasticity with anisotropic continuous damage mechanics. Compos Struct 132:527–535CrossRef
29.
go back to reference Carfagni M, Lenzi E, Pierini M (1998) The loss factor as a measure of mechanical damping," in Proceedings of the 16th International Modal Analysis Conference, Santa Barbara Carfagni M, Lenzi E, Pierini M (1998) The loss factor as a measure of mechanical damping," in Proceedings of the 16th International Modal Analysis Conference, Santa Barbara
30.
go back to reference Rao SS (2011) Mechanical vibrations. Prentice Hall, Upper Saddle River Rao SS (2011) Mechanical vibrations. Prentice Hall, Upper Saddle River
31.
go back to reference Kireitseu M, Hui D, Tomlinson G (2008) Advanced shock-resistant and vibration damping of nanoparticle-reinforced composite material. Compos Part B 39(1):128–138CrossRef Kireitseu M, Hui D, Tomlinson G (2008) Advanced shock-resistant and vibration damping of nanoparticle-reinforced composite material. Compos Part B 39(1):128–138CrossRef
32.
go back to reference Zhou X, Shin E, Wang KW, Bakis CE (2004) Interfacial damping characteristics of carbon nanotube-based composites. Compos Sci Technol 64(15):2425–2437CrossRef Zhou X, Shin E, Wang KW, Bakis CE (2004) Interfacial damping characteristics of carbon nanotube-based composites. Compos Sci Technol 64(15):2425–2437CrossRef
33.
go back to reference Golub GH, Underwood R (1977) The block Lanczos method for computing eigenvalues, in Proceedings of a Symposium Conducted by the Mathematics Research Center, the University of Wisconsin–Madison, , Wisconsin–Madison Golub GH, Underwood R (1977) The block Lanczos method for computing eigenvalues, in Proceedings of a Symposium Conducted by the Mathematics Research Center, the University of Wisconsin–Madison, , Wisconsin–Madison
34.
go back to reference Alva A, Raja S (2014) Damping characteristics of epoxy-reinforced composite with multiwall carbon nanotubes. Mech Adv Mater Struct 21(3):197–206CrossRef Alva A, Raja S (2014) Damping characteristics of epoxy-reinforced composite with multiwall carbon nanotubes. Mech Adv Mater Struct 21(3):197–206CrossRef
35.
go back to reference Rajoria H, Jalili N (2005) Passive vibration damping enhancement using carbon nanotube-epoxy reinforced composites. Compos Sci Technol 65:2079–2093CrossRef Rajoria H, Jalili N (2005) Passive vibration damping enhancement using carbon nanotube-epoxy reinforced composites. Compos Sci Technol 65:2079–2093CrossRef
36.
go back to reference Soroka WW (1949) Note on the relations between viscous and structural damping coefficients. AIAA 16(7):409–410 Soroka WW (1949) Note on the relations between viscous and structural damping coefficients. AIAA 16(7):409–410
Metadata
Title
Enhancement of stiffness and dynamic mechanical properties of polymers using single-walled-carbon-nanotube – a multiscale finite element formulation study
Authors
Jorge Alberto Palacios
Rajamohan Ganesan
Publication date
01-05-2019
Publisher
Springer Netherlands
Published in
Journal of Polymer Research / Issue 5/2019
Print ISSN: 1022-9760
Electronic ISSN: 1572-8935
DOI
https://doi.org/10.1007/s10965-019-1774-9

Other articles of this Issue 5/2019

Journal of Polymer Research 5/2019 Go to the issue

Premium Partners