Skip to main content
Top
Published in: Journal of Scientific Computing 2/2024

01-02-2024

Enhancing Electrical Impedance Tomography Reconstruction Using Learned Half-Quadratic Splitting Networks with Anderson Acceleration

Authors: Guixian Xu, Huihui Wang, Qingping Zhou

Published in: Journal of Scientific Computing | Issue 2/2024

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Electrical Impedance Tomography (EIT) is widely applied in medical diagnosis, industrial inspection, and environmental monitoring. Combining the physical principles of the imaging system with the advantages of data-driven deep learning networks, physics-embedded deep unrolling networks have recently emerged as a promising solution in computational imaging. However, the inherent nonlinear and ill-posed properties of EIT image reconstruction still present challenges to existing methods in terms of accuracy and stability. To tackle this challenge, we propose the learned half-quadratic splitting (HQSNet) algorithm for incorporating physics into learning-based EIT imaging. We then apply Anderson acceleration (AA) to the HQSNet algorithm, denoted as AA-HQSNet, which can be interpreted as AA applied to the Gauss-Newton step and the learned proximal gradient descent step of the HQSNet, respectively. AA is a widely-used technique for accelerating the convergence of fixed-point iterative algorithms and has gained significant interest in numerical optimization and machine learning. However, the technique has received little attention in the inverse problems community thus far. Employing AA enhances the convergence rate compared to the standard HQSNet while simultaneously avoiding artifacts in the reconstructions. Lastly, we conduct rigorous numerical and visual experiments to show that the AA module strengthens the HQSNet, leading to robust, accurate, and considerably superior reconstructions compared to state-of-the-art methods. Our Anderson acceleration scheme to enhance HQSNet is generic and can be applied to improve the performance of various physics-embedded deep learning methods.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Adler, A., Holder, D.: Electrical Impedance Tomography: Methods, History and Applications. CRC Press, Boca Raton (2021)CrossRef Adler, A., Holder, D.: Electrical Impedance Tomography: Methods, History and Applications. CRC Press, Boca Raton (2021)CrossRef
2.
go back to reference Anderson, D.G.M.: Comments on “Anderson acceleration, mixing and extrapolation’’. Numer. Algorithms 80, 135–234 (2019)MathSciNetCrossRef Anderson, D.G.M.: Comments on “Anderson acceleration, mixing and extrapolation’’. Numer. Algorithms 80, 135–234 (2019)MathSciNetCrossRef
3.
go back to reference Bollapragada, R., Scieur, D., d’Aspremont, A.: Nonlinear acceleration of momentum and primal-dual algorithms. Math. Program. 1, 1–38 (2022) Bollapragada, R., Scieur, D., d’Aspremont, A.: Nonlinear acceleration of momentum and primal-dual algorithms. Math. Program. 1, 1–38 (2022)
4.
go back to reference Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J., et al.: Distributed optimization and statistical learning via the alternating direction method of multipliers. Found. Trends® Mach. Learn. 3(1), 1–122 (2011) Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J., et al.: Distributed optimization and statistical learning via the alternating direction method of multipliers. Found. Trends® Mach. Learn. 3(1), 1–122 (2011)
5.
go back to reference Chambolle, A., Pock, T.: A first-order primal-dual algorithm for convex problems with applications to imaging. J. Math. Imaging Vis. 40, 120–145 (2011)MathSciNetCrossRef Chambolle, A., Pock, T.: A first-order primal-dual algorithm for convex problems with applications to imaging. J. Math. Imaging Vis. 40, 120–145 (2011)MathSciNetCrossRef
6.
go back to reference Cheng, Yu., Fan, W.: R-UNet deep learning-based damage detection of CFRP with electrical impedance tomography. IEEE Trans. Instrum. Meas. 71, 1–8 (2022) Cheng, Yu., Fan, W.: R-UNet deep learning-based damage detection of CFRP with electrical impedance tomography. IEEE Trans. Instrum. Meas. 71, 1–8 (2022)
7.
go back to reference Colibazzi, F., Lazzaro, D., Morigi, S., Samoré, A.: Learning nonlinear electrical impedance tomography. J. Sci. Comput. 90(1), 58 (2022)MathSciNetCrossRef Colibazzi, F., Lazzaro, D., Morigi, S., Samoré, A.: Learning nonlinear electrical impedance tomography. J. Sci. Comput. 90(1), 58 (2022)MathSciNetCrossRef
8.
go back to reference Dai, T., Adler, A.: Electrical Impedance Tomography reconstruction using \(l_1\) norms for data and image terms. In: 2008 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 2721–2724. IEEE (2008) Dai, T., Adler, A.: Electrical Impedance Tomography reconstruction using \(l_1\) norms for data and image terms. In: 2008 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 2721–2724. IEEE (2008)
9.
go back to reference Evans, C., Pollock, S., Rebholz, L.G., Xiao, M.: A proof that Anderson acceleration improves the convergence rate in linearly converging fixed-point methods (but not in those converging quadratically). SIAM J. Numer. Anal. 58(1), 788–810 (2020)MathSciNetCrossRef Evans, C., Pollock, S., Rebholz, L.G., Xiao, M.: A proof that Anderson acceleration improves the convergence rate in linearly converging fixed-point methods (but not in those converging quadratically). SIAM J. Numer. Anal. 58(1), 788–810 (2020)MathSciNetCrossRef
10.
go back to reference Ferreira, A.D., Novotny, A.A.: A new non-iterative reconstruction method for the electrical impedance tomography problem. Inverse Prob. 33(3), 035005 (2017)MathSciNetCrossRef Ferreira, A.D., Novotny, A.A.: A new non-iterative reconstruction method for the electrical impedance tomography problem. Inverse Prob. 33(3), 035005 (2017)MathSciNetCrossRef
11.
go back to reference Gamio, J.C., Ortiz-Aleman, C.: An interpretation of the linear back-projection algorithm used in capacitance tomography. In: 3rd World Congress on Industrial Process Tomography. Bannf, pp. 427–432 (2003) Gamio, J.C., Ortiz-Aleman, C.: An interpretation of the linear back-projection algorithm used in capacitance tomography. In: 3rd World Congress on Industrial Process Tomography. Bannf, pp. 427–432 (2003)
13.
go back to reference Geman, D., Yang, C.: Nonlinear image recovery with half-quadratic regularization. IEEE Trans. Image Process. 4(7), 932–946 (1995)CrossRef Geman, D., Yang, C.: Nonlinear image recovery with half-quadratic regularization. IEEE Trans. Image Process. 4(7), 932–946 (1995)CrossRef
14.
go back to reference González, G., Kolehmainen, V., Seppänen, A.: Isotropic and anisotropic total variation regularization in electrical impedance tomography. Comput. Math. Appl. 74(3), 564–576 (2017)MathSciNetCrossRef González, G., Kolehmainen, V., Seppänen, A.: Isotropic and anisotropic total variation regularization in electrical impedance tomography. Comput. Math. Appl. 74(3), 564–576 (2017)MathSciNetCrossRef
15.
go back to reference Gregor, K., LeCun, Y.: Learning fast approximations of sparse coding. In: Proceedings of the 27th international conference on international conference on machine learning, pp. 399–406 (2010) Gregor, K., LeCun, Y.: Learning fast approximations of sparse coding. In: Proceedings of the 27th international conference on international conference on machine learning, pp. 399–406 (2010)
16.
go back to reference Guo, R., Huang, T., Li, M., Zhang, H., Eldar, Y.C.: Physics-embedded machine learning for electromagnetic data imaging: examining three types of data-driven imaging methods. IEEE Signal Process. Mag. 40(2), 18–31 (2023)CrossRef Guo, R., Huang, T., Li, M., Zhang, H., Eldar, Y.C.: Physics-embedded machine learning for electromagnetic data imaging: examining three types of data-driven imaging methods. IEEE Signal Process. Mag. 40(2), 18–31 (2023)CrossRef
17.
go back to reference Hamilton, S.J., Hänninen, A., Hauptmann, A., Kolehmainen, V.: Beltrami-net: domain-independent deep D-bar learning for absolute imaging with electrical impedance tomography (a-EIT). Physiol. Meas. 40(7), 074002 (2019)CrossRef Hamilton, S.J., Hänninen, A., Hauptmann, A., Kolehmainen, V.: Beltrami-net: domain-independent deep D-bar learning for absolute imaging with electrical impedance tomography (a-EIT). Physiol. Meas. 40(7), 074002 (2019)CrossRef
18.
go back to reference Hamilton, S.J., Hauptmann, A.: Deep D-bar: real-time electrical impedance tomography imaging with deep neural networks. IEEE Trans. Med. Imag. 37(10), 2367–2377 (2018) Hamilton, S.J., Hauptmann, A.: Deep D-bar: real-time electrical impedance tomography imaging with deep neural networks. IEEE Trans. Med. Imag. 37(10), 2367–2377 (2018)
19.
go back to reference He, B., You, Y., Yuan, X.: On the convergence of primal-dual hybrid gradient algorithm. SIAM J. Imag. Sci. 7(4), 2526–2537 (2014)MathSciNetCrossRef He, B., You, Y., Yuan, X.: On the convergence of primal-dual hybrid gradient algorithm. SIAM J. Imag. Sci. 7(4), 2526–2537 (2014)MathSciNetCrossRef
20.
go back to reference Herzberg, W., Rowe, D.B., Hauptmann, A., Hamilton, S.J.: Graph convolutional networks for model-based learning in nonlinear inverse problems. IEEE Trans. Comput. Imag. 7, 1341–1353 (2021)MathSciNetCrossRef Herzberg, W., Rowe, D.B., Hauptmann, A., Hamilton, S.J.: Graph convolutional networks for model-based learning in nonlinear inverse problems. IEEE Trans. Comput. Imag. 7, 1341–1353 (2021)MathSciNetCrossRef
21.
go back to reference Holden, M., Pereyra, M., Zygalakis, K.C.: Bayesian imaging with data-driven priors encoded by neural networks. SIAM J. Imag. Sci. 15(2), 892–924 (2022)MathSciNetCrossRef Holden, M., Pereyra, M., Zygalakis, K.C.: Bayesian imaging with data-driven priors encoded by neural networks. SIAM J. Imag. Sci. 15(2), 892–924 (2022)MathSciNetCrossRef
22.
go back to reference Huska, M., Lazzaro, D., Morigi, S., Samorè, A., Scrivanti, G.: Spatially-adaptive variational reconstructions for linear inverse electrical impedance tomography. J. Sci. Comput. 84, 1–29 (2020)MathSciNetCrossRef Huska, M., Lazzaro, D., Morigi, S., Samorè, A., Scrivanti, G.: Spatially-adaptive variational reconstructions for linear inverse electrical impedance tomography. J. Sci. Comput. 84, 1–29 (2020)MathSciNetCrossRef
23.
go back to reference Isaacson, D., Mueller, J.L., Newell, J.C., Siltanen, S.: Reconstructions of chest phantoms by the D-bar method for electrical impedance tomography. IEEE Trans. Med. Imaging 23(7), 821–828 (2004)CrossRef Isaacson, D., Mueller, J.L., Newell, J.C., Siltanen, S.: Reconstructions of chest phantoms by the D-bar method for electrical impedance tomography. IEEE Trans. Med. Imaging 23(7), 821–828 (2004)CrossRef
24.
go back to reference Jin, B., Maass, P.: An analysis of electrical impedance tomography with applications to Tikhonov regularization. ESAIM: Control Optim. Cal. Variat. 18(4), 1027–1048 (2012)MathSciNet Jin, B., Maass, P.: An analysis of electrical impedance tomography with applications to Tikhonov regularization. ESAIM: Control Optim. Cal. Variat. 18(4), 1027–1048 (2012)MathSciNet
25.
go back to reference Liu, B., Yang, B., Canhua, X., Xia, J., Dai, M., Ji, Z., You, F., Dong, X., Shi, X., Feng, F.: pyEIT: a python based framework for Electrical Impedance Tomography. SoftwareX 7, 304–308 (2018)CrossRef Liu, B., Yang, B., Canhua, X., Xia, J., Dai, M., Ji, Z., You, F., Dong, X., Shi, X., Feng, F.: pyEIT: a python based framework for Electrical Impedance Tomography. SoftwareX 7, 304–308 (2018)CrossRef
26.
go back to reference Liu, Z., Yang, G., He, N., Tan, X.: Landweber iterative algorithm based on regularization in electromagnetic tomography for multiphase flow measurement. Flow Meas. Instrum. 27, 53–58 (2012)CrossRef Liu, Z., Yang, G., He, N., Tan, X.: Landweber iterative algorithm based on regularization in electromagnetic tomography for multiphase flow measurement. Flow Meas. Instrum. 27, 53–58 (2012)CrossRef
27.
go back to reference Mai, V., Johansson, M.: Anderson acceleration of proximal gradient methods. In: International Conference on Machine Learning, pp. 6620–6629. PMLR (2020) Mai, V., Johansson, M.: Anderson acceleration of proximal gradient methods. In: International Conference on Machine Learning, pp. 6620–6629. PMLR (2020)
28.
go back to reference Michalikova, M., Abed, R., Prauzek, M., Koziorek, J.: Image reconstruction in electrical impedance tomography using neural network. In: 2014 Cairo International Biomedical Engineering Conference (CIBEC), pp. 39–42. IEEE (2014) Michalikova, M., Abed, R., Prauzek, M., Koziorek, J.: Image reconstruction in electrical impedance tomography using neural network. In: 2014 Cairo International Biomedical Engineering Conference (CIBEC), pp. 39–42. IEEE (2014)
29.
go back to reference Mueller, J.L., Siltanen, S.: Linear and Nonlinear Inverse Problems with Practical Applications. Society for Industrial and Applied Mathematics, Philadelphia (2012)CrossRef Mueller, J.L., Siltanen, S.: Linear and Nonlinear Inverse Problems with Practical Applications. Society for Industrial and Applied Mathematics, Philadelphia (2012)CrossRef
30.
go back to reference Pasini, M.L., Laiu, M.P.: Anderson acceleration with approximate calculations: applications to scientific computing. arXiv preprint arXiv:2206.03915 (2022) Pasini, M.L., Laiu, M.P.: Anderson acceleration with approximate calculations: applications to scientific computing. arXiv preprint arXiv:​2206.​03915 (2022)
31.
go back to reference Pasini, M.L., Yin, J., Reshniak, V., Stoyanov, M.: Stable Anderson acceleration for deep learning. arXiv preprint arXiv:2110.14813 (2021) Pasini, M.L., Yin, J., Reshniak, V., Stoyanov, M.: Stable Anderson acceleration for deep learning. arXiv preprint arXiv:​2110.​14813 (2021)
32.
go back to reference Pollock, S., Rebholz, L.G.: Anderson acceleration for contractive and noncontractive operators. IMA J. Numer. Anal. 41(4), 2841–2872 (2021)MathSciNetCrossRef Pollock, S., Rebholz, L.G.: Anderson acceleration for contractive and noncontractive operators. IMA J. Numer. Anal. 41(4), 2841–2872 (2021)MathSciNetCrossRef
33.
go back to reference Pollock, S., Schwartz, H.: Benchmarking results for the Newton-Anderson method. Results Appl. Math. 8, 100095 (2020)MathSciNetCrossRef Pollock, S., Schwartz, H.: Benchmarking results for the Newton-Anderson method. Results Appl. Math. 8, 100095 (2020)MathSciNetCrossRef
34.
go back to reference Sahel, Y.B., Bryan, J.P., Cleary, B., Farhi, S.L., Eldar, Y.C.: Deep unrolled recovery in sparse biological imaging: achieving fast, accurate results. IEEE Signal Process. Mag. 39(2), 45–57 (2022)CrossRef Sahel, Y.B., Bryan, J.P., Cleary, B., Farhi, S.L., Eldar, Y.C.: Deep unrolled recovery in sparse biological imaging: achieving fast, accurate results. IEEE Signal Process. Mag. 39(2), 45–57 (2022)CrossRef
35.
go back to reference Seo, J.K., Kim, K.C., Jargal, A., Lee, K., Harrach, B.: A learning-based method for solving ill-posed nonlinear inverse problems: a simulation study of lung EIT. SIAM J. Imag. Sci. 12(3), 1275–1295 (2019)MathSciNetCrossRef Seo, J.K., Kim, K.C., Jargal, A., Lee, K., Harrach, B.: A learning-based method for solving ill-posed nonlinear inverse problems: a simulation study of lung EIT. SIAM J. Imag. Sci. 12(3), 1275–1295 (2019)MathSciNetCrossRef
36.
go back to reference Shi, W., Song, S., Wu, H., Hsu, Y.-C., Wu, C., Huang, G.: Regularized Anderson acceleration for off-policy deep reinforcement learning. Adv. Neural Inf. Process. Syst. 32, 1 (2019) Shi, W., Song, S., Wu, H., Hsu, Y.-C., Wu, C., Huang, G.: Regularized Anderson acceleration for off-policy deep reinforcement learning. Adv. Neural Inf. Process. Syst. 32, 1 (2019)
37.
go back to reference Yanyan Shi, X., Zhang, Z.R., Wang, M., Soleimani, M.: Reduction of staircase effect with total generalized variation regularization for electrical impedance tomography. IEEE Sens. J. 19(21), 9850–9858 (2019)CrossRef Yanyan Shi, X., Zhang, Z.R., Wang, M., Soleimani, M.: Reduction of staircase effect with total generalized variation regularization for electrical impedance tomography. IEEE Sens. J. 19(21), 9850–9858 (2019)CrossRef
38.
go back to reference Tang, J., Mukherjee, S., Schönlieb, C.-B.: Accelerating deep unrolling networks via dimensionality reduction. arXiv preprint arXiv:2208.14784 (2022) Tang, J., Mukherjee, S., Schönlieb, C.-B.: Accelerating deep unrolling networks via dimensionality reduction. arXiv preprint arXiv:​2208.​14784 (2022)
39.
go back to reference Wang, Z., Yue, S., Song, K., Liu, X., Wang, H.: An unsupervised method for evaluating electrical impedance tomography images. IEEE Trans. Instrum. Meas. 67(12), 2796–2803 (2018)CrossRef Wang, Z., Yue, S., Song, K., Liu, X., Wang, H.: An unsupervised method for evaluating electrical impedance tomography images. IEEE Trans. Instrum. Meas. 67(12), 2796–2803 (2018)CrossRef
40.
go back to reference Wang, Z., Zhang, X., Wang, D., Fu, R., Chen, X., Wang, H.: Shape reconstruction for Electrical Impedance Tomography with \(V^2\)D-Net deep convolutional neural network. In: 2022 IEEE International Instrumentation and Measurement Technology Conference (I2MTC), pp. 1–6 (2022) Wang, Z., Zhang, X., Wang, D., Fu, R., Chen, X., Wang, H.: Shape reconstruction for Electrical Impedance Tomography with \(V^2\)D-Net deep convolutional neural network. In: 2022 IEEE International Instrumentation and Measurement Technology Conference (I2MTC), pp. 1–6 (2022)
41.
go back to reference Wei, Z., Liu, D., Chen, X.: Dominant-current deep learning scheme for electrical impedance tomography. IEEE Trans. Biomed. Eng. 66(9), 2546–2555 (2019)MathSciNetCrossRef Wei, Z., Liu, D., Chen, X.: Dominant-current deep learning scheme for electrical impedance tomography. IEEE Trans. Biomed. Eng. 66(9), 2546–2555 (2019)MathSciNetCrossRef
42.
go back to reference Xin, B., Phan, T., Axel, L., Metaxas, D.: Learned half-quadratic splitting network for MR image reconstruction. In: International Conference on Medical Imaging with Deep Learning, pp. 1403–1412. PMLR (2022) Xin, B., Phan, T., Axel, L., Metaxas, D.: Learned half-quadratic splitting network for MR image reconstruction. In: International Conference on Medical Imaging with Deep Learning, pp. 1403–1412. PMLR (2022)
43.
go back to reference Ye, H., Luo, L., Zhang, Z.: Nesterov’s acceleration for approximate Newton. J. Mach. Learn. Res. 21(1), 5627–5663 (2020)MathSciNet Ye, H., Luo, L., Zhang, Z.: Nesterov’s acceleration for approximate Newton. J. Mach. Learn. Res. 21(1), 5627–5663 (2020)MathSciNet
44.
go back to reference Zhang, J., O’Donoghue, B., Boyd, S.: Globally convergent type-I Anderson acceleration for nonsmooth fixed-point iterations. SIAM J. Optim. 30(4), 3170–3197 (2020)MathSciNetCrossRef Zhang, J., O’Donoghue, B., Boyd, S.: Globally convergent type-I Anderson acceleration for nonsmooth fixed-point iterations. SIAM J. Optim. 30(4), 3170–3197 (2020)MathSciNetCrossRef
45.
go back to reference Zhang, K., Gool, L.V., Timofte, R.: Deep unfolding network for image super-resolution. In: Proceedings of the IEEE/CVF Conference on Computer vision and Pattern Recognition, pp. 3217–3226 (2020) Zhang, K., Gool, L.V., Timofte, R.: Deep unfolding network for image super-resolution. In: Proceedings of the IEEE/CVF Conference on Computer vision and Pattern Recognition, pp. 3217–3226 (2020)
46.
go back to reference Zhang, K., Guo, R., Li, M., Yang, F., Shenheng, X., Abubakar, A.: Supervised descent learning for thoracic electrical impedance tomography. IEEE Trans. Biomed. Eng. 68(4), 1360–1369 (2020)CrossRef Zhang, K., Guo, R., Li, M., Yang, F., Shenheng, X., Abubakar, A.: Supervised descent learning for thoracic electrical impedance tomography. IEEE Trans. Biomed. Eng. 68(4), 1360–1369 (2020)CrossRef
Metadata
Title
Enhancing Electrical Impedance Tomography Reconstruction Using Learned Half-Quadratic Splitting Networks with Anderson Acceleration
Authors
Guixian Xu
Huihui Wang
Qingping Zhou
Publication date
01-02-2024
Publisher
Springer US
Published in
Journal of Scientific Computing / Issue 2/2024
Print ISSN: 0885-7474
Electronic ISSN: 1573-7691
DOI
https://doi.org/10.1007/s10915-023-02439-4

Other articles of this Issue 2/2024

Journal of Scientific Computing 2/2024 Go to the issue

Premium Partner