Skip to main content
Top
Published in: Journal of Electronic Materials 7/2023

26-04-2023 | Original Research Article

Enhancing the Thermoelectric Power Factor of Mg2Si/MgO Composites by Ag and Bi Codoping

Authors: Kunchit Singsoog, Athorn Vora-ud, Anek Charoenphakdee, Tosawat Seetawan

Published in: Journal of Electronic Materials | Issue 7/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

A high carrier concentration and mobility reduce the electrical resistivity (ρ) and enhance the power factor (PF) of thermoelectric (TE) materials based on electrical transport optimization. In this study, Ag/Bi codoped (0%, 1%, 2%, and 3% (wt.%)) Mg2Si/MgO TE material was synthesized by ball milling and hot pressing. The crystal structure, morphology, composition, electrical properties, and TE properties of the Ag/Bi codoped Mg2Si/MgO samples were analyzed by x-ray diffraction, scanning electron microscopy, energy-dispersive x-ray spectroscopy, Hall effect measurements, and Seebeck coefficient/electric resistance measurements, respectively. The results confirmed the correlation between the Mg2Si and MgO structures and indicated that all the samples exhibited n-type thermoelectricity. The Ag/Bi (2 wt.%) co-added Mg2Si/MgO sample yielded a low ρ of 31 mΩ m, a high Seebeck coefficient (S) of –619 µV K−1, and a high PF of 12.4 µW m−1 K−2 at room temperature. The PF of this sample is higher than that of the undoped sample by one order of magnitude (1.3 µW m−1 K−2). Further, at 773 K, the Ag/Bi (2 wt.%) co-added Mg2Si/MgO sample exhibited the highest PF of 112 µW m−1 K−2.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference T. Seetawan, A. Vora-Ud, F. Ullah, P.B. Thang, M. Kumar, and H.J. Kim, Microstructural and thermoelectric properties of PbTe single crystals as grown by Czochralski method. Mater. Lett. 324, 132798 (2022).CrossRef T. Seetawan, A. Vora-Ud, F. Ullah, P.B. Thang, M. Kumar, and H.J. Kim, Microstructural and thermoelectric properties of PbTe single crystals as grown by Czochralski method. Mater. Lett. 324, 132798 (2022).CrossRef
2.
go back to reference M. Channegowda, R. Mulla, Y. Nagaraj, S. Lokesh, S. Nayak, S. Mudhulu, C.K. Rastogi, C.W. Dunnill, H.K. Rajan, and A. Khosla, Comprehensive insights into synthesis, structural features, and thermoelectric properties of high-performance inorganic chalcogenide nanomaterials for conversion of waste heat to electricity. ACS Appl. Energy Mater. 5, 7913–7943 (2022).CrossRef M. Channegowda, R. Mulla, Y. Nagaraj, S. Lokesh, S. Nayak, S. Mudhulu, C.K. Rastogi, C.W. Dunnill, H.K. Rajan, and A. Khosla, Comprehensive insights into synthesis, structural features, and thermoelectric properties of high-performance inorganic chalcogenide nanomaterials for conversion of waste heat to electricity. ACS Appl. Energy Mater. 5, 7913–7943 (2022).CrossRef
3.
go back to reference S. Xu, M. Hong, M. Li, Q. Sun, Y. Yin, W. Liu, X. Shi, M. Dargusch, J. Zou, and Z.-G. Chen, Two-dimensional flexible thermoelectric devices: using modelling to deliver optimal capability. Appl. Phys. Rev. 8, 041404 (2021).CrossRef S. Xu, M. Hong, M. Li, Q. Sun, Y. Yin, W. Liu, X. Shi, M. Dargusch, J. Zou, and Z.-G. Chen, Two-dimensional flexible thermoelectric devices: using modelling to deliver optimal capability. Appl. Phys. Rev. 8, 041404 (2021).CrossRef
4.
go back to reference W.-Y. Chen, X.-L. Shi, J. Zou, and Z.-G. Chen, Wearable fiber based thermoelectrics from materials to applications. Nano Energy 81, 105684 (2021).CrossRef W.-Y. Chen, X.-L. Shi, J. Zou, and Z.-G. Chen, Wearable fiber based thermoelectrics from materials to applications. Nano Energy 81, 105684 (2021).CrossRef
5.
go back to reference J. Kim, J.Y. Lee, J.H. Lim, and N.V. Myung, Optimization of thermoelectric properties of p- type AgSbTe2 thin films via electrochemical synthesis. Electrochim. Acta 196, 579–586 (2016).CrossRef J. Kim, J.Y. Lee, J.H. Lim, and N.V. Myung, Optimization of thermoelectric properties of p- type AgSbTe2 thin films via electrochemical synthesis. Electrochim. Acta 196, 579–586 (2016).CrossRef
6.
go back to reference J. Cha, C. Zhou, S.-P. Cho, S.H. Park, and I. Chung, Ultrahigh power factor and electron mobility in n-type Bi2Te3–x%Cu stabilized under excess Te condition. ACS Appl. Mater. Interfaces 11, 30999–31008 (2019).CrossRef J. Cha, C. Zhou, S.-P. Cho, S.H. Park, and I. Chung, Ultrahigh power factor and electron mobility in n-type Bi2Te3–x%Cu stabilized under excess Te condition. ACS Appl. Mater. Interfaces 11, 30999–31008 (2019).CrossRef
7.
go back to reference A. Vora-ud, K. Chaarmart, W. Kasemsin, S. Boonkirdram, and T. Seetawan, Transparent thermoelectric properties of copper iodide thin films. Physica B: Phys Condens. Mat. 625, 413527 (2022).CrossRef A. Vora-ud, K. Chaarmart, W. Kasemsin, S. Boonkirdram, and T. Seetawan, Transparent thermoelectric properties of copper iodide thin films. Physica B: Phys Condens. Mat. 625, 413527 (2022).CrossRef
8.
go back to reference D. Narducci, Do we really need high thermoelectric figures of merit? A critical appraisal to the power conversion efficiency of thermoelectric materials. Appl. Phys. Lett. 99, 102104 (2011).CrossRef D. Narducci, Do we really need high thermoelectric figures of merit? A critical appraisal to the power conversion efficiency of thermoelectric materials. Appl. Phys. Lett. 99, 102104 (2011).CrossRef
9.
go back to reference W. Liu, H.S. Kim, S. Chen, Q. Jie, B. Lv, M. Yao, Z. Ren, C.P. Opeil, S. Wilson, C.-W. Chu, and Z. Ren, n-type thermoelectric material Mg2Sn0.75Ge0.25 for high powe generation. Proc. Natl. Acad. Sci. U.S.A. 112, 3269–3274 (2015).CrossRef W. Liu, H.S. Kim, S. Chen, Q. Jie, B. Lv, M. Yao, Z. Ren, C.P. Opeil, S. Wilson, C.-W. Chu, and Z. Ren, n-type thermoelectric material Mg2Sn0.75Ge0.25 for high powe generation. Proc. Natl. Acad. Sci. U.S.A. 112, 3269–3274 (2015).CrossRef
10.
go back to reference P.K.J. Sanam, M. Shah, and P.P. Pradyumnan, Structure induced modification on thermoelectric and optical properties by Mg doping in CuCrO2 nanocrystals. Solid State Commun. 353, 114855 (2022).CrossRef P.K.J. Sanam, M. Shah, and P.P. Pradyumnan, Structure induced modification on thermoelectric and optical properties by Mg doping in CuCrO2 nanocrystals. Solid State Commun. 353, 114855 (2022).CrossRef
11.
go back to reference L.D. Ivanova, Preparation of thermoelectric materials based on higher manganese silicide. Inorg. Mater. 47, 965–970 (2011).CrossRef L.D. Ivanova, Preparation of thermoelectric materials based on higher manganese silicide. Inorg. Mater. 47, 965–970 (2011).CrossRef
12.
go back to reference D. Vasilevskiy, M.K. Keshavarz, J. Dufourcq, H. Ihou-Mouko, C. Navonne, R.A. Masut, and S. Turenne, Bulk Mg2Si based n-type thermoelectric material produced by gas atomization and hot extrusion. Mater. Today-Proc. 2, 523–531 (2015).CrossRef D. Vasilevskiy, M.K. Keshavarz, J. Dufourcq, H. Ihou-Mouko, C. Navonne, R.A. Masut, and S. Turenne, Bulk Mg2Si based n-type thermoelectric material produced by gas atomization and hot extrusion. Mater. Today-Proc. 2, 523–531 (2015).CrossRef
13.
go back to reference L. Zheng, X. Zhang, H. Liu, S. Li, Z. Zhou, Q. Lu, J. Zhang, and F. Zhang, Optimized nanostructure and thermoelectric performances of Mg2(Si0.4Sn0.6)Six solid solutions by in situ nanophase generation. J. Alloys Compd. 71, 452–457 (2016).CrossRef L. Zheng, X. Zhang, H. Liu, S. Li, Z. Zhou, Q. Lu, J. Zhang, and F. Zhang, Optimized nanostructure and thermoelectric performances of Mg2(Si0.4Sn0.6)Six solid solutions by in situ nanophase generation. J. Alloys Compd. 71, 452–457 (2016).CrossRef
14.
go back to reference K. Kondoh, H. Oginuma, A. Kimura, S. Matsukawa, and T. Aizawa, In-situ synthesis of Mg2Si intermetallics via powder metallurgy. Process Mater. Trans. 44, 981–985 (2003).CrossRef K. Kondoh, H. Oginuma, A. Kimura, S. Matsukawa, and T. Aizawa, In-situ synthesis of Mg2Si intermetallics via powder metallurgy. Process Mater. Trans. 44, 981–985 (2003).CrossRef
15.
go back to reference J. Umeda, K. Kondoh, and H. Imai, Friction and wear behavior of sintered magnesium composite reinforced with CNT-Mg2Si/MgO. Mater. Sci. Eng. A 504, 157–162 (2009).CrossRef J. Umeda, K. Kondoh, and H. Imai, Friction and wear behavior of sintered magnesium composite reinforced with CNT-Mg2Si/MgO. Mater. Sci. Eng. A 504, 157–162 (2009).CrossRef
16.
go back to reference G. Kim, H. Lee, J. Kim, J.W. Roh, I. Lyo, B.W. Kim, K.H. Lee, and W. Lee, Up-scaled solid-state reaction for synthesis of doped Mg2Si. Scripta Mater. 128, 53–56 (2017).CrossRef G. Kim, H. Lee, J. Kim, J.W. Roh, I. Lyo, B.W. Kim, K.H. Lee, and W. Lee, Up-scaled solid-state reaction for synthesis of doped Mg2Si. Scripta Mater. 128, 53–56 (2017).CrossRef
17.
go back to reference G. Kim, J. Kim, H. Lee, S. Cho, I. Lyo, S. Noh, B.W. Kim, S.W. Kim, K.H. Lee, and W. Lee, Co-doping of Al and Bi to control the transport properties for improving thermoelectric performance of Mg2Si. Scripta Mater. 116, 11–15 (2016).CrossRef G. Kim, J. Kim, H. Lee, S. Cho, I. Lyo, S. Noh, B.W. Kim, S.W. Kim, K.H. Lee, and W. Lee, Co-doping of Al and Bi to control the transport properties for improving thermoelectric performance of Mg2Si. Scripta Mater. 116, 11–15 (2016).CrossRef
18.
go back to reference A. Delgado, S. Cordova, I. Lopez, D. Nemir, and E. Shafirovich, Mechanically activated combustion synthesis and shockwave consolidation of magnesium Silicide. J. Alloys Compd. 658, 422–429 (2016).CrossRef A. Delgado, S. Cordova, I. Lopez, D. Nemir, and E. Shafirovich, Mechanically activated combustion synthesis and shockwave consolidation of magnesium Silicide. J. Alloys Compd. 658, 422–429 (2016).CrossRef
19.
go back to reference N. Satyala, J.S. Krasinski, and D. Vashaee, Simultaneous enhancement of mechanical and thermoelectric properties of polycrystalline magnesium silicide with conductive glass inclusion. Acta Mater. 74, 141–150 (2014).CrossRef N. Satyala, J.S. Krasinski, and D. Vashaee, Simultaneous enhancement of mechanical and thermoelectric properties of polycrystalline magnesium silicide with conductive glass inclusion. Acta Mater. 74, 141–150 (2014).CrossRef
20.
go back to reference Z. Zhang, C. Zhang, Q. Liao, L. Qin, Y. Deng, and L. Liang, Optimizing electrical and thermal transport properties of Ca3Co4O9 based thermoelectric materials by Ag and Fe co-addition. Mater. Today Commun. 33, 104866 (2022).CrossRef Z. Zhang, C. Zhang, Q. Liao, L. Qin, Y. Deng, and L. Liang, Optimizing electrical and thermal transport properties of Ca3Co4O9 based thermoelectric materials by Ag and Fe co-addition. Mater. Today Commun. 33, 104866 (2022).CrossRef
21.
go back to reference T. Wang, H. Wang, W. Su, J. Zhai, X. Wang, T. Chen, and C. Wang, Thermoelectric performance of SnTe alloys with In and Sb co-doped near critical solubility limit. J. Mater. Sci. 54, 9049–9062 (2019).CrossRef T. Wang, H. Wang, W. Su, J. Zhai, X. Wang, T. Chen, and C. Wang, Thermoelectric performance of SnTe alloys with In and Sb co-doped near critical solubility limit. J. Mater. Sci. 54, 9049–9062 (2019).CrossRef
22.
go back to reference L. Wang, X.Y. Qin, W. Xiong, and X.G. Zhu, Fabrication and mechanical properties of bulk nanocrystalline intermetallic Mg2Si. Mater. Sci. Eng. A 459, 216–222 (2007).CrossRef L. Wang, X.Y. Qin, W. Xiong, and X.G. Zhu, Fabrication and mechanical properties of bulk nanocrystalline intermetallic Mg2Si. Mater. Sci. Eng. A 459, 216–222 (2007).CrossRef
23.
go back to reference J. Umeda, K. Kondoh, and H. Imai, Friction and wear behavior of sintered magnesium composite reinforced with CNT-Mg2Si/MgO. Mater. Sci. Eng. A 504, 157–162 (2009).CrossRef J. Umeda, K. Kondoh, and H. Imai, Friction and wear behavior of sintered magnesium composite reinforced with CNT-Mg2Si/MgO. Mater. Sci. Eng. A 504, 157–162 (2009).CrossRef
24.
go back to reference A. Vora-ud, S. Thaowonkaew, M. Rittiruam, M. Horprathum, and T. Seetawan, Affected annealing time treatment on preferred orientation and thermoelectric properties of h-GeSbTe0.5 alloy thin film. Curr. Appl. Phys. 16, 305–310 (2016).CrossRef A. Vora-ud, S. Thaowonkaew, M. Rittiruam, M. Horprathum, and T. Seetawan, Affected annealing time treatment on preferred orientation and thermoelectric properties of h-GeSbTe0.5 alloy thin film. Curr. Appl. Phys. 16, 305–310 (2016).CrossRef
25.
go back to reference X. Tang, Y. Zhang, Y. Zheng, K. Peng, T. Huang, X. Lu, G. Wang, S. Wang, and X. Zhou, Improving thermoelectric performance of p-type Ag-doped Mg2Si0. 4Sn0.6 prepared by unique melt spinning method. Appl. Therm. Eng. 111, 1396–1400 (2017).CrossRef X. Tang, Y. Zhang, Y. Zheng, K. Peng, T. Huang, X. Lu, G. Wang, S. Wang, and X. Zhou, Improving thermoelectric performance of p-type Ag-doped Mg2Si0. 4Sn0.6 prepared by unique melt spinning method. Appl. Therm. Eng. 111, 1396–1400 (2017).CrossRef
26.
go back to reference E.M. Godlewska, K. Mars, P. Drozdz, A. Tchorz, and M. Ksiazek, Reaction and diffusion phenomena in Ag-doped Mg2Si. J. Alloys Compd. 657, 755–764 (2016).CrossRef E.M. Godlewska, K. Mars, P. Drozdz, A. Tchorz, and M. Ksiazek, Reaction and diffusion phenomena in Ag-doped Mg2Si. J. Alloys Compd. 657, 755–764 (2016).CrossRef
27.
go back to reference J. Tani and H. Kido, Thermoelectric properties of Bi-doped Mg2Si semiconductors. Physica B 364, 218–224 (2005).CrossRef J. Tani and H. Kido, Thermoelectric properties of Bi-doped Mg2Si semiconductors. Physica B 364, 218–224 (2005).CrossRef
Metadata
Title
Enhancing the Thermoelectric Power Factor of Mg2Si/MgO Composites by Ag and Bi Codoping
Authors
Kunchit Singsoog
Athorn Vora-ud
Anek Charoenphakdee
Tosawat Seetawan
Publication date
26-04-2023
Publisher
Springer US
Published in
Journal of Electronic Materials / Issue 7/2023
Print ISSN: 0361-5235
Electronic ISSN: 1543-186X
DOI
https://doi.org/10.1007/s11664-023-10353-6

Other articles of this Issue 7/2023

Journal of Electronic Materials 7/2023 Go to the issue