Skip to main content
Top
Published in: Knowledge and Information Systems 9/2020

17-04-2020 | Regular Paper

Enhancing unsupervised domain adaptation by discriminative relevance regularization

Authors: Wenju Zhang, Xiang Zhang, Long Lan, Zhigang Luo

Published in: Knowledge and Information Systems | Issue 9/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Unsupervised domain adaptation (UDA) serves to transfer specific knowledge from massive labeled source domain data to unlabeled target domain data via mitigating domain shift. In this paper, we propose a discriminative relevance regularization term (DRR) to enhance the performance of UDA by reducing the domain shift from the aspect of semantic relevance across domains. In particular, DRR is formulated as the min–max rank problem which seeks a projection matrix to minimize the rank of intra-class projected features and maximize the rank of the means of inter-class projected features simultaneously. To test the potential effectiveness of DRR, we design a relevance regularized distribution adaptation method (RRDA) and relevance regularized adaptation networks (RRAN) for image classification, and a relevance regularized self-supervised learning method (RRSL) for semantic segmentation by incorporation of DRR. The corresponding optimization algorithms are proposed to solve them. Experiments of cross-domain image classification show that both RRDA and RRAN outperform several state-of-the-art compared methods. Moreover, experiments of domain-adaptation semantic segmentation on two synthetic-to-real segmentation datasets demonstrate the capacity of RRSL. Such results imply the efficacy of DRR on both image classification and semantic segmentation tasks.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Bousmalis K, Silberman N, Dohan D, Erhan D, Krishnan D (2017) Unsupervised pixel-level domain adaptation with generative adversarial networks. In: IEEE conference on computer vision and pattern recognition. pp 95–104 Bousmalis K, Silberman N, Dohan D, Erhan D, Krishnan D (2017) Unsupervised pixel-level domain adaptation with generative adversarial networks. In: IEEE conference on computer vision and pattern recognition. pp 95–104
2.
go back to reference Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL (2017) Deeplab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE Trans Pattern Anal Mach Intell 40(4):834–848CrossRef Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL (2017) Deeplab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE Trans Pattern Anal Mach Intell 40(4):834–848CrossRef
3.
go back to reference Chen M, Xue H, Cai D (2019) Domain adaptation for semantic segmentation with maximum squares loss. In: IEEE international conference on computer vision. pp 2090–2099 Chen M, Xue H, Cai D (2019) Domain adaptation for semantic segmentation with maximum squares loss. In: IEEE international conference on computer vision. pp 2090–2099
4.
go back to reference Cordts M, Omran M, Ramos S, Rehfeld T, Enzweiler M, Benenson R, Franke U, Roth S, Schiele B (2016) The cityscapes dataset for semantic urban scene understanding. In: IEEE conference on computer vision and pattern recognition. pp 3213–3223 Cordts M, Omran M, Ramos S, Rehfeld T, Enzweiler M, Benenson R, Franke U, Roth S, Schiele B (2016) The cityscapes dataset for semantic urban scene understanding. In: IEEE conference on computer vision and pattern recognition. pp 3213–3223
5.
go back to reference Donahue J, Jia Y, Vinyals O, Hoffman J, Zhang N, Tzeng E, Darrell T (2014) Decaf: A deep convolutional activation feature for generic visual recognition. In: International conference on machine learning. pp 647–655 Donahue J, Jia Y, Vinyals O, Hoffman J, Zhang N, Tzeng E, Darrell T (2014) Decaf: A deep convolutional activation feature for generic visual recognition. In: International conference on machine learning. pp 647–655
6.
go back to reference Fazel M (2002) Matrix rank minimization with applications. Ph.D. thesis, Stanford University Fazel M (2002) Matrix rank minimization with applications. Ph.D. thesis, Stanford University
7.
go back to reference Fisher RA (1936) The use of multiple measurements in taxonomic problems. Ann Humn Genet 7(2):179–188 Fisher RA (1936) The use of multiple measurements in taxonomic problems. Ann Humn Genet 7(2):179–188
8.
go back to reference Ganin Y, Lempitsky V (2015) Unsupervised domain adaptation by backpropagation. In: International conference on machine learning. pp 1180–1189 Ganin Y, Lempitsky V (2015) Unsupervised domain adaptation by backpropagation. In: International conference on machine learning. pp 1180–1189
9.
go back to reference Ganin Y, Ustinova E, Ajakan H, Germain P, Larochelle H, Laviolette F, Marchand M, Lempitsky V (2016) Domain-adversarial training of neural networks. J Mach Learn Res 17(1):2030–2096MathSciNetMATH Ganin Y, Ustinova E, Ajakan H, Germain P, Larochelle H, Laviolette F, Marchand M, Lempitsky V (2016) Domain-adversarial training of neural networks. J Mach Learn Res 17(1):2030–2096MathSciNetMATH
10.
go back to reference Ghifary M, Balduzzi D, Kleijn WB, Zhang M (2015) Scatter component analysis: a unified framework for domain adaptation and domain generalization. IEEE Trans Pattern Anal Mach Intell 39(7):1414–1430CrossRef Ghifary M, Balduzzi D, Kleijn WB, Zhang M (2015) Scatter component analysis: a unified framework for domain adaptation and domain generalization. IEEE Trans Pattern Anal Mach Intell 39(7):1414–1430CrossRef
11.
go back to reference Glorot X, Bordes A, Bengio Y (2011) Domain adaptation for large-scale sentiment classification: a deep learning approach. In: International conference on machine learning. pp 513–520 Glorot X, Bordes A, Bengio Y (2011) Domain adaptation for large-scale sentiment classification: a deep learning approach. In: International conference on machine learning. pp 513–520
12.
go back to reference Gong B, Grauman K, Sha F (2013) Connecting the dots with landmarks: discriminatively learning domain-invariant features for unsupervised domain adaptation. In: International conference on machine learning. pp 222–230 Gong B, Grauman K, Sha F (2013) Connecting the dots with landmarks: discriminatively learning domain-invariant features for unsupervised domain adaptation. In: International conference on machine learning. pp 222–230
13.
go back to reference Gong B, Shi Y, Sha F, Kristen G (2012) Geodesic flow kernel for unsupervised domain adaptation. In: IEEE conference on computer vision and pattern recognition. pp 2066–2073 Gong B, Shi Y, Sha F, Kristen G (2012) Geodesic flow kernel for unsupervised domain adaptation. In: IEEE conference on computer vision and pattern recognition. pp 2066–2073
14.
go back to reference Gong M, Zhang K, Liu T, Tao D, Glymour C, Schölkopf B (2016) Domain adaptation with conditional transferable components. In: International conference on machine learning. pp 2839–2848 Gong M, Zhang K, Liu T, Tao D, Glymour C, Schölkopf B (2016) Domain adaptation with conditional transferable components. In: International conference on machine learning. pp 2839–2848
15.
go back to reference Grave E, Obozinski G, Bach F (2011) Trace lasso: a trace norm regularization for correlated designs. In: International conference on neural information processing systems. pp 2187–2195 Grave E, Obozinski G, Bach F (2011) Trace lasso: a trace norm regularization for correlated designs. In: International conference on neural information processing systems. pp 2187–2195
16.
go back to reference Gretton A, Borgwardt KM, Rasch MJ, Schölkopf B, Smola A (2012) A kernel two-sample test. J Mach Learn Res 13:723–773MathSciNetMATH Gretton A, Borgwardt KM, Rasch MJ, Schölkopf B, Smola A (2012) A kernel two-sample test. J Mach Learn Res 13:723–773MathSciNetMATH
17.
go back to reference Gretton A, Smola A, Huang J, Schmittfull M, Borgwardt K, Schölkopf B (2009) Covariate shift by kernel mean matching. In: Dataset shift in machine learning. pp 131–157 Gretton A, Smola A, Huang J, Schmittfull M, Borgwardt K, Schölkopf B (2009) Covariate shift by kernel mean matching. In: Dataset shift in machine learning. pp 131–157
18.
go back to reference Griffin G, Holub A, Perona P (2007) Caltech-256 object category dataset. California Institute of Technology Griffin G, Holub A, Perona P (2007) Caltech-256 object category dataset. California Institute of Technology
19.
go back to reference He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: IEEE conference on computer vision and pattern recognition. pp 770–778 He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: IEEE conference on computer vision and pattern recognition. pp 770–778
20.
go back to reference Hoffman J, Tzeng E, Park T, Zhu JY, Isola P, Saenko K, Efros AA, Darrell T (2017) Cycada: Cycle-consistent adversarial domain adaptation. arXiv preprint arXiv:1711.03213 Hoffman J, Tzeng E, Park T, Zhu JY, Isola P, Saenko K, Efros AA, Darrell T (2017) Cycada: Cycle-consistent adversarial domain adaptation. arXiv preprint arXiv:​1711.​03213
21.
go back to reference Hoffman J, Wang D, Yu F, Darrell T (2016) Fcns in the wild: pixel-level adversarial and constraint-based adaptation. arXiv preprint arXiv:1612.02649 Hoffman J, Wang D, Yu F, Darrell T (2016) Fcns in the wild: pixel-level adversarial and constraint-based adaptation. arXiv preprint arXiv:​1612.​02649
22.
go back to reference Hsieh Y, Tao S, Tsai YH, Yeh Y, Wang YF (2016) Recognizing heterogeneous cross-domain data via generalized joint distribution adaptation. In: IEEE international conference on multimedia and expo. pp 1–6 Hsieh Y, Tao S, Tsai YH, Yeh Y, Wang YF (2016) Recognizing heterogeneous cross-domain data via generalized joint distribution adaptation. In: IEEE international conference on multimedia and expo. pp 1–6
23.
go back to reference Hsu TH, Chen W, Hou C, Tsai YH, Yeh Y, Wang YF (2015) Unsupervised domain adaptation with imbalanced cross-domain data. In: IEEE international conference on computer vision. pp 4121–4129 Hsu TH, Chen W, Hou C, Tsai YH, Yeh Y, Wang YF (2015) Unsupervised domain adaptation with imbalanced cross-domain data. In: IEEE international conference on computer vision. pp 4121–4129
24.
go back to reference Huang J, Smola AJ, Gretton A, Borgwardt KM, Schölkopf B (2006) Correcting sample selection bias by unlabeled data. In: Advances in neural information processing systems. pp 601–608 Huang J, Smola AJ, Gretton A, Borgwardt KM, Schölkopf B (2006) Correcting sample selection bias by unlabeled data. In: Advances in neural information processing systems. pp 601–608
25.
go back to reference Isola P, Zhu JY, Zhou T, Efros AA (2017) Image-to-image translation with conditional adversarial networks. In: IEEE conference on computer vision and pattern recognition. pp 1125–1134 Isola P, Zhu JY, Zhou T, Efros AA (2017) Image-to-image translation with conditional adversarial networks. In: IEEE conference on computer vision and pattern recognition. pp 1125–1134
26.
go back to reference Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classification with deep convolutional neural networks. In: Advances in neural information processing systems. pp 1097–1105 Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classification with deep convolutional neural networks. In: Advances in neural information processing systems. pp 1097–1105
27.
go back to reference Li Y, Yuan L, Vasconcelos N (2019) Bidirectional learning for domain adaptation of semantic segmentation. In: IEEE conference on computer vision and pattern recognition. pp 6936–6945 Li Y, Yuan L, Vasconcelos N (2019) Bidirectional learning for domain adaptation of semantic segmentation. In: IEEE conference on computer vision and pattern recognition. pp 6936–6945
28.
go back to reference Liu T, Tao D (2015) Classification with noisy labels by importance reweighting. IEEE Trans Pattern Anal Mach Intell 38(3):447–461CrossRef Liu T, Tao D (2015) Classification with noisy labels by importance reweighting. IEEE Trans Pattern Anal Mach Intell 38(3):447–461CrossRef
29.
go back to reference Liu T, Yang Q, Tao D (2017) Understanding how feature structure transfers in transfer learning. In: International joint conference on artificial intelligence. pp 2365–2371 Liu T, Yang Q, Tao D (2017) Understanding how feature structure transfers in transfer learning. In: International joint conference on artificial intelligence. pp 2365–2371
30.
go back to reference Long J, Shelhamer E, Darrell T (2015) Fully convolutional networks for semantic segmentation. In: IEEE conference on computer vision and pattern recognition. pp 3431–3440 Long J, Shelhamer E, Darrell T (2015) Fully convolutional networks for semantic segmentation. In: IEEE conference on computer vision and pattern recognition. pp 3431–3440
31.
go back to reference Long M, Cao Y, Wang J, Jordan M (2015) Learning transferable features with deep adaptation networks. In: International conference on machine learning. pp 97–105 Long M, Cao Y, Wang J, Jordan M (2015) Learning transferable features with deep adaptation networks. In: International conference on machine learning. pp 97–105
32.
go back to reference Long M, Wang J, Ding G, Sun J, Yu PS (2014) Transfer feature learning with joint distribution adaptation. In: IEEE international conference on computer vision. pp 2200–2207 Long M, Wang J, Ding G, Sun J, Yu PS (2014) Transfer feature learning with joint distribution adaptation. In: IEEE international conference on computer vision. pp 2200–2207
33.
go back to reference Long M, Zhu H, Wang J, Jordan MI (2016) Unsupervised domain adaptation with residual transfer networks. In: Advances in neural information processing systems. pp 136–144 Long M, Zhu H, Wang J, Jordan MI (2016) Unsupervised domain adaptation with residual transfer networks. In: Advances in neural information processing systems. pp 136–144
34.
go back to reference Long M, Zhu H, Wang J, Jordan MI (2017) Deep transfer learning with joint adaptation networks. In: International conference on machine learning. pp 2208–2217 Long M, Zhu H, Wang J, Jordan MI (2017) Deep transfer learning with joint adaptation networks. In: International conference on machine learning. pp 2208–2217
35.
go back to reference Luo Y, Liu T, Tao D, Xu C (2014) Decomposition-based transfer distance metric learning for image classification. IEEE Trans Image Process 23(9):3789–3801MathSciNetCrossRef Luo Y, Liu T, Tao D, Xu C (2014) Decomposition-based transfer distance metric learning for image classification. IEEE Trans Image Process 23(9):3789–3801MathSciNetCrossRef
36.
go back to reference Luo Y, Wen Y, Liu T, Tao D (2018) Transferring knowledge fragments for learning distance metric from a heterogeneous domain. IEEE Trans Pattern Anal Mach Intell 41(4):1013–1026CrossRef Luo Y, Wen Y, Liu T, Tao D (2018) Transferring knowledge fragments for learning distance metric from a heterogeneous domain. IEEE Trans Pattern Anal Mach Intell 41(4):1013–1026CrossRef
37.
go back to reference Luo Y, Zheng L, Guan T, Yu J, Yang Y (2019) Taking a closer look at domain shift: Category-level adversaries for semantics consistent domain adaptation. In: IEEE conference on computer vision and pattern recognition. pp 2507–2516 Luo Y, Zheng L, Guan T, Yu J, Yang Y (2019) Taking a closer look at domain shift: Category-level adversaries for semantics consistent domain adaptation. In: IEEE conference on computer vision and pattern recognition. pp 2507–2516
38.
go back to reference Oquab M, Bottou L, Laptev I, Sivic J (2014) Learning and transferring mid-level image representations using convolutional neural networks. In: IEEE conference on computer vision and pattern recognition. pp 1717–1724 Oquab M, Bottou L, Laptev I, Sivic J (2014) Learning and transferring mid-level image representations using convolutional neural networks. In: IEEE conference on computer vision and pattern recognition. pp 1717–1724
39.
go back to reference Pan SJ, Tsang IW, Kwok JT, Yang Q (2011) Domain adaptation via transfer component analysis. IEEE Trans Neural Netw 22(2):199–210CrossRef Pan SJ, Tsang IW, Kwok JT, Yang Q (2011) Domain adaptation via transfer component analysis. IEEE Trans Neural Netw 22(2):199–210CrossRef
40.
go back to reference Pan SJ, Yang Q (2010) A survey on transfer learning. IEEE Trans Knowl Data Eng 22(10):1345–1359CrossRef Pan SJ, Yang Q (2010) A survey on transfer learning. IEEE Trans Knowl Data Eng 22(10):1345–1359CrossRef
41.
go back to reference Pei Z, Cao Z, Long M, Wang J (2018) Multi-adversarial domain adaptation. In: AAAI conference on artificial intelligence Pei Z, Cao Z, Long M, Wang J (2018) Multi-adversarial domain adaptation. In: AAAI conference on artificial intelligence
42.
go back to reference Radford A, Metz L, Chintala S (2015) Unsupervised representation learning with deep convolutional generative adversarial networks. arXiv preprint arXiv:1511.06434 Radford A, Metz L, Chintala S (2015) Unsupervised representation learning with deep convolutional generative adversarial networks. arXiv preprint arXiv:​1511.​06434
43.
go back to reference Richter SR, Vineet V, Roth S, Koltun V (2016) Playing for data: ground truth from computer games. In: European conference on computer vision. Springer, pp 102–118 Richter SR, Vineet V, Roth S, Koltun V (2016) Playing for data: ground truth from computer games. In: European conference on computer vision. Springer, pp 102–118
44.
go back to reference Ros G, Sellart L, Materzynska J, Vazquez D, Lopez AM (2016) The synthia dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: IEEE conference on computer vision and pattern recognition. pp 3234–3243 Ros G, Sellart L, Materzynska J, Vazquez D, Lopez AM (2016) The synthia dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: IEEE conference on computer vision and pattern recognition. pp 3234–3243
45.
go back to reference Saenko K, Kulis B, Fritz M, Darrell T (2010) Adapting visual category models to new domains. In: European conference on computer vision. pp 213–226 Saenko K, Kulis B, Fritz M, Darrell T (2010) Adapting visual category models to new domains. In: European conference on computer vision. pp 213–226
46.
go back to reference Shao L, Zhu F, Li X (2015) Transfer learning for visual categorization: a survey. IEEE Trans Neural Netw Learn Syst 26(5):1019–1034MathSciNetCrossRef Shao L, Zhu F, Li X (2015) Transfer learning for visual categorization: a survey. IEEE Trans Neural Netw Learn Syst 26(5):1019–1034MathSciNetCrossRef
47.
go back to reference Si S, Tao D, Geng B (2010) Bregman divergence-based regularization for transfer subspace learning. IEEE Trans Knowl Data Eng 22(7):929–942CrossRef Si S, Tao D, Geng B (2010) Bregman divergence-based regularization for transfer subspace learning. IEEE Trans Knowl Data Eng 22(7):929–942CrossRef
48.
49.
go back to reference Sun B, Feng J, Saenko K (2015) Return of frustratingly easy domain adaptation. In: AAAI conference on artificial intelligence. pp 2058–2065 Sun B, Feng J, Saenko K (2015) Return of frustratingly easy domain adaptation. In: AAAI conference on artificial intelligence. pp 2058–2065
50.
go back to reference Tsai YH, Hung WC, Schulter S, Sohn K, Yang MH, Chandraker M (2018) Learning to adapt structured output space for semantic segmentation. In: IEEE conference on computer vision and pattern recognition. pp 7472–7481 Tsai YH, Hung WC, Schulter S, Sohn K, Yang MH, Chandraker M (2018) Learning to adapt structured output space for semantic segmentation. In: IEEE conference on computer vision and pattern recognition. pp 7472–7481
51.
go back to reference Tzeng E, Hoffman J, Saenko K, Darrell T (2017) Adversarial discriminative domain adaptation. In: IEEE conference on computer vision and pattern recognition. pp 2962–2971 Tzeng E, Hoffman J, Saenko K, Darrell T (2017) Adversarial discriminative domain adaptation. In: IEEE conference on computer vision and pattern recognition. pp 2962–2971
52.
go back to reference Tzeng E, Hoffman J, Zhang N, Saenko K, Darrell T (2014) Deep domain confusion: maximizing for domain invariance. arXiv preprint arXiv:1412.3474 Tzeng E, Hoffman J, Zhang N, Saenko K, Darrell T (2014) Deep domain confusion: maximizing for domain invariance. arXiv preprint arXiv:​1412.​3474
53.
go back to reference Vu TH, Jain H, Bucher M, Cord M, Pérez P (2019) Advent: Adversarial entropy minimization for domain adaptation in semantic segmentation. In: IEEE conference on computer vision and pattern recognition. pp 2517–2526 Vu TH, Jain H, Bucher M, Cord M, Pérez P (2019) Advent: Adversarial entropy minimization for domain adaptation in semantic segmentation. In: IEEE conference on computer vision and pattern recognition. pp 2517–2526
54.
go back to reference Wang K, He R, Wang W, Wang L, Tan T (2013) Learning coupled feature spaces for cross-modal matching. In: IEEE international conference on computer vision. pp 2088–2095 Wang K, He R, Wang W, Wang L, Tan T (2013) Learning coupled feature spaces for cross-modal matching. In: IEEE international conference on computer vision. pp 2088–2095
55.
go back to reference Wang M, Deng W (2018) Deep visual domain adaptation: a survey. Neurocomputing 312:135–153CrossRef Wang M, Deng W (2018) Deep visual domain adaptation: a survey. Neurocomputing 312:135–153CrossRef
56.
go back to reference Wu X, Song L, He R, Tan T (2018) Coupled deep learning for heterogeneous face recognition. In: AAAI conference on artificial intelligence Wu X, Song L, He R, Tan T (2018) Coupled deep learning for heterogeneous face recognition. In: AAAI conference on artificial intelligence
57.
go back to reference Wu Z, Han X, Lin YL, Gokhan Uzunbas M, Goldstein T, Nam Lim S, Davis LS (2018) Dcan: Dual channel-wise alignment networks for unsupervised scene adaptation. In: European conference on computer vision (ECCV). pp 518–534 Wu Z, Han X, Lin YL, Gokhan Uzunbas M, Goldstein T, Nam Lim S, Davis LS (2018) Dcan: Dual channel-wise alignment networks for unsupervised scene adaptation. In: European conference on computer vision (ECCV). pp 518–534
58.
go back to reference Xie J, Kiefel M, Sun MT, Geiger A (2016) Semantic instance annotation of street scenes by 3d to 2d label transfer. In: IEEE Conference on computer vision and pattern recognition. pp 3688–3697 Xie J, Kiefel M, Sun MT, Geiger A (2016) Semantic instance annotation of street scenes by 3d to 2d label transfer. In: IEEE Conference on computer vision and pattern recognition. pp 3688–3697
59.
go back to reference Yang Y, Hospedales TM (2017) Trace norm regularised deep multi-task learning. In: International conference on learning representations workshop Yang Y, Hospedales TM (2017) Trace norm regularised deep multi-task learning. In: International conference on learning representations workshop
60.
go back to reference Yosinski J, Clune J, Bengio Y, Lipson H (2014) How transferable are features in deep neural networks? In: Advances in neural information processing systems. pp 3320–3328 Yosinski J, Clune J, Bengio Y, Lipson H (2014) How transferable are features in deep neural networks? In: Advances in neural information processing systems. pp 3320–3328
61.
62.
go back to reference Zhang J, Li W, Ogunbona P (2017) Joint geometrical and statistical alignment for visual domain adaptation. In: IEEE conference on computer vision and pattern recognition. pp. 5150–5158 Zhang J, Li W, Ogunbona P (2017) Joint geometrical and statistical alignment for visual domain adaptation. In: IEEE conference on computer vision and pattern recognition. pp. 5150–5158
63.
go back to reference Zhang Y, David P, Gong B (2017) Curriculum domain adaptation for semantic segmentation of urban scenes. In: Proceedings of the IEEE international conference on computer vision. pp 2020–2030 Zhang Y, David P, Gong B (2017) Curriculum domain adaptation for semantic segmentation of urban scenes. In: Proceedings of the IEEE international conference on computer vision. pp 2020–2030
64.
go back to reference Zhang Y, Yeung DY (2010) Transfer metric learning by learning task relationships. In: ACM international conference on knowledge discovery and data mining. pp 1199–1208 Zhang Y, Yeung DY (2010) Transfer metric learning by learning task relationships. In: ACM international conference on knowledge discovery and data mining. pp 1199–1208
65.
go back to reference Zhao H, Shi J, Qi X, Wang X, Jia J (2017) Pyramid scene parsing network. In: IEEE conference on computer vision and pattern recognition. pp 2881–2890 Zhao H, Shi J, Qi X, Wang X, Jia J (2017) Pyramid scene parsing network. In: IEEE conference on computer vision and pattern recognition. pp 2881–2890
67.
go back to reference Zou Y, Yu Z, Vijaya Kumar B, Wang J (2018) Unsupervised domain adaptation for semantic segmentation via class-balanced self-training. In: European conference on computer vision (ECCV). pp 289–305 Zou Y, Yu Z, Vijaya Kumar B, Wang J (2018) Unsupervised domain adaptation for semantic segmentation via class-balanced self-training. In: European conference on computer vision (ECCV). pp 289–305
Metadata
Title
Enhancing unsupervised domain adaptation by discriminative relevance regularization
Authors
Wenju Zhang
Xiang Zhang
Long Lan
Zhigang Luo
Publication date
17-04-2020
Publisher
Springer London
Published in
Knowledge and Information Systems / Issue 9/2020
Print ISSN: 0219-1377
Electronic ISSN: 0219-3116
DOI
https://doi.org/10.1007/s10115-020-01466-z

Other articles of this Issue 9/2020

Knowledge and Information Systems 9/2020 Go to the issue

Premium Partner