Skip to main content
Top
Published in: Data Mining and Knowledge Discovery 1/2015

01-01-2015

Ensemble anomaly detection from multi-resolution trajectory features

Authors: Shin Ando, Theerasak Thanomphongphan, Yoichi Seki, Einoshin Suzuki

Published in: Data Mining and Knowledge Discovery | Issue 1/2015

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The numerical, sequential observation of behaviors, such as trajectories, have become an important subject for data mining and knowledge discovery research. Processing the raw observation into representative features of the behaviors involves an implicit choice of time-scale and resolution, which critically affect the final output of the mining techniques. The choice is associated with the parameters of data-processing, e.g., smoothing and segmentation, which unintuitively yet strongly influence the intrinsic structure of the numerical data. Data mining techniques generally require users to provide an appropriately processed input, but selecting a resolution is an arduous task that may require an expensive, manual examination of outputs between different settings. In this paper, we propose a novel ensemble framework for aggregating outcomes in different settings of scale and resolution parameters for an anomaly detection task. Such a task is difficult for existing ensemble approaches based on weighted combination because: (a) evaluating and weighing an output requires training samples of anomalies which are generally unavailable, (b) the detectability of anomalies can depend on the resolution, i.e., the distinction from normal instances may only be apparent within a small, selective range of parameters. In the proposed framework, predictions based on different resolutions are aggregated to construct meta-feature representations of the behavior instances. The meta-features provide the discriminative information for conducting a clustering-based anomaly detection. In the proposed framework, two interrelated tasks of the behavior analysis: processing the numerical data and discovering anomalous patterns, are addressed jointly, providing an intuitive alternative for a knowledge-intensive parameter selection. We also design an efficient clustering-based anomaly detection algorithm which reduces the computational burden of mining at multiple resolutions. We conduct an empirical study of the proposed framework using real-world trajectory data. It shows that the proposed framework achieves a significant improvement over the conventional ensemble approach.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
go back to reference Ailon N, Charikar M, Newman A (2008) Aggregating inconsistent information: ranking and clustering. J ACM 55, 23:1–23:27 Ailon N, Charikar M, Newman A (2008) Aggregating inconsistent information: ranking and clustering. J ACM 55, 23:1–23:27
go back to reference Ando S, Thanomphongphan T, Hoshino D, Seki Y, Suzuki E (2011) ACE: anomaly clustering ensemble for multi-perspective anomaly detection in robot behaviors. In: Proceedings of the tenth SIAM international conference on data mining, pp 1–12 Ando S, Thanomphongphan T, Hoshino D, Seki Y, Suzuki E (2011) ACE: anomaly clustering ensemble for multi-perspective anomaly detection in robot behaviors. In: Proceedings of the tenth SIAM international conference on data mining, pp 1–12
go back to reference Angiulli F, Basta S, Pizzuti C (2006) Distance-based detection and prediction of outliers. IEEE Trans Knowl Data Eng 18(2):145–160CrossRef Angiulli F, Basta S, Pizzuti C (2006) Distance-based detection and prediction of outliers. IEEE Trans Knowl Data Eng 18(2):145–160CrossRef
go back to reference Angiulli F, Fassetti F (2010) Distance-based outlier queries in data streams: the novel task and algorithms. Data Min Knowl Discov 20(2):290–324CrossRefMathSciNet Angiulli F, Fassetti F (2010) Distance-based outlier queries in data streams: the novel task and algorithms. Data Min Knowl Discov 20(2):290–324CrossRefMathSciNet
go back to reference Anjum N, Cavallaro A (2008) Multifeature object trajectory clustering for video analysis. IEEE Trans Circuits Syst Video Technol 18(11):1555–1564CrossRef Anjum N, Cavallaro A (2008) Multifeature object trajectory clustering for video analysis. IEEE Trans Circuits Syst Video Technol 18(11):1555–1564CrossRef
go back to reference Arthur D, Vassilvitskii S (2007) k-means++: the advantages of careful seeding. In: Proceedings of the eighteenth annual ACM-SIAM symposium on discrete algorithms. Society for Industrial and Applied Mathematics, Philadelphia, pp 1027–1035 Arthur D, Vassilvitskii S (2007) k-means++: the advantages of careful seeding. In: Proceedings of the eighteenth annual ACM-SIAM symposium on discrete algorithms. Society for Industrial and Applied Mathematics, Philadelphia, pp 1027–1035
go back to reference Banerjee A, Langford J (2004) An objective evaluation criterion for clustering. In: Proceedings of the tenth ACM SIGKDD international conference on knowledge discovery and data mining. ACM, New York, pp 515–520 Banerjee A, Langford J (2004) An objective evaluation criterion for clustering. In: Proceedings of the tenth ACM SIGKDD international conference on knowledge discovery and data mining. ACM, New York, pp 515–520
go back to reference Blanchard G, Lee G, Scott C (2010) Semi-supervised novelty detection. J Mach Learn Res 11:2973–3009MATHMathSciNet Blanchard G, Lee G, Scott C (2010) Semi-supervised novelty detection. J Mach Learn Res 11:2973–3009MATHMathSciNet
go back to reference Bonchi F, Castillo C, Donato D, Gionis A (2009) Taxonomy-driven lumping for sequence mining. Data Min Knowl Discov 19(2):227–244CrossRefMathSciNet Bonchi F, Castillo C, Donato D, Gionis A (2009) Taxonomy-driven lumping for sequence mining. Data Min Knowl Discov 19(2):227–244CrossRefMathSciNet
go back to reference Breunig MM, Kriegel HP, Ng RT, Sander J (2000) LOF: identifying density-based local outliers. SIGMOD Rec 29(2):93–104CrossRef Breunig MM, Kriegel HP, Ng RT, Sander J (2000) LOF: identifying density-based local outliers. SIGMOD Rec 29(2):93–104CrossRef
go back to reference Bu Y, Chen L, Fu AWC, Liu D (2009) Efficient anomaly monitoring over moving object trajectory streams. In: Proceedings of the 15th ACM SIGKDD international conference on knowledge discovery and data mining. ACM, New York, pp 159–168 Bu Y, Chen L, Fu AWC, Liu D (2009) Efficient anomaly monitoring over moving object trajectory streams. In: Proceedings of the 15th ACM SIGKDD international conference on knowledge discovery and data mining. ACM, New York, pp 159–168
go back to reference Budhaditya S, Pham DS, Lazarescu M, Venkatesh S (2009) Effective anomaly detection in sensor networks data streams. In: Proceedings of the 2009 ninth IEEE international conference on data mining, ICDM’09. IEEE Computer Society, Washington, DC, pp 722–727 Budhaditya S, Pham DS, Lazarescu M, Venkatesh S (2009) Effective anomaly detection in sensor networks data streams. In: Proceedings of the 2009 ninth IEEE international conference on data mining, ICDM’09. IEEE Computer Society, Washington, DC, pp 722–727
go back to reference Castro N, Azevedo PJ (2010) Multiresolution motif discovery in time series. In: Proceedings of tenth SIAM international conference on data mining. SIAM, pp 665–676 Castro N, Azevedo PJ (2010) Multiresolution motif discovery in time series. In: Proceedings of tenth SIAM international conference on data mining. SIAM, pp 665–676
go back to reference Chandola V, Banerjee A, Kumar V (2009) Anomaly detection: a survey. ACM Comput Surv 41(3):1–58CrossRef Chandola V, Banerjee A, Kumar V (2009) Anomaly detection: a survey. ACM Comput Surv 41(3):1–58CrossRef
go back to reference Chiu B, Keogh E, Lonardi S (2003) Probabilistic discovery of time series motifs. In: Proceedings of the ninth ACM SIGKDD international conference on knowledge discovery and data mining. ACM, New York, pp 493–498 Chiu B, Keogh E, Lonardi S (2003) Probabilistic discovery of time series motifs. In: Proceedings of the ninth ACM SIGKDD international conference on knowledge discovery and data mining. ACM, New York, pp 493–498
go back to reference Cotofrei P, Stoffel K (2002) Classification rules + time = temporal rules. In: Proceedings of the international conference on computational science-Part I. Springer-Verlag, London, pp 572–581 Cotofrei P, Stoffel K (2002) Classification rules + time = temporal rules. In: Proceedings of the international conference on computational science-Part I. Springer-Verlag, London, pp 572–581
go back to reference Daubechies I (1992) Ten lectures on wavelets. Society for Industrial and Applied Mathematics, PhiladelphiaCrossRefMATH Daubechies I (1992) Ten lectures on wavelets. Society for Industrial and Applied Mathematics, PhiladelphiaCrossRefMATH
go back to reference Dereszynski E, Dietterich T (2007) Probabilistic models for anomaly detection in remote sensor data streams. In: Proceedings of the twenty-third conference annual conference on uncertainty in artificial intelligence, UAI-07. AUAI Press, Corvallis, pp 75–82 Dereszynski E, Dietterich T (2007) Probabilistic models for anomaly detection in remote sensor data streams. In: Proceedings of the twenty-third conference annual conference on uncertainty in artificial intelligence, UAI-07. AUAI Press, Corvallis, pp 75–82
go back to reference Dietterich TG (2000) Ensemble methods in machine learning. In: Proceedings of the first international workshop on multiple classifier systems. Springer-Verlag, London, pp 1–15 Dietterich TG (2000) Ensemble methods in machine learning. In: Proceedings of the first international workshop on multiple classifier systems. Springer-Verlag, London, pp 1–15
go back to reference Ester M, Kriegel HP, Sander Jö, Xu X (1996) A density-based algorithm for discovering clusters in large spatial databases with noise. In: Proceedings of the second international conference on knowledge discovery and data mining (KDD-96). AAAI Press, Portland, pp 226–231 Ester M, Kriegel HP, Sander Jö, Xu X (1996) A density-based algorithm for discovering clusters in large spatial databases with noise. In: Proceedings of the second international conference on knowledge discovery and data mining (KDD-96). AAAI Press, Portland, pp 226–231
go back to reference Fern XZ, Brodley CE (2004) Solving cluster ensemble problems by bipartite graph partitioning. In: Proceedings of the twenty-first international conference on machine learning. ACM, New York, pp 36–43 Fern XZ, Brodley CE (2004) Solving cluster ensemble problems by bipartite graph partitioning. In: Proceedings of the twenty-first international conference on machine learning. ACM, New York, pp 36–43
go back to reference Fraley C, Raftery AE (1998) How many clusters? Which clustering method? Answers via model-based cluster analysis. Comput J 41(8):578–588CrossRefMATH Fraley C, Raftery AE (1998) How many clusters? Which clustering method? Answers via model-based cluster analysis. Comput J 41(8):578–588CrossRefMATH
go back to reference Freire A, Barreto G, Veloso M, Varela A (2009) Short-term memory mechanisms in neural network learning of robot navigation tasks: a case study. In: Proceedings of the 6th Latin American Robotics, Symposium (LARS2009), pp 1–6 Freire A, Barreto G, Veloso M, Varela A (2009) Short-term memory mechanisms in neural network learning of robot navigation tasks: a case study. In: Proceedings of the 6th Latin American Robotics, Symposium (LARS2009), pp 1–6
go back to reference Gaffney S, Smyth P (1999) Trajectory clustering with mixtures of regression models. In: Proceedings of the fifth ACM SIGKDD international conference on knowledge discovery and data mining. ACM, New York, pp 63–72 Gaffney S, Smyth P (1999) Trajectory clustering with mixtures of regression models. In: Proceedings of the fifth ACM SIGKDD international conference on knowledge discovery and data mining. ACM, New York, pp 63–72
go back to reference Ghoting A, Parthasarathy S, Otey ME (2008) Fast mining of distance-based outliers in high-dimensional datasets. Data Min Knowl Discov 16(3):349–364CrossRefMathSciNet Ghoting A, Parthasarathy S, Otey ME (2008) Fast mining of distance-based outliers in high-dimensional datasets. Data Min Knowl Discov 16(3):349–364CrossRefMathSciNet
go back to reference Giannotti F, Nanni M, Pinelli F, Pedreschi D (2007) Trajectory pattern mining. In: Proceedings of the 13th ACM SIGKDD international conference on knowledge discovery and data mining. ACM, New York, pp 330–339 Giannotti F, Nanni M, Pinelli F, Pedreschi D (2007) Trajectory pattern mining. In: Proceedings of the 13th ACM SIGKDD international conference on knowledge discovery and data mining. ACM, New York, pp 330–339
go back to reference Gionis A, Mannila H, Tsaparas P (2007) Clustering aggregation. ACM Trans Knowl Discov Data 1(1):1–30CrossRef Gionis A, Mannila H, Tsaparas P (2007) Clustering aggregation. ACM Trans Knowl Discov Data 1(1):1–30CrossRef
go back to reference Han J, Lee JG, Gonzalez H, Li X (2008) Mining massive RFID, trajectory, and traffic data sets (Tutorial). In: Proceedings of the 14th ACM SIGKDD international conference on knowledge discovery and data mining. ACM, New York Han J, Lee JG, Gonzalez H, Li X (2008) Mining massive RFID, trajectory, and traffic data sets (Tutorial). In: Proceedings of the 14th ACM SIGKDD international conference on knowledge discovery and data mining. ACM, New York
go back to reference Hido S, Tsuboi Y, Kashima H, Sugiyama M, Kanamori T (2011) Statistical outlier detection using direct density ratio estimation. Knowl Inf Syst 26:309–336CrossRef Hido S, Tsuboi Y, Kashima H, Sugiyama M, Kanamori T (2011) Statistical outlier detection using direct density ratio estimation. Knowl Inf Syst 26:309–336CrossRef
go back to reference Ho TK (1998) The random subspace method for constructing decision forests. IEEE Trans Pattern Anal Mach Intell 20(8):832–844CrossRef Ho TK (1998) The random subspace method for constructing decision forests. IEEE Trans Pattern Anal Mach Intell 20(8):832–844CrossRef
go back to reference Jain AK, Murty MN, Flynn PJ (1999) Data clustering: a review. ACM Comput Surv 31(3):264–323CrossRef Jain AK, Murty MN, Flynn PJ (1999) Data clustering: a review. ACM Comput Surv 31(3):264–323CrossRef
go back to reference Jiang S, Ferreira J, Gonzälez M (2012) Clustering daily patterns of human activities in the city. Data Min Knowl Discov 25:478–510CrossRefMATHMathSciNet Jiang S, Ferreira J, Gonzälez M (2012) Clustering daily patterns of human activities in the city. Data Min Knowl Discov 25:478–510CrossRefMATHMathSciNet
go back to reference Johnson N, Hogg D (1995) Learning the distribution of object trajectories for event recognition. In: Proceedings of the sixth british conference on machine vision B, vol 2. BMVA Press, Surrey, pp 583–592 Johnson N, Hogg D (1995) Learning the distribution of object trajectories for event recognition. In: Proceedings of the sixth british conference on machine vision B, vol 2. BMVA Press, Surrey, pp 583–592
go back to reference Keogh E, Lin J (2005) Clustering of time-series subsequences is meaningless: implications for previous and future research. Knowl Inf Syst 8(2):154–177CrossRef Keogh E, Lin J (2005) Clustering of time-series subsequences is meaningless: implications for previous and future research. Knowl Inf Syst 8(2):154–177CrossRef
go back to reference Keogh E, Lin J, Fu A (2005) HOT SAX: efficiently finding the most unusual time series subsequence. In: Proceedings of the fifth IEEE international conference on data mining. IEEE Computer Society, Washington, DC, pp 226–233 Keogh E, Lin J, Fu A (2005) HOT SAX: efficiently finding the most unusual time series subsequence. In: Proceedings of the fifth IEEE international conference on data mining. IEEE Computer Society, Washington, DC, pp 226–233
go back to reference Khalid S, Naftel A (2005) Classifying spatiotemporal object trajectories using unsupervised learning of basis function coefficients. In: Proceedings of the third ACM international workshop on video surveillance & sensor networks. ACM, New York, pp 45–52 Khalid S, Naftel A (2005) Classifying spatiotemporal object trajectories using unsupervised learning of basis function coefficients. In: Proceedings of the third ACM international workshop on video surveillance & sensor networks. ACM, New York, pp 45–52
go back to reference Khalid S, Naftel A (2006) Classifying spatiotemporal object trajectories using unsupervised learning in the coefficient feature space. Multimed Syst 12(3):227–238CrossRef Khalid S, Naftel A (2006) Classifying spatiotemporal object trajectories using unsupervised learning in the coefficient feature space. Multimed Syst 12(3):227–238CrossRef
go back to reference Kim S, Cho NW, Kang B, Kang SH (2011) Fast outlier detection for very large log data. Expert Syst Appl 38(8):9587–9596CrossRef Kim S, Cho NW, Kang B, Kang SH (2011) Fast outlier detection for very large log data. Expert Syst Appl 38(8):9587–9596CrossRef
go back to reference Knorr EM, Ng RT, Tucakov V (2000) Distance-based outliers: algorithms and applications. VLDB J 8(3–4):237–253CrossRef Knorr EM, Ng RT, Tucakov V (2000) Distance-based outliers: algorithms and applications. VLDB J 8(3–4):237–253CrossRef
go back to reference Kröger T (2010) On-line trajectory generation in robotic systems, springer tracts in advanced robotics, vol 58. Springer, BerlinCrossRef Kröger T (2010) On-line trajectory generation in robotic systems, springer tracts in advanced robotics, vol 58. Springer, BerlinCrossRef
go back to reference Kumar S, Nguyen HT, Suzuki E (2010) Understanding the behaviour of reactive robots in a patrol task by analysing their trajectories. In: Proceedings of the 2010 IEEE/WIC/ACM international conference on web intelligence and intelligent agent technology, vol 02, WI-IAT’10. IEEE Computer Society, Washington, DC, pp 56–63 Kumar S, Nguyen HT, Suzuki E (2010) Understanding the behaviour of reactive robots in a patrol task by analysing their trajectories. In: Proceedings of the 2010 IEEE/WIC/ACM international conference on web intelligence and intelligent agent technology, vol 02, WI-IAT’10. IEEE Computer Society, Washington, DC, pp 56–63
go back to reference Lazarevic, A., Kumar V (2005) Feature bagging for outlier detection. In: Proceeding of the eleventh ACM SIGKDD international conference on knowledge discovery in data mining. ACM Press, New York, pp 157–166 Lazarevic, A., Kumar V (2005) Feature bagging for outlier detection. In: Proceeding of the eleventh ACM SIGKDD international conference on knowledge discovery in data mining. ACM Press, New York, pp 157–166
go back to reference Lee JG, Han J, Li X (2008) Trajectory outlier detection: a partition-and-detect framework. In: Proceedings of the 2008 IEEE 24th international conference on data engineering, ICDM’08. IEEE Computer Society, Washington, DC, pp 140–149 Lee JG, Han J, Li X (2008) Trajectory outlier detection: a partition-and-detect framework. In: Proceedings of the 2008 IEEE 24th international conference on data engineering, ICDM’08. IEEE Computer Society, Washington, DC, pp 140–149
go back to reference Lehmann EL (2006) Nonparametrics: statistical methods based on ranks (revised edition). Springer, New York Lehmann EL (2006) Nonparametrics: statistical methods based on ranks (revised edition). Springer, New York
go back to reference Lin J, Keogh E, Wei L, Lonardi S (2007) Experiencing SAX: a novel symbolic representation of time series. Data Min Knowl Discov 15(2):107–144CrossRefMathSciNet Lin J, Keogh E, Wei L, Lonardi S (2007) Experiencing SAX: a novel symbolic representation of time series. Data Min Knowl Discov 15(2):107–144CrossRefMathSciNet
go back to reference Liu Z, Yu JX, Chen L, Wu D (2008) Detection of shape anomalies: a probabilistic approach using hidden markov models. In: Proceedings of the 2008 IEEE 24th international conference on data engineering. IEEE Computer Society, Washington, DC, pp 1325–1327 Liu Z, Yu JX, Chen L, Wu D (2008) Detection of shape anomalies: a probabilistic approach using hidden markov models. In: Proceedings of the 2008 IEEE 24th international conference on data engineering. IEEE Computer Society, Washington, DC, pp 1325–1327
go back to reference Markou M, Singh S (2003a) Novelty detection: a review—part 1: statistical approaches. Signal Process 83:2481–2497 Markou M, Singh S (2003a) Novelty detection: a review—part 1: statistical approaches. Signal Process 83:2481–2497
go back to reference Markou M, Singh S (2003b) Novelty detection: a review—part 2: neural network based approaches. Signal Process 83:2499–2521 Markou M, Singh S (2003b) Novelty detection: a review—part 2: neural network based approaches. Signal Process 83:2499–2521
go back to reference Markou M, Singh S (2006) A neural network-based novelty detector for image sequence analysis. IEEE Trans Pattern Anal Mach Intell 28(10):1664–1677CrossRef Markou M, Singh S (2006) A neural network-based novelty detector for image sequence analysis. IEEE Trans Pattern Anal Mach Intell 28(10):1664–1677CrossRef
go back to reference Morris B, Trivedi M (2008) Learning, modeling, and classification of vehicle track patterns from live video. IEEE Trans Intell Transp Syst 9(3):425–437CrossRef Morris B, Trivedi M (2008) Learning, modeling, and classification of vehicle track patterns from live video. IEEE Trans Intell Transp Syst 9(3):425–437CrossRef
go back to reference Morris B, Trivedi M (2009) Learning trajectory patterns by clustering: experimental studies and comparative evaluation. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 312–319 Morris B, Trivedi M (2009) Learning trajectory patterns by clustering: experimental studies and comparative evaluation. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 312–319
go back to reference Morris BT, Trivedi MM (2008) A survey of vision-based trajectory learning and analysis for surveillance. IEEE Trans Circuits Syst Video Technol 18(8):1114–1127CrossRef Morris BT, Trivedi MM (2008) A survey of vision-based trajectory learning and analysis for surveillance. IEEE Trans Circuits Syst Video Technol 18(8):1114–1127CrossRef
go back to reference Nguyen HV, Ang HH, Gopalkrishnan V (2010) Mining outliers with ensemble of heterogeneous detectors on random subspaces. In: Proceedings of the 15th international conference on database systems for advanced applications, DASFAA’10, vol I. Springer, Berlin, pp 368–383 Nguyen HV, Ang HH, Gopalkrishnan V (2010) Mining outliers with ensemble of heterogeneous detectors on random subspaces. In: Proceedings of the 15th international conference on database systems for advanced applications, DASFAA’10, vol I. Springer, Berlin, pp 368–383
go back to reference Noto K, Brodley C, Slonim D (2012) FRaC: a feature-modeling approach for semi-supervised and unsupervised anomaly detection. Data Min Knowl Discov 25(1):109–133CrossRefMathSciNet Noto K, Brodley C, Slonim D (2012) FRaC: a feature-modeling approach for semi-supervised and unsupervised anomaly detection. Data Min Knowl Discov 25(1):109–133CrossRefMathSciNet
go back to reference Pelekis N, Kopanakis I, Kotsifakos EE, Frentzos E, Theodoridis Y (2011) Clustering uncertain trajectories. Knowl Inf Syst 28(1):117–147CrossRef Pelekis N, Kopanakis I, Kotsifakos EE, Frentzos E, Theodoridis Y (2011) Clustering uncertain trajectories. Knowl Inf Syst 28(1):117–147CrossRef
go back to reference Pham DT, Chan AB (1998) Control chart pattern recognition using a new type of self-organizing neural network. In: Proceedings of the institution of mechanical engineers, part I. J Syst Control Eng 212(2):115–127 Pham DT, Chan AB (1998) Control chart pattern recognition using a new type of self-organizing neural network. In: Proceedings of the institution of mechanical engineers, part I. J Syst Control Eng 212(2):115–127
go back to reference Piciarelli C, Foresti GL (2006) On-line trajectory clustering for anomalous events detection. Pattern Recogn Lett 27(15):1835–1842CrossRef Piciarelli C, Foresti GL (2006) On-line trajectory clustering for anomalous events detection. Pattern Recogn Lett 27(15):1835–1842CrossRef
go back to reference Piciarelli C, Foresti GL (2007) Anomalous trajectory detection using support vector machines. In: Proceedings of the 2007 IEEE conference on advanced video and signal based surveillance. IEEE Computer Society, Washington, DC, pp 153–158 Piciarelli C, Foresti GL (2007) Anomalous trajectory detection using support vector machines. In: Proceedings of the 2007 IEEE conference on advanced video and signal based surveillance. IEEE Computer Society, Washington, DC, pp 153–158
go back to reference Piciarelli C, Micheloni C, Foresti G (2008) Trajectory-based anomalous event detection. IEEE Trans Circuits Syst Video Technol 18(11):1544–1554CrossRef Piciarelli C, Micheloni C, Foresti G (2008) Trajectory-based anomalous event detection. IEEE Trans Circuits Syst Video Technol 18(11):1544–1554CrossRef
go back to reference Porikli F, Haga T (2004) Event detection by eigenvector decomposition using object and frame features. In: Conference on computer vision and pattern recognition workshop, 2004. CVPRW ’04, p 114 Porikli F, Haga T (2004) Event detection by eigenvector decomposition using object and frame features. In: Conference on computer vision and pattern recognition workshop, 2004. CVPRW ’04, p 114
go back to reference Roddick JF, Spiliopoulou M (2002) A survey of temporal knowledge discovery paradigms and methods. IEEE Trans Knowl Data Eng 14:750–767CrossRef Roddick JF, Spiliopoulou M (2002) A survey of temporal knowledge discovery paradigms and methods. IEEE Trans Knowl Data Eng 14:750–767CrossRef
go back to reference Rosswog J, Ghose K (2012) Detecting and tracking coordinated groups in dense, systematically moving, crowds. In: Proceedings of the twelfth SIAM international conference on data mining, pp 1–11 Rosswog J, Ghose K (2012) Detecting and tracking coordinated groups in dense, systematically moving, crowds. In: Proceedings of the twelfth SIAM international conference on data mining, pp 1–11
go back to reference Saito N (1994) Local feature extraction and its applications using a library of bases. Ph.D. Thesis, Yale University, New Haven Saito N (1994) Local feature extraction and its applications using a library of bases. Ph.D. Thesis, Yale University, New Haven
go back to reference Strehl A, Ghosh J (2003) Cluster ensembles—a knowledge reuse framework for combining multiple partitions. J Mach Learn Res 3:583–617MATHMathSciNet Strehl A, Ghosh J (2003) Cluster ensembles—a knowledge reuse framework for combining multiple partitions. J Mach Learn Res 3:583–617MATHMathSciNet
go back to reference Suzuki N, Hirasawa K, Tanaka K, Kobayashi Y, Sato Y, Fujino Y (2007) Learning motion patterns and anomaly detection by human trajectory analysis. In: IEEE international conference on systems, man and cybernetics, ISIC2007, pp 498–503 Suzuki N, Hirasawa K, Tanaka K, Kobayashi Y, Sato Y, Fujino Y (2007) Learning motion patterns and anomaly detection by human trajectory analysis. In: IEEE international conference on systems, man and cybernetics, ISIC2007, pp 498–503
go back to reference Wan L, Ng WK, Dang XH, Yu PS, Zhang K (2009) Density-based clustering of data streams at multiple resolutions. ACM Trans Knowl Discov Data 3, 14:1–14:28 Wan L, Ng WK, Dang XH, Yu PS, Zhang K (2009) Density-based clustering of data streams at multiple resolutions. ACM Trans Knowl Discov Data 3, 14:1–14:28
go back to reference Wang Q, Megalooikonomou V, Faloutsos C (2010) Time series analysis with multiple resolutions. Inf Syst 35(1):56–74CrossRef Wang Q, Megalooikonomou V, Faloutsos C (2010) Time series analysis with multiple resolutions. Inf Syst 35(1):56–74CrossRef
go back to reference Williams BH, Toussaint M, Storkey AJ (2007) A primitive based generative model to infer timing information in unpartitioned handwriting data. In: Proceedings of the 20th international joint conference on artifical intelligence, IJCAI’07. Morgan Kaufmann Publishers Inc., San Francisco, pp 1119–1124 Williams BH, Toussaint M, Storkey AJ (2007) A primitive based generative model to infer timing information in unpartitioned handwriting data. In: Proceedings of the 20th international joint conference on artifical intelligence, IJCAI’07. Morgan Kaufmann Publishers Inc., San Francisco, pp 1119–1124
go back to reference Xiong Y, Yeung DY (2002) Mixtures of ARMA models for model-based time series clustering. In: Proceedings of the 2002 IEEE international conference on data mining. IEEE Computer Society, Washington, DC, pp. 717–720 Xiong Y, Yeung DY (2002) Mixtures of ARMA models for model-based time series clustering. In: Proceedings of the 2002 IEEE international conference on data mining. IEEE Computer Society, Washington, DC, pp. 717–720
go back to reference Xu R, Wunsch D (2005) Survey of clustering algorithms. IEEE Trans Neural Netw 16(3):645–678CrossRef Xu R, Wunsch D (2005) Survey of clustering algorithms. IEEE Trans Neural Netw 16(3):645–678CrossRef
go back to reference Yamanishi K, Takeuchi J, Williams G, Milne P (2004) On-line unsupervised outlier detection using finite mixtures with discounting learning algorithms. Data Min Knowl Discov 8(3):275–300CrossRefMathSciNet Yamanishi K, Takeuchi J, Williams G, Milne P (2004) On-line unsupervised outlier detection using finite mixtures with discounting learning algorithms. Data Min Knowl Discov 8(3):275–300CrossRefMathSciNet
go back to reference Yang Q (2009) Activity recognition: linking low-level sensors to high-level intelligence. In: Proceedings of the 21st international joint conference on artifical intelligence, IJCAI’09. Morgan Kaufmann Publishers Inc., San Francisco, CA, pp 20–25 Yang Q (2009) Activity recognition: linking low-level sensors to high-level intelligence. In: Proceedings of the 21st international joint conference on artifical intelligence, IJCAI’09. Morgan Kaufmann Publishers Inc., San Francisco, CA, pp 20–25
go back to reference Yang Y, Chen K (2011) Temporal data clustering via weighted clustering ensemble with different representations. IEEE Trans Knowl Data Eng 23:307–320CrossRef Yang Y, Chen K (2011) Temporal data clustering via weighted clustering ensemble with different representations. IEEE Trans Knowl Data Eng 23:307–320CrossRef
go back to reference Yankov D, Keogh E, Rebbapragada U (2008) Disk-aware discord discovery: finding unusual time series in terabyte sized datasets. Knowl Inf Syst 17(2):241–262CrossRef Yankov D, Keogh E, Rebbapragada U (2008) Disk-aware discord discovery: finding unusual time series in terabyte sized datasets. Knowl Inf Syst 17(2):241–262CrossRef
go back to reference Zheng Y, Zhou X (2011) Computing with spatial trajectories, 1st edn. Springer Publishing Company, Incorporated, New YorkCrossRef Zheng Y, Zhou X (2011) Computing with spatial trajectories, 1st edn. Springer Publishing Company, Incorporated, New YorkCrossRef
Metadata
Title
Ensemble anomaly detection from multi-resolution trajectory features
Authors
Shin Ando
Theerasak Thanomphongphan
Yoichi Seki
Einoshin Suzuki
Publication date
01-01-2015
Publisher
Springer US
Published in
Data Mining and Knowledge Discovery / Issue 1/2015
Print ISSN: 1384-5810
Electronic ISSN: 1573-756X
DOI
https://doi.org/10.1007/s10618-013-0334-x

Other articles of this Issue 1/2015

Data Mining and Knowledge Discovery 1/2015 Go to the issue

Editorial

Editorial

Premium Partner