Skip to main content
Top
Published in: Journal of Scientific Computing 3/2020

01-06-2020

Entropy Stable and Well-Balanced Discontinuous Galerkin Methods for the Nonlinear Shallow Water Equations

Authors: Xiao Wen, Wai Sun Don, Zhen Gao, Yulong Xing

Published in: Journal of Scientific Computing | Issue 3/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The nonlinear shallow water equations (SWEs) are widely used to model the unsteady water flows in rivers and coastal areas, with extensive applications in ocean and hydraulic engineering. In this work, we propose entropy stable, well-balanced and positivity-preserving discontinuous Galerkin (DG) methods, under arbitrary choices of quadrature rules, for the SWEs with a non-flat bottom topography. In Chan (J Comput Phys 362:346–374, 2018), a SBP-like differentiation operator was introduced to construct the discretely entropy conservative DG methods. We extend this idea to the SWEs and establish an entropy stable scheme by adding additional dissipative terms. Careful approximation of the source term is included to ensure the well-balanced property of the resulting method. A simple positivity-preserving limiter, compatible with the entropy stable property, is included to guarantee the non-negative water heights during the computation. One- and two-dimensional numerical experiments are presented to demonstrate the performance of the proposed methods.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Audusse, E., Bouchut, F., Bristeau, M.O., Klein, R., Perthame, B.: A fast and stable well-balanced scheme with hydrostatic reconstruction for shallow water flows. SIAM J. Sci. Comput. 25, 2050–2065 (2004)MathSciNetMATHCrossRef Audusse, E., Bouchut, F., Bristeau, M.O., Klein, R., Perthame, B.: A fast and stable well-balanced scheme with hydrostatic reconstruction for shallow water flows. SIAM J. Sci. Comput. 25, 2050–2065 (2004)MathSciNetMATHCrossRef
2.
go back to reference Bale, D.S., LeVeque, R.J., Mitran, S., Rossmanith, J.A.: A wave propagation method for conservation laws and balance laws with spatially varying flux functions. SIAM J. Sci. Comput. 24, 955–978 (2002)MathSciNetMATHCrossRef Bale, D.S., LeVeque, R.J., Mitran, S., Rossmanith, J.A.: A wave propagation method for conservation laws and balance laws with spatially varying flux functions. SIAM J. Sci. Comput. 24, 955–978 (2002)MathSciNetMATHCrossRef
3.
go back to reference Berthon, C., Marche, F.: A positive preserving high order VFRoe scheme for shallow water equations: a class of relaxation schemes. SIAM J. Sci. Comput. 30, 2587–2612 (2008)MathSciNetMATHCrossRef Berthon, C., Marche, F.: A positive preserving high order VFRoe scheme for shallow water equations: a class of relaxation schemes. SIAM J. Sci. Comput. 30, 2587–2612 (2008)MathSciNetMATHCrossRef
4.
go back to reference Bermudez, A., Vazquez, M.E.: Upwind methods for hyperbolic conservation laws with source terms. Comput. Fluids 23, 1049–1071 (1994)MathSciNetMATHCrossRef Bermudez, A., Vazquez, M.E.: Upwind methods for hyperbolic conservation laws with source terms. Comput. Fluids 23, 1049–1071 (1994)MathSciNetMATHCrossRef
5.
go back to reference Bokhove, O.: Flooding and drying in discontinuous Galerkin finite-element discretizations of shallow-water equations. Part 1: one dimension. J. Sci. Comput. 22, 47–82 (2005)MathSciNetMATHCrossRef Bokhove, O.: Flooding and drying in discontinuous Galerkin finite-element discretizations of shallow-water equations. Part 1: one dimension. J. Sci. Comput. 22, 47–82 (2005)MathSciNetMATHCrossRef
6.
go back to reference Bollermann, A., Noelle, S., Lukácová-Medviová, M.: Finite volume evolution Galerkin methods for the shallow water equations with dry beds. Commun. Comput. Phys. 10, 371–404 (2010)MathSciNetMATHCrossRef Bollermann, A., Noelle, S., Lukácová-Medviová, M.: Finite volume evolution Galerkin methods for the shallow water equations with dry beds. Commun. Comput. Phys. 10, 371–404 (2010)MathSciNetMATHCrossRef
7.
go back to reference Bunya, S., Kubatko, E.J., Westerink, J.J., Dawson, C.: A wetting and drying treatment for the Runge–Kutta discontinuous Galerkin solution to the shallow water equations. Methods Appl. Mech. Eng. 198, 1548–1562 (2009)MathSciNetMATHCrossRef Bunya, S., Kubatko, E.J., Westerink, J.J., Dawson, C.: A wetting and drying treatment for the Runge–Kutta discontinuous Galerkin solution to the shallow water equations. Methods Appl. Mech. Eng. 198, 1548–1562 (2009)MathSciNetMATHCrossRef
8.
go back to reference Carpenter, M., Fisher, T., Nielsen, E., Frankel, S.: Entropy stable spectral collocation schemes for the Navier–Stokes equations: discontinuous interfaces. SIAM J. Sci. Comput. 36(5), B835–B867 (2014)MathSciNetMATHCrossRef Carpenter, M., Fisher, T., Nielsen, E., Frankel, S.: Entropy stable spectral collocation schemes for the Navier–Stokes equations: discontinuous interfaces. SIAM J. Sci. Comput. 36(5), B835–B867 (2014)MathSciNetMATHCrossRef
9.
go back to reference Chan, J.: On discretely entropy conservative and entropy stable discontinuous Galerkin methods. J. Comput. Phys. 362, 346–374 (2018)MathSciNetMATHCrossRef Chan, J.: On discretely entropy conservative and entropy stable discontinuous Galerkin methods. J. Comput. Phys. 362, 346–374 (2018)MathSciNetMATHCrossRef
11.
go back to reference Chen, T., Shu, C.-W.: Entropy stable high order discontinuous Galerkin methods with suitable quadrature rules for hyperbolic conservation laws. J. Comput. Phys. 345, 427–461 (2017)MathSciNetMATHCrossRef Chen, T., Shu, C.-W.: Entropy stable high order discontinuous Galerkin methods with suitable quadrature rules for hyperbolic conservation laws. J. Comput. Phys. 345, 427–461 (2017)MathSciNetMATHCrossRef
13.
go back to reference Cockburn, B., Karniadakis, G., Shu, C.-W.: The development of discontinuous Galerkin methods. In: Cockburn, B., Karniadakis, G., Shu, C.-W. (eds.) Discontinuous Galerkin Methods: Theory, Computation and Applications. Lecture Notes in Computational Science and Engineering, Part I: Overview, vol. 11, pp. 5–50. Springer, New York (2000) Cockburn, B., Karniadakis, G., Shu, C.-W.: The development of discontinuous Galerkin methods. In: Cockburn, B., Karniadakis, G., Shu, C.-W. (eds.) Discontinuous Galerkin Methods: Theory, Computation and Applications. Lecture Notes in Computational Science and Engineering, Part I: Overview, vol. 11, pp. 5–50. Springer, New York (2000)
14.
go back to reference Cockburn, B., Shu, C.-W.: TVB Runge–Kutta local projection discontinuous Galerkin finite element method for conservation laws II: general framework. Math. Comput. 52, 411–435 (1989)MathSciNetMATH Cockburn, B., Shu, C.-W.: TVB Runge–Kutta local projection discontinuous Galerkin finite element method for conservation laws II: general framework. Math. Comput. 52, 411–435 (1989)MathSciNetMATH
15.
go back to reference Cockburn, B., Shu, C.-W.: The Runge–Kutta discontinuous Galerkin method for conservation laws V: multidimensional systems. J. Comput. Phys. 141, 199–224 (1998)MathSciNetMATHCrossRef Cockburn, B., Shu, C.-W.: The Runge–Kutta discontinuous Galerkin method for conservation laws V: multidimensional systems. J. Comput. Phys. 141, 199–224 (1998)MathSciNetMATHCrossRef
16.
go back to reference Dawson, C., Proft, J.: Discontinuous and coupled continuous/discontinuous Galerkin methods for the shallow water equations. Comput. Methods Appl. Mech. Eng. 191, 4721–4746 (2002)MathSciNetMATHCrossRef Dawson, C., Proft, J.: Discontinuous and coupled continuous/discontinuous Galerkin methods for the shallow water equations. Comput. Methods Appl. Mech. Eng. 191, 4721–4746 (2002)MathSciNetMATHCrossRef
17.
go back to reference Eskilsson, C., Sherwin, S.J.: A triangular spectral/hp discontinuous Galerkin method for modelling 2D shallow water equations. Int. J. Numer. Methods Fluids 45, 605–623 (2004)MathSciNetMATHCrossRef Eskilsson, C., Sherwin, S.J.: A triangular spectral/hp discontinuous Galerkin method for modelling 2D shallow water equations. Int. J. Numer. Methods Fluids 45, 605–623 (2004)MathSciNetMATHCrossRef
18.
go back to reference Ern, A., Piperno, S., Djadel, K.: A well-balanced Runge–Kutta discontinuous Galerkin method for the shallow-water equations with flooding and drying. Int. J. Numer. Methods Fluids 58, 1–25 (2008)MathSciNetMATHCrossRef Ern, A., Piperno, S., Djadel, K.: A well-balanced Runge–Kutta discontinuous Galerkin method for the shallow-water equations with flooding and drying. Int. J. Numer. Methods Fluids 58, 1–25 (2008)MathSciNetMATHCrossRef
19.
go back to reference Fjordholm, U.S., Mishra, S., Tadmor, E.: Well-balanced and energy stable schemes for the shallow water equations with discontinuous topography. J. Comput. Phys. 230, 5587–5609 (2011)MathSciNetMATHCrossRef Fjordholm, U.S., Mishra, S., Tadmor, E.: Well-balanced and energy stable schemes for the shallow water equations with discontinuous topography. J. Comput. Phys. 230, 5587–5609 (2011)MathSciNetMATHCrossRef
20.
go back to reference Gallardo, J.M., Parés, C., Castro, M.: On a well-balanced high-order finite volume scheme for shallow water equations with topography and dry areas. J. Comput. Phys. 227, 574–601 (2007)MathSciNetMATHCrossRef Gallardo, J.M., Parés, C., Castro, M.: On a well-balanced high-order finite volume scheme for shallow water equations with topography and dry areas. J. Comput. Phys. 227, 574–601 (2007)MathSciNetMATHCrossRef
21.
go back to reference Gassner, G.J.: A skew-symmetric discontinuous Galerkin spectral element discretization and its relation to SBP-SAT finite difference methods. SIAM J. Sci. Comput. 35, A1233–A1253 (2013)MathSciNetMATHCrossRef Gassner, G.J.: A skew-symmetric discontinuous Galerkin spectral element discretization and its relation to SBP-SAT finite difference methods. SIAM J. Sci. Comput. 35, A1233–A1253 (2013)MathSciNetMATHCrossRef
22.
go back to reference Gassner, G.J., Winters, A.R., Kopriva, D.A.: A well balanced and entropy conservative discontinuous Galerkin spectral element method for the shallow water equations. Appl. Math. Comput. 272, 291–308 (2016)MathSciNetMATH Gassner, G.J., Winters, A.R., Kopriva, D.A.: A well balanced and entropy conservative discontinuous Galerkin spectral element method for the shallow water equations. Appl. Math. Comput. 272, 291–308 (2016)MathSciNetMATH
23.
go back to reference Giraldo, F.X., Hesthaven, J.S., Warburton, T.: Nodal high-order discontinuous Galerkin methods for the spherical shallow water equations. J. Comput. Phys. 181, 499–525 (2002)MathSciNetMATHCrossRef Giraldo, F.X., Hesthaven, J.S., Warburton, T.: Nodal high-order discontinuous Galerkin methods for the spherical shallow water equations. J. Comput. Phys. 181, 499–525 (2002)MathSciNetMATHCrossRef
24.
go back to reference Hesthaven, J.S., Warburton, T.: Nodal Discontinuous Galerkin Methods: Algorithms, Analysis, and Applications. Springer, Berlin (2007)MATH Hesthaven, J.S., Warburton, T.: Nodal Discontinuous Galerkin Methods: Algorithms, Analysis, and Applications. Springer, Berlin (2007)MATH
25.
go back to reference Hou, S., Liu, X.-D.: Solutions of multi-dimensional hyperbolic systems of conservation laws by square entropy condition satisfying discontinuous Galerkin method. J. Sci. Comput. 31, 127–151 (2007)MathSciNetMATHCrossRef Hou, S., Liu, X.-D.: Solutions of multi-dimensional hyperbolic systems of conservation laws by square entropy condition satisfying discontinuous Galerkin method. J. Sci. Comput. 31, 127–151 (2007)MathSciNetMATHCrossRef
26.
go back to reference Kopriva, D.A., Gassner, G.: On the quadrature and weak form choices in collocation type discontinuous Galerkin spectral element methods. J. Sci. Comput. 44, 136–155 (2010)MathSciNetMATHCrossRef Kopriva, D.A., Gassner, G.: On the quadrature and weak form choices in collocation type discontinuous Galerkin spectral element methods. J. Sci. Comput. 44, 136–155 (2010)MathSciNetMATHCrossRef
27.
28.
go back to reference LeVeque, R.J.: Balancing source terms and flux gradients on high-resolution Godunov methods: the quasi-steady wave-propagation algorithm. J. Comput. Phys. 146, 346–365 (1998)MathSciNetMATHCrossRef LeVeque, R.J.: Balancing source terms and flux gradients on high-resolution Godunov methods: the quasi-steady wave-propagation algorithm. J. Comput. Phys. 146, 346–365 (1998)MathSciNetMATHCrossRef
29.
30.
go back to reference Ranocha, H.: Shallow water equations: split-form, entropy stable, well-balanced, and positivity preserving numerical methods. Int. J. Geomath. 8, 85–133 (2017)MathSciNetMATHCrossRef Ranocha, H.: Shallow water equations: split-form, entropy stable, well-balanced, and positivity preserving numerical methods. Int. J. Geomath. 8, 85–133 (2017)MathSciNetMATHCrossRef
31.
go back to reference Schwanenberg, D., Köngeter, J.: A discontinuous Galerkin method for the shallow water equations with source terms. In: Cockburn, B., Karniadakis, G., Shu, C.-W. (eds.) Discontinuous Galerkin Methods: Theory, Computation and Applications. Lecture Notes in Computational Science and Engineering, Part I: Overview, pp. 289–309. Springer, Berlin (2000)MATH Schwanenberg, D., Köngeter, J.: A discontinuous Galerkin method for the shallow water equations with source terms. In: Cockburn, B., Karniadakis, G., Shu, C.-W. (eds.) Discontinuous Galerkin Methods: Theory, Computation and Applications. Lecture Notes in Computational Science and Engineering, Part I: Overview, pp. 289–309. Springer, Berlin (2000)MATH
32.
go back to reference Tadmor, E.: The numerical viscosity of entropy stable schemes for systems of conservation laws I. Math. Comput. 49(1987), 91–103 (1987)MathSciNetMATHCrossRef Tadmor, E.: The numerical viscosity of entropy stable schemes for systems of conservation laws I. Math. Comput. 49(1987), 91–103 (1987)MathSciNetMATHCrossRef
33.
go back to reference Tadmor, E.: Entropy stability theory for difference approximations of nonlinear conservation laws and related time-dependent problems. Acta Numer. 12, 451–512 (2003)MathSciNetMATHCrossRef Tadmor, E.: Entropy stability theory for difference approximations of nonlinear conservation laws and related time-dependent problems. Acta Numer. 12, 451–512 (2003)MathSciNetMATHCrossRef
34.
go back to reference Tadmor, E.: Entropy stable schemes. In: Abgrall, R., Shu, C.-W. (eds.) Handbook of Numerical Methods for Hyperbolic Problems, vol. XVII, pp. 467–493. Elsevier, London (2016) Tadmor, E.: Entropy stable schemes. In: Abgrall, R., Shu, C.-W. (eds.) Handbook of Numerical Methods for Hyperbolic Problems, vol. XVII, pp. 467–493. Elsevier, London (2016)
35.
go back to reference Wen, X., Gao, Z., Don, W.S., Xing, Y., Li, P.: Application of positivity-preserving well-balanced discontinuous Galerkin method in computational hydrology. Comput. Fluids 139, 112–119 (2016)MathSciNetMATHCrossRef Wen, X., Gao, Z., Don, W.S., Xing, Y., Li, P.: Application of positivity-preserving well-balanced discontinuous Galerkin method in computational hydrology. Comput. Fluids 139, 112–119 (2016)MathSciNetMATHCrossRef
36.
go back to reference Wintermeyer, N., Winters, A.R., Gassner, G.J., Warburton, T.: An entropy stable discontinuous Galerkin method for the shallow water equations on curvilinear meshes with wet/dry fronts accelerated by GPUs. J. Comput. Phys. 375, 447–480 (2018)MathSciNetMATHCrossRef Wintermeyer, N., Winters, A.R., Gassner, G.J., Warburton, T.: An entropy stable discontinuous Galerkin method for the shallow water equations on curvilinear meshes with wet/dry fronts accelerated by GPUs. J. Comput. Phys. 375, 447–480 (2018)MathSciNetMATHCrossRef
37.
go back to reference Wintermeyer, N., Winters, A.R., Gassner, G.J., Kopriva, D.A.: An entropy stable nodal discontinuous Galerkin method for the two dimensional shallow water equations on unstructured curvilinear meshes with discontinuous bathymetry. J. Comput. Phys. 340, 200–242 (2017)MathSciNetMATHCrossRef Wintermeyer, N., Winters, A.R., Gassner, G.J., Kopriva, D.A.: An entropy stable nodal discontinuous Galerkin method for the two dimensional shallow water equations on unstructured curvilinear meshes with discontinuous bathymetry. J. Comput. Phys. 340, 200–242 (2017)MathSciNetMATHCrossRef
38.
go back to reference Xing, Y.: Exactly well-balanced discontinuous Galerkin methods for the shallow water equations with moving water equilibrium. J. Comput. Phys. 257, 536–553 (2014)MathSciNetMATHCrossRef Xing, Y.: Exactly well-balanced discontinuous Galerkin methods for the shallow water equations with moving water equilibrium. J. Comput. Phys. 257, 536–553 (2014)MathSciNetMATHCrossRef
39.
go back to reference Xing, Y., Shu, C.-W.: High order finite difference WENO schemes with the exact conservation property for the shallow water equations. J. Comput. Phys. 208, 206–227 (2005)MathSciNetMATHCrossRef Xing, Y., Shu, C.-W.: High order finite difference WENO schemes with the exact conservation property for the shallow water equations. J. Comput. Phys. 208, 206–227 (2005)MathSciNetMATHCrossRef
40.
go back to reference Xing, Y., Shu, C.-W.: High order well-balanced finite volume WENO schemes and discontinuous Galerkin methods for a class of hyperbolic systems with source terms. J. Comput. Phys. 214, 567–598 (2006)MathSciNetMATHCrossRef Xing, Y., Shu, C.-W.: High order well-balanced finite volume WENO schemes and discontinuous Galerkin methods for a class of hyperbolic systems with source terms. J. Comput. Phys. 214, 567–598 (2006)MathSciNetMATHCrossRef
41.
go back to reference Xing, Y., Shu, C.-W.: A new approach of high order well-balanced finite volume WENO schemes and discontinuous Galerkin methods for a class of hyperbolic systems with source terms. Commun. Comput. Phys. 1, 100–134 (2006)MATH Xing, Y., Shu, C.-W.: A new approach of high order well-balanced finite volume WENO schemes and discontinuous Galerkin methods for a class of hyperbolic systems with source terms. Commun. Comput. Phys. 1, 100–134 (2006)MATH
42.
go back to reference Xing, Y., Shu, C.-W.: High-order finite volume WENO schemes for the shallow water equations with dry states. Adv. Water Resour. 34, 1026–1038 (2011)CrossRef Xing, Y., Shu, C.-W.: High-order finite volume WENO schemes for the shallow water equations with dry states. Adv. Water Resour. 34, 1026–1038 (2011)CrossRef
43.
go back to reference Xing, Y., Zhang, X., Shu, C.-W.: Positivity-preserving high order well-balanced discontinuous Galerkin methods for the shallow water equations. Adv. Water Resour. 33, 1476–1493 (2010)CrossRef Xing, Y., Zhang, X., Shu, C.-W.: Positivity-preserving high order well-balanced discontinuous Galerkin methods for the shallow water equations. Adv. Water Resour. 33, 1476–1493 (2010)CrossRef
44.
go back to reference Xing, Y., Zhang, X.: Positivity-preserving well-balanced discontinuous Galerkin methods for the shallow water equations on unstructured triangular meshes. J. Sci. Comput. 57, 19–41 (2013)MathSciNetMATHCrossRef Xing, Y., Zhang, X.: Positivity-preserving well-balanced discontinuous Galerkin methods for the shallow water equations on unstructured triangular meshes. J. Sci. Comput. 57, 19–41 (2013)MathSciNetMATHCrossRef
45.
46.
go back to reference Zhang, X., Shu, C.-W.: On maximum-principle-satisfying high order schemes for scalar conservation laws. J. Comput. Phys. 229, 3091–3120 (2010)MathSciNetMATHCrossRef Zhang, X., Shu, C.-W.: On maximum-principle-satisfying high order schemes for scalar conservation laws. J. Comput. Phys. 229, 3091–3120 (2010)MathSciNetMATHCrossRef
Metadata
Title
Entropy Stable and Well-Balanced Discontinuous Galerkin Methods for the Nonlinear Shallow Water Equations
Authors
Xiao Wen
Wai Sun Don
Zhen Gao
Yulong Xing
Publication date
01-06-2020
Publisher
Springer US
Published in
Journal of Scientific Computing / Issue 3/2020
Print ISSN: 0885-7474
Electronic ISSN: 1573-7691
DOI
https://doi.org/10.1007/s10915-020-01248-3

Other articles of this Issue 3/2020

Journal of Scientific Computing 3/2020 Go to the issue

Premium Partner