Skip to main content
Top

2021 | OriginalPaper | Chapter

8. Environmental Benign Biochar Technologies: Strategic Utilization for CO2 Capture and Wastewater Treatment

Authors : Mohd Danish Khan, Ji Whan Ahn

Published in: Clean Coal Technologies

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Water pollution particularly caused by heavy metal ions and anionic contaminants even in trace amount can pose catastrophic impact on all living organisms. As these contaminants are mostly non-biodegradable and can transformed into complexes, adsorption is a most auspicious technique in recent times. Biochar, a sustainable and low-lost product, synthesized from thermochemical conversion of biomass has attracted research attention with its adsorption prospects of wide range contaminants. However, challenging recovery and often deficient adsorptions forced researchers to develop modification techniques to upgrade the physicochemical characteristics of biochar. These modifications can enhance biochar chemical interactions such as electrostatic attraction, surface complexation, ion exchange, and induction of functional groups. This chapter mainly focussed on the effectiveness of different thermochemical conversion techniques, biochar modifications, and an overview of biochar applications for the efficient removal of heavy metal ions and anionic contaminants from wastewater.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Agrafioti, E., Bouras, G., Kalderis, D., & Diamadopoulos, E. (2013). Biochar production by sewage sludge pyrolysis. Journal of Analytical and Applied Pyrolysis, 101, 72–78.CrossRef Agrafioti, E., Bouras, G., Kalderis, D., & Diamadopoulos, E. (2013). Biochar production by sewage sludge pyrolysis. Journal of Analytical and Applied Pyrolysis, 101, 72–78.CrossRef
go back to reference Agrafioti, E., Kalderis, D., & Diamadopoulos, E. (2014). Arsenic and chromium removal from water using biochars derived from rice husk, organic solid wastes and sewage sludge. Journal of Environmental Management, 133, 309–314.CrossRef Agrafioti, E., Kalderis, D., & Diamadopoulos, E. (2014). Arsenic and chromium removal from water using biochars derived from rice husk, organic solid wastes and sewage sludge. Journal of Environmental Management, 133, 309–314.CrossRef
go back to reference Ali, I., & Gupta, V. K. (2006). Advances in water treatment by adsorption technology. Nature Protocols, 1(6), 2661–2667.CrossRef Ali, I., & Gupta, V. K. (2006). Advances in water treatment by adsorption technology. Nature Protocols, 1(6), 2661–2667.CrossRef
go back to reference Aller, M. F. (2016). Biochar properties: Transport, fate, and impact. Critical Reviews in Environmental Science and Technology, 46, 1183–1296.CrossRef Aller, M. F. (2016). Biochar properties: Transport, fate, and impact. Critical Reviews in Environmental Science and Technology, 46, 1183–1296.CrossRef
go back to reference An, Q., Jiang, Y. Q., Nan, H. Y., Yu, Y., & Jiang, J. N. (2019). Unraveling sorption of nickel from aqueous solution by KMnO4 and KOH-modified peanut shell biochar: Implicit mechanism. Chemosphere, 214, 846–854.CrossRef An, Q., Jiang, Y. Q., Nan, H. Y., Yu, Y., & Jiang, J. N. (2019). Unraveling sorption of nickel from aqueous solution by KMnO4 and KOH-modified peanut shell biochar: Implicit mechanism. Chemosphere, 214, 846–854.CrossRef
go back to reference Antal, M. J., & Grønli, M. (2003). The art, science, and technology of charcoal production. Industrial and Engineering Chemistry Research, 42, 1619–1640.CrossRef Antal, M. J., & Grønli, M. (2003). The art, science, and technology of charcoal production. Industrial and Engineering Chemistry Research, 42, 1619–1640.CrossRef
go back to reference Arán, D., Antelo, J., Fiol, S., & Macıas, F. (2016). Influence of feedstock on the copper removal capacity of waste derived biochars. Bioresource Technology, 212, 199–206.CrossRef Arán, D., Antelo, J., Fiol, S., & Macıas, F. (2016). Influence of feedstock on the copper removal capacity of waste derived biochars. Bioresource Technology, 212, 199–206.CrossRef
go back to reference Bach, Q. V., & Tran, K. Q. (2015). Dry and wet torrefaction of woody biomass—A comparative study on combustion kinetics. Energy Procedia, 75, 150–155.CrossRef Bach, Q. V., & Tran, K. Q. (2015). Dry and wet torrefaction of woody biomass—A comparative study on combustion kinetics. Energy Procedia, 75, 150–155.CrossRef
go back to reference Bamdad, H., Hawboldt, K., & MacQuarrie, S. (2018). Nitrogen functionalized biochar as a renewable adsorbent for efficient CO2 removal. Energy & Fuels, 32(11), 11742–11748.CrossRef Bamdad, H., Hawboldt, K., & MacQuarrie, S. (2018). Nitrogen functionalized biochar as a renewable adsorbent for efficient CO2 removal. Energy & Fuels, 32(11), 11742–11748.CrossRef
go back to reference Becidan, M., Skreiberg, Ø., & Hustad, J. E. (2007). NOx and N2O precursors (NH3 and HCN) in pyrolysis of biomass residues. Energy & Fuels, 21, 1173–1180.CrossRef Becidan, M., Skreiberg, Ø., & Hustad, J. E. (2007). NOx and N2O precursors (NH3 and HCN) in pyrolysis of biomass residues. Energy & Fuels, 21, 1173–1180.CrossRef
go back to reference Bhatnagar, A., Ji, M., Choi, Y. H., Jung, W., Lee, S. H., Kim, S. J., Lee, G., Suk, H., Kim, H. S., Min, B., Kim, S. H., Jeon, B. H., & Kang, J. W. (2008). Removal of nitrate from water by adsorption onto zinc chloride treated activated carbon. Separation Science and Technology, 43(4), 886–907.CrossRef Bhatnagar, A., Ji, M., Choi, Y. H., Jung, W., Lee, S. H., Kim, S. J., Lee, G., Suk, H., Kim, H. S., Min, B., Kim, S. H., Jeon, B. H., & Kang, J. W. (2008). Removal of nitrate from water by adsorption onto zinc chloride treated activated carbon. Separation Science and Technology, 43(4), 886–907.CrossRef
go back to reference Bogusz, A., Nowak, K., Stefaniuk, M., Dobrowolski, R., & Oleszczuk, P. (2017). Synthesis of biochar from residues after biogas production with respect to cadmium and nickel removal from wastewater. Journal of Environmental Management, 201, 268–276.CrossRef Bogusz, A., Nowak, K., Stefaniuk, M., Dobrowolski, R., & Oleszczuk, P. (2017). Synthesis of biochar from residues after biogas production with respect to cadmium and nickel removal from wastewater. Journal of Environmental Management, 201, 268–276.CrossRef
go back to reference Brewer, C. E., Schmidt-Rohr, K., Satrio, J. A., & Brown, R. C. (2009). Characterization of biochar from fast pyrolysis and gasification systems. Environmental Progress & Sustainable Energy, 28, 386–396.CrossRef Brewer, C. E., Schmidt-Rohr, K., Satrio, J. A., & Brown, R. C. (2009). Characterization of biochar from fast pyrolysis and gasification systems. Environmental Progress & Sustainable Energy, 28, 386–396.CrossRef
go back to reference Carrier, A. J., Abdullahi, I., Hawboldt, K. A., Fiolek, B., & MacQuarrie, S. L. (2017). Probing surface functionality on amorphous carbons using X-ray photoelectron spectroscopy of bound metal ions. Journal of Physical Chemistry C, 121, 26300–26307.CrossRef Carrier, A. J., Abdullahi, I., Hawboldt, K. A., Fiolek, B., & MacQuarrie, S. L. (2017). Probing surface functionality on amorphous carbons using X-ray photoelectron spectroscopy of bound metal ions. Journal of Physical Chemistry C, 121, 26300–26307.CrossRef
go back to reference Cha, J. S., Park, S. H., Jung, S.-C., Ryu, C., Jeon, J.-K., Shin, M.-C., & Park, Y.-K. (2016). Production and utilization of biochar: A review. Journal of Industrial and Engineering Chemistry, 40, 1–15.CrossRef Cha, J. S., Park, S. H., Jung, S.-C., Ryu, C., Jeon, J.-K., Shin, M.-C., & Park, Y.-K. (2016). Production and utilization of biochar: A review. Journal of Industrial and Engineering Chemistry, 40, 1–15.CrossRef
go back to reference Channiwala, S. A., & Parikh, P. P. (2002). A unified correlation for estimating HHV of solid, liquid and gaseous fuels. Fuel, 81, 1051–1063.CrossRef Channiwala, S. A., & Parikh, P. P. (2002). A unified correlation for estimating HHV of solid, liquid and gaseous fuels. Fuel, 81, 1051–1063.CrossRef
go back to reference Chen, B., Chen, Z., & Lv, S. (2011). A novel magnetic biochar efficiently sorbs organic pollutants and phosphate. Bioresource Technology, 102(2), 716–723.CrossRef Chen, B., Chen, Z., & Lv, S. (2011). A novel magnetic biochar efficiently sorbs organic pollutants and phosphate. Bioresource Technology, 102(2), 716–723.CrossRef
go back to reference Chintala, R., Mollinedo, J., Schumacher, T. E., Malo, D. D., & Julson, J. L. (2013). Effect of biochar on chemical properties of acidic soil. Archives of Agronomy and Soil Science, 60, 393–404.CrossRef Chintala, R., Mollinedo, J., Schumacher, T. E., Malo, D. D., & Julson, J. L. (2013). Effect of biochar on chemical properties of acidic soil. Archives of Agronomy and Soil Science, 60, 393–404.CrossRef
go back to reference Cho, D. W., Kwon, G., Yoon, K., Tsang, Y. F., Ok, Y. S., Kwon, E. E., & Song, H. (2017). Simultaneous production of syngas and magnetic biochar via pyrolysis of paper mill sludge using CO2 as reaction medium. Energy Conversion and Management, 145, 1–9.CrossRef Cho, D. W., Kwon, G., Yoon, K., Tsang, Y. F., Ok, Y. S., Kwon, E. E., & Song, H. (2017). Simultaneous production of syngas and magnetic biochar via pyrolysis of paper mill sludge using CO2 as reaction medium. Energy Conversion and Management, 145, 1–9.CrossRef
go back to reference Choi, S., Drese, J. H., & Jones, C. W. (2009). Adsorbent materials for carbon dioxide capture from large anthropogenic point sources. ChemSusChem, 2(9), 796–854.CrossRef Choi, S., Drese, J. H., & Jones, C. W. (2009). Adsorbent materials for carbon dioxide capture from large anthropogenic point sources. ChemSusChem, 2(9), 796–854.CrossRef
go back to reference Collard, F. X., & Blin, J. (2014). A review on pyrolysis of biomass constituents: Mechanisms and composition of the products obtained from the conversion of cellulose, hemicelluloses and lignin. Renewable and Sustainable Energy Reviews, 38, 594–608.CrossRef Collard, F. X., & Blin, J. (2014). A review on pyrolysis of biomass constituents: Mechanisms and composition of the products obtained from the conversion of cellulose, hemicelluloses and lignin. Renewable and Sustainable Energy Reviews, 38, 594–608.CrossRef
go back to reference Coromina, H. M., Walsh, D. A., & Mokaya, R. (2016). Biomass-derived activated carbon with simultaneously enhanced CO2 uptake for both pre and post combustion capture applications. Journal of Materials Chemistry A, 4(1), 280–289.CrossRef Coromina, H. M., Walsh, D. A., & Mokaya, R. (2016). Biomass-derived activated carbon with simultaneously enhanced CO2 uptake for both pre and post combustion capture applications. Journal of Materials Chemistry A, 4(1), 280–289.CrossRef
go back to reference Creamer, A. E., & Gao, B. (2016). Carbon-based adsorbents for postcombustion CO2 capture: A critical review. Environmental Science & Technology, 50, 7276–7289.CrossRef Creamer, A. E., & Gao, B. (2016). Carbon-based adsorbents for postcombustion CO2 capture: A critical review. Environmental Science & Technology, 50, 7276–7289.CrossRef
go back to reference Dai, L., Fan, L., Liu, Y., Ruan, R., Wang, Y., Zhou, Y., Zhao, Y., & Yu, Z. (2017). Production of bio-oil and biochar from soapstock via microwave-assisted co-catalytic fast pyrolysis. Bioresource Technology, 225, 1–8.CrossRef Dai, L., Fan, L., Liu, Y., Ruan, R., Wang, Y., Zhou, Y., Zhao, Y., & Yu, Z. (2017). Production of bio-oil and biochar from soapstock via microwave-assisted co-catalytic fast pyrolysis. Bioresource Technology, 225, 1–8.CrossRef
go back to reference Demirbas, A. (1997). Calculation of higher heating values of biomass fuels. Fuel, 76, 431–434.CrossRef Demirbas, A. (1997). Calculation of higher heating values of biomass fuels. Fuel, 76, 431–434.CrossRef
go back to reference Demirbas, A. (2001). Biomass resource facilities and biomass conversion processing for fuels and chemicals. Energy Conversion and Management, 42, 1357–1378.CrossRef Demirbas, A. (2001). Biomass resource facilities and biomass conversion processing for fuels and chemicals. Energy Conversion and Management, 42, 1357–1378.CrossRef
go back to reference Deng, J., Li, X., Wei, X., Liu, Y., Liang, J., Tanga, N., Song, B., Chen, X., & Cheng, X. (2019). Sulfamic acid modified hydrochar derived from sawdust for removal of benzotriazole and Cu(II) from aqueous solution: Adsorption behavior and mechanism. Bioresource Technology, 290, 121765.CrossRef Deng, J., Li, X., Wei, X., Liu, Y., Liang, J., Tanga, N., Song, B., Chen, X., & Cheng, X. (2019). Sulfamic acid modified hydrochar derived from sawdust for removal of benzotriazole and Cu(II) from aqueous solution: Adsorption behavior and mechanism. Bioresource Technology, 290, 121765.CrossRef
go back to reference Deng, S., Wei, H., Chen, T., Wang, B., Huang, J., & Yu, G. (2014). Superior CO2 adsorption on pine nut shell-derived activated carbons and the effective micropores at different temperatures. Chemical Engineering Journal, 253, 46–54.CrossRef Deng, S., Wei, H., Chen, T., Wang, B., Huang, J., & Yu, G. (2014). Superior CO2 adsorption on pine nut shell-derived activated carbons and the effective micropores at different temperatures. Chemical Engineering Journal, 253, 46–54.CrossRef
go back to reference Dong, H., Deng, J., Xie, Y., Zhang, C., Jiang, Z., Cheng, Y., Hou, K., & Zeng, G. (2017). Stabilization of nanoscale zero-valent iron (nZVI) with modified biochar for Cr(VI) removal from aqueous solution. Journal of Hazardous Materials, 332, 79–86.CrossRef Dong, H., Deng, J., Xie, Y., Zhang, C., Jiang, Z., Cheng, Y., Hou, K., & Zeng, G. (2017). Stabilization of nanoscale zero-valent iron (nZVI) with modified biochar for Cr(VI) removal from aqueous solution. Journal of Hazardous Materials, 332, 79–86.CrossRef
go back to reference Dong, X. L., Ma, L. N. Q., & Li, Y. C. (2011). Characteristics and mechanisms of hexavalent chromium removal by biochar from sugar beet tailing. Journal of Hazardous Materials, 190(1–3), 909–915.CrossRef Dong, X. L., Ma, L. N. Q., & Li, Y. C. (2011). Characteristics and mechanisms of hexavalent chromium removal by biochar from sugar beet tailing. Journal of Hazardous Materials, 190(1–3), 909–915.CrossRef
go back to reference El-Hendawy, A. N. A. (2003). Influence of HNO3 oxidation on the structure and adsorptive properties of corncob-based activated carbon. Carbon, 41, 713–722.CrossRef El-Hendawy, A. N. A. (2003). Influence of HNO3 oxidation on the structure and adsorptive properties of corncob-based activated carbon. Carbon, 41, 713–722.CrossRef
go back to reference Ello, A. S., de Souza, L. K. C., Trokourey, A., & Jaroniec, M. (2013). Development of microporous carbons for CO2 capture by KOH activation of African palm shells. Journal of CO2 Utilization, 2, 35–38.CrossRef Ello, A. S., de Souza, L. K. C., Trokourey, A., & Jaroniec, M. (2013). Development of microporous carbons for CO2 capture by KOH activation of African palm shells. Journal of CO2 Utilization, 2, 35–38.CrossRef
go back to reference Essandoh, M., Wolgemuth, D., Pittman, C. U., Mohan, D., & Mlsna, T. (2017). Adsorption of metribuzin from aqueous solution using magnetic and nonmagnetic sustainable low-cost biochar adsorbents. Environmental Science and Pollution Research, 24, 4577–4590.CrossRef Essandoh, M., Wolgemuth, D., Pittman, C. U., Mohan, D., & Mlsna, T. (2017). Adsorption of metribuzin from aqueous solution using magnetic and nonmagnetic sustainable low-cost biochar adsorbents. Environmental Science and Pollution Research, 24, 4577–4590.CrossRef
go back to reference Fang, Q. L., Chen, B. L., Lin, Y. J., & Guan, Y. T. (2014). Aromatic and hydrophobic surfaces of wood-derived biochar enhance perchlorate adsorption via hydrogen bonding to oxygen-containing organic groups. Environmental Science & Technology, 48(1), 279–288.CrossRef Fang, Q. L., Chen, B. L., Lin, Y. J., & Guan, Y. T. (2014). Aromatic and hydrophobic surfaces of wood-derived biochar enhance perchlorate adsorption via hydrogen bonding to oxygen-containing organic groups. Environmental Science & Technology, 48(1), 279–288.CrossRef
go back to reference Gai, X., Wang, H., Liu, J., Zhai, L., Liu, S., Ren, T., & Liu, H. (2014). Effects of feedstock and pyrolysis temperature on biochar adsorption of ammonium and nitrate. PLoS One, 9, 1–19.CrossRef Gai, X., Wang, H., Liu, J., Zhai, L., Liu, S., Ren, T., & Liu, H. (2014). Effects of feedstock and pyrolysis temperature on biochar adsorption of ammonium and nitrate. PLoS One, 9, 1–19.CrossRef
go back to reference Gan, C., Liu, Y., Tan, X., Wang, S., Zeng, G., Zheng, B., Li, T., Jiang, Z., & Liu, W. (2015). Effect of porous zinc-biochar nanocomposites on Cr(VI) adsorption from aqueous solution. RSC Advances, 5, 35107–35115.CrossRef Gan, C., Liu, Y., Tan, X., Wang, S., Zeng, G., Zheng, B., Li, T., Jiang, Z., & Liu, W. (2015). Effect of porous zinc-biochar nanocomposites on Cr(VI) adsorption from aqueous solution. RSC Advances, 5, 35107–35115.CrossRef
go back to reference Gonzalez, A. S., Plaza, M. G., Rubiera, F., & Pevida, C. (2013). Sustainable biomass-based carbon adsorbents for post-combustion CO2 capture. Chemical Engineering Journal, 230, 456–465.CrossRef Gonzalez, A. S., Plaza, M. G., Rubiera, F., & Pevida, C. (2013). Sustainable biomass-based carbon adsorbents for post-combustion CO2 capture. Chemical Engineering Journal, 230, 456–465.CrossRef
go back to reference Halder, G., Khan, A. A., & Dhawane, S. (2016). Fluoride sorption onto a steam-activated biochar derived from Cocos nucifera shell. Clean-Soil Air Water, 44(2), 124–133.CrossRef Halder, G., Khan, A. A., & Dhawane, S. (2016). Fluoride sorption onto a steam-activated biochar derived from Cocos nucifera shell. Clean-Soil Air Water, 44(2), 124–133.CrossRef
go back to reference Hamadi, N. K., Chen, X. D., Farid, M., & Lu, M. G. Q. (2001). Adsorption kinetics for the removal of chromium (VI) from aqueous solution by adsorbents derived from used tyres and sawdust. Chemical Engineering Journal, 84, 95–105.CrossRef Hamadi, N. K., Chen, X. D., Farid, M., & Lu, M. G. Q. (2001). Adsorption kinetics for the removal of chromium (VI) from aqueous solution by adsorbents derived from used tyres and sawdust. Chemical Engineering Journal, 84, 95–105.CrossRef
go back to reference Hao, W., Bjorkman, W., Lilliestrale, M., & Hedin, N. (2014). Activated carbons for water treatment prepared by phosphoric acid activation of hydrothermally treated beer waste. Industrial and Engineering Chemistry Research, 53, 15389–15397.CrossRef Hao, W., Bjorkman, W., Lilliestrale, M., & Hedin, N. (2014). Activated carbons for water treatment prepared by phosphoric acid activation of hydrothermally treated beer waste. Industrial and Engineering Chemistry Research, 53, 15389–15397.CrossRef
go back to reference Harvey, O. R., Herbert, B. E., Rhue, R. D., & Kuo, L. J. (2011). Metal interactions at the biochar-water interface: Energetics and structure-sorption relationships elucidated by flow adsorption microcalorimetry. Environmental Science & Technology, 45, 5550–5556.CrossRef Harvey, O. R., Herbert, B. E., Rhue, R. D., & Kuo, L. J. (2011). Metal interactions at the biochar-water interface: Energetics and structure-sorption relationships elucidated by flow adsorption microcalorimetry. Environmental Science & Technology, 45, 5550–5556.CrossRef
go back to reference He, R. Z., Peng, Z. Y., Lyu, H. H., Huang, H., Nan, Q., & Tang, J. C. (2018). Synthesis and characterization of an iron-impregnated biochar for aqueous arsenic removal. Science of the Total Environment, 612, 1177–1186.CrossRef He, R. Z., Peng, Z. Y., Lyu, H. H., Huang, H., Nan, Q., & Tang, J. C. (2018). Synthesis and characterization of an iron-impregnated biochar for aqueous arsenic removal. Science of the Total Environment, 612, 1177–1186.CrossRef
go back to reference Hoekman, S. K., Broch, A., Robbins, C., Zielinska, B., & Felix, L. (2013). Hydrothermal carbonization (HTC) of selected woody and herbaceous biomass feedstocks. Biomass Conversion and Biorefinery, 3, 113–126.CrossRef Hoekman, S. K., Broch, A., Robbins, C., Zielinska, B., & Felix, L. (2013). Hydrothermal carbonization (HTC) of selected woody and herbaceous biomass feedstocks. Biomass Conversion and Biorefinery, 3, 113–126.CrossRef
go back to reference Hong, M., Zhang, L., Tan, Z., & Huang, Q. (2019). Effect mechanism of biochar’s zeta potential on farmland soil’s cadmium immobilization. Environmental Science and Pollution Research, 26, 19738–19748.CrossRef Hong, M., Zhang, L., Tan, Z., & Huang, Q. (2019). Effect mechanism of biochar’s zeta potential on farmland soil’s cadmium immobilization. Environmental Science and Pollution Research, 26, 19738–19748.CrossRef
go back to reference Hong, S. M., Jang, E., Dysart, A. D., Pol, V. G., & Lee, K. B. (2016). CO2 capture in the sustainable wheat-derived activated microporous carbon compartments. Scientific Reports, 6, 34590.CrossRef Hong, S. M., Jang, E., Dysart, A. D., Pol, V. G., & Lee, K. B. (2016). CO2 capture in the sustainable wheat-derived activated microporous carbon compartments. Scientific Reports, 6, 34590.CrossRef
go back to reference Hsu, N. H., Wang, S. L., Liao, Y. H., Huang, S. T., Tzou, Y. M., & Huang, Y. M. (2009). Removal of hexavalent chromium from acidic aqueous solutions using rice straw-derived carbon. Journal of Hazardous Materials, 171(1–3), 1066–1070.CrossRef Hsu, N. H., Wang, S. L., Liao, Y. H., Huang, S. T., Tzou, Y. M., & Huang, Y. M. (2009). Removal of hexavalent chromium from acidic aqueous solutions using rice straw-derived carbon. Journal of Hazardous Materials, 171(1–3), 1066–1070.CrossRef
go back to reference Hu, X., Ding, Z., Zimmerman, A. R., Wang, S., & Gao, B. (2015). Batch and column sorption of arsenic onto iron-impregnated biochar synthesized through hydrolysis. Water Research, 68, 206–216.CrossRef Hu, X., Ding, Z., Zimmerman, A. R., Wang, S., & Gao, B. (2015). Batch and column sorption of arsenic onto iron-impregnated biochar synthesized through hydrolysis. Water Research, 68, 206–216.CrossRef
go back to reference IBI (2013). Pyrolysis and gasification of biosolids to produce biochar. IBI White Paper. IBI (2013). Pyrolysis and gasification of biosolids to produce biochar. IBI White Paper.
go back to reference Inyang, M., Gao, B., Zimmerman, A., Zhou, Y. M., & Cao, X. D. (2015). Sorption and cosorption of lead and sulfapyridine on carbon nanotube-modified biochars. Environmental Science and Pollution Research, 22, 1868–1876.CrossRef Inyang, M., Gao, B., Zimmerman, A., Zhou, Y. M., & Cao, X. D. (2015). Sorption and cosorption of lead and sulfapyridine on carbon nanotube-modified biochars. Environmental Science and Pollution Research, 22, 1868–1876.CrossRef
go back to reference Jian, X., Zhuang, X., Li, B., Xu, X., Wei, Z., Song, Y., & Jiang, E. (2018). Comparison of characterization and adsorption of biochars produced from hydrothermal carbonization and pyrolysis. Environmental Technology and Innovation, 10, 27–35.CrossRef Jian, X., Zhuang, X., Li, B., Xu, X., Wei, Z., Song, Y., & Jiang, E. (2018). Comparison of characterization and adsorption of biochars produced from hydrothermal carbonization and pyrolysis. Environmental Technology and Innovation, 10, 27–35.CrossRef
go back to reference Jin, H., Capareda, S., Chang, Z., Gao, J., Xu, Y., & Zhang, J. (2014). Biochar pyrolytically produced from municipal solid wastes for aqueous as(V) removal: Adsorption property and its improvement with KOH activation. Bioresource Technology, 169(5), 622–629.CrossRef Jin, H., Capareda, S., Chang, Z., Gao, J., Xu, Y., & Zhang, J. (2014). Biochar pyrolytically produced from municipal solid wastes for aqueous as(V) removal: Adsorption property and its improvement with KOH activation. Bioresource Technology, 169(5), 622–629.CrossRef
go back to reference Jing, X. R., Wang, Y. Y., Liu, W. J., Wang, Y. K., & Jiang, H. (2014). Enhanced adsorption performance of tetracycline in aqueous solutions by methanol-modified biochar. Chemical Engineering Journal, 248, 168–174.CrossRef Jing, X. R., Wang, Y. Y., Liu, W. J., Wang, Y. K., & Jiang, H. (2014). Enhanced adsorption performance of tetracycline in aqueous solutions by methanol-modified biochar. Chemical Engineering Journal, 248, 168–174.CrossRef
go back to reference Jung, K. W., Jeong, T. U., Hwang, M. J., Kim, K., & Ahn, K. H. (2015). Phosphate adsorption ability of biochar/Mg_Al assembled nanocomposites prepared by aluminum-electrode based electro-assisted modification method with MgCl2 as electrolyte. Bioresource Technology, 198, 603–610.CrossRef Jung, K. W., Jeong, T. U., Hwang, M. J., Kim, K., & Ahn, K. H. (2015). Phosphate adsorption ability of biochar/Mg_Al assembled nanocomposites prepared by aluminum-electrode based electro-assisted modification method with MgCl2 as electrolyte. Bioresource Technology, 198, 603–610.CrossRef
go back to reference Jung, K. W., Kim, K., Jeong, T. U., & Ahn, K. H. (2016). Influence of pyrolysis temperature on characteristics and phosphate adsorption capability of biochar derived from waste-marine macroalgae (Undaria pinnatifida roots). Bioresource Technology, 200, 1024–1028.CrossRef Jung, K. W., Kim, K., Jeong, T. U., & Ahn, K. H. (2016). Influence of pyrolysis temperature on characteristics and phosphate adsorption capability of biochar derived from waste-marine macroalgae (Undaria pinnatifida roots). Bioresource Technology, 200, 1024–1028.CrossRef
go back to reference Kambo, H., Dutta, A. (2014). Hydrothermal carbonization (HTC): an innovative process for the conversion of low quality lignocellulosic biomass to hydrochar for replacing coal. In: Proceedings of the 9th Annual Green Energy Conference (IGEC-IX), Tianjin, China, 25–28. Kambo, H., Dutta, A. (2014). Hydrothermal carbonization (HTC): an innovative process for the conversion of low quality lignocellulosic biomass to hydrochar for replacing coal. In: Proceedings of the 9th Annual Green Energy Conference (IGEC-IX), Tianjin, China, 25–28.
go back to reference Kambo, H. S., & Dutta, A. (2015). A comparative review of biochar and hydrochar in terms of production, physico-chemical properties and applications. Renewable and Sustainable Energy Reviews, 45, 359–378.CrossRef Kambo, H. S., & Dutta, A. (2015). A comparative review of biochar and hydrochar in terms of production, physico-chemical properties and applications. Renewable and Sustainable Energy Reviews, 45, 359–378.CrossRef
go back to reference Karthikeyan, T., Rajgopal, S., & Miranda, L. R. (2005). Chromium(VI) adsorption from aqueous solution by Hevea Brasilinesis sawdust activated carbon. Journal of Hazardous Materials, 124(1–3), 192–199.CrossRef Karthikeyan, T., Rajgopal, S., & Miranda, L. R. (2005). Chromium(VI) adsorption from aqueous solution by Hevea Brasilinesis sawdust activated carbon. Journal of Hazardous Materials, 124(1–3), 192–199.CrossRef
go back to reference Khan, M. D., Chottitisupawong, T., Vu, H. H. T., Ahn, J. W., & Kim, G. M. (2020). Removal of phosphorus from an aqueous solution by nanocalcium hydroxide derived from waste bivalve seashells: Mechanism and kinetics. ACS Omega, 5, 12290–12301.CrossRef Khan, M. D., Chottitisupawong, T., Vu, H. H. T., Ahn, J. W., & Kim, G. M. (2020). Removal of phosphorus from an aqueous solution by nanocalcium hydroxide derived from waste bivalve seashells: Mechanism and kinetics. ACS Omega, 5, 12290–12301.CrossRef
go back to reference Kılıc, M., Mutlu, Ç. K. Ö. Ç., & Pütün, A. E. (2013). Adsorption of heavy metal ions from aqueous solutions by bio-char, a by-product of pyrolysis. Applied Surface Science, 283, 856–862.CrossRef Kılıc, M., Mutlu, Ç. K. Ö. Ç., & Pütün, A. E. (2013). Adsorption of heavy metal ions from aqueous solutions by bio-char, a by-product of pyrolysis. Applied Surface Science, 283, 856–862.CrossRef
go back to reference Kwak, J. H., Islam, M. S., Wang, S., Messele, S. A., Naeth, M. A., El-Din, M. G., & Chang, S. X. (2019). Biochar properties and lead(II) adsorption capacity depend on feedstock type, pyrolysis temperature, and steam activation. Chemosphere, 231, 393–404.CrossRef Kwak, J. H., Islam, M. S., Wang, S., Messele, S. A., Naeth, M. A., El-Din, M. G., & Chang, S. X. (2019). Biochar properties and lead(II) adsorption capacity depend on feedstock type, pyrolysis temperature, and steam activation. Chemosphere, 231, 393–404.CrossRef
go back to reference Lahijani, P., Mohammadi, M., & Mohamed, A. R. (2018). Metal incorporated biochar as a potential adsorbent for high capacity CO2 capture at ambient condition. Journal of CO2 Utilization, 26, 281–293.CrossRef Lahijani, P., Mohammadi, M., & Mohamed, A. R. (2018). Metal incorporated biochar as a potential adsorbent for high capacity CO2 capture at ambient condition. Journal of CO2 Utilization, 26, 281–293.CrossRef
go back to reference Li, B., Yang, L., Wang, C. Q., Zhang, Q. P., Liu, Q. C., Li, Y. D., & Xiao, R. (2017). Adsorption of cd(II) from aqueous solutions by rape straw biochar derived from different modification processes. Chemosphere, 175, 332–340.CrossRef Li, B., Yang, L., Wang, C. Q., Zhang, Q. P., Liu, Q. C., Li, Y. D., & Xiao, R. (2017). Adsorption of cd(II) from aqueous solutions by rape straw biochar derived from different modification processes. Chemosphere, 175, 332–340.CrossRef
go back to reference Li, D., Ma, T., Zhang, R., Tian, Y., & Qiao, Y. (2015). Preparation of porous carbons with high low-pressure CO2 uptake by KOH activation of rice husk char. Fuel, 139, 68–70.CrossRef Li, D., Ma, T., Zhang, R., Tian, Y., & Qiao, Y. (2015). Preparation of porous carbons with high low-pressure CO2 uptake by KOH activation of rice husk char. Fuel, 139, 68–70.CrossRef
go back to reference Li, R., Liang, W., Wang, J. J., Gaston, L. A., Huang, D., Huang, H., & Xiao, R. (2018). Facilitative capture of As(V), Pb(II) and methylene blue from aqueous solutions with MgO hybrid sponge-like carbonaceous composite derived from sugarcane leafy trash. Journal of Environmental Management, 212, 77–87.CrossRef Li, R., Liang, W., Wang, J. J., Gaston, L. A., Huang, D., Huang, H., & Xiao, R. (2018). Facilitative capture of As(V), Pb(II) and methylene blue from aqueous solutions with MgO hybrid sponge-like carbonaceous composite derived from sugarcane leafy trash. Journal of Environmental Management, 212, 77–87.CrossRef
go back to reference Li, Y., Ruan, G., Jalilov, A. S., Tarkunde, Y. R., Fei, H., & Tour, J. M. (2016). Biochar as a renewable source for high-performance CO2 sorbent. Carbon, 107, 344–351.CrossRef Li, Y., Ruan, G., Jalilov, A. S., Tarkunde, Y. R., Fei, H., & Tour, J. M. (2016). Biochar as a renewable source for high-performance CO2 sorbent. Carbon, 107, 344–351.CrossRef
go back to reference Liu, L., Huang, Y., Zhang, S., Gong, Y., Su, Y., Cao, J., & Hu, H. (2019b). Adsorption characteristics and mechanism of Pb(II) by agricultural waste-derived biochars produced from a pilot-scale pyrolysis system. Waste Management, 100, 287–295.CrossRef Liu, L., Huang, Y., Zhang, S., Gong, Y., Su, Y., Cao, J., & Hu, H. (2019b). Adsorption characteristics and mechanism of Pb(II) by agricultural waste-derived biochars produced from a pilot-scale pyrolysis system. Waste Management, 100, 287–295.CrossRef
go back to reference Liu, P., Liu, W. J., Jiang, H., Chen, J. J., Li, W. W., & Yu, H. Q. (2012). Modification of bio-char derived from fast pyrolysis of biomass and its application in removal of tetracycline from aqueous solution. Bioresource Technology, 121, 235–240.CrossRef Liu, P., Liu, W. J., Jiang, H., Chen, J. J., Li, W. W., & Yu, H. Q. (2012). Modification of bio-char derived from fast pyrolysis of biomass and its application in removal of tetracycline from aqueous solution. Bioresource Technology, 121, 235–240.CrossRef
go back to reference Liu, W., Ling, L., Wang, Y., He, H., He, Y., Yu, H., & Jiang, H. (2016). One-pot high yield synthesis of Ag nanoparticle-embedded biochar hybrid materials from waste biomass for catalytic Cr(VI) reduction. Environmental Science. Nano, 3, 745–753.CrossRef Liu, W., Ling, L., Wang, Y., He, H., He, Y., Yu, H., & Jiang, H. (2016). One-pot high yield synthesis of Ag nanoparticle-embedded biochar hybrid materials from waste biomass for catalytic Cr(VI) reduction. Environmental Science. Nano, 3, 745–753.CrossRef
go back to reference Liu, W. J., Jiang, H., Tian, K., Ding, Y. W., & Yu, H. Q. (2013). Mesoporous carbon stabilized MgO nanoparticles synthesized by pyrolysis of MgCl2 preloaded waste biomass for highly efficient CO2 capture. Environmental Science & Technology, 47(16), 9397–9403.CrossRef Liu, W. J., Jiang, H., Tian, K., Ding, Y. W., & Yu, H. Q. (2013). Mesoporous carbon stabilized MgO nanoparticles synthesized by pyrolysis of MgCl2 preloaded waste biomass for highly efficient CO2 capture. Environmental Science & Technology, 47(16), 9397–9403.CrossRef
go back to reference Liu, W. J., Jiang, H., & Yu, H. Q. (2015). Development of biochar-based functional materials: Toward a sustainable platform carbon material. Chemical Reviews, 115, 12251–12285.CrossRef Liu, W. J., Jiang, H., & Yu, H. Q. (2015). Development of biochar-based functional materials: Toward a sustainable platform carbon material. Chemical Reviews, 115, 12251–12285.CrossRef
go back to reference Liu, Y., Sohi, S. P., Liu, S., Guan, J., Zhou, J., & Chen, J. (2019a). Adsorption and reductive degradation of Cr(VI) and TCE by a simply synthesized zero valent iron magnetic biochar. Journal of Environmental Management, 235, 276–281.CrossRef Liu, Y., Sohi, S. P., Liu, S., Guan, J., Zhou, J., & Chen, J. (2019a). Adsorption and reductive degradation of Cr(VI) and TCE by a simply synthesized zero valent iron magnetic biochar. Journal of Environmental Management, 235, 276–281.CrossRef
go back to reference Liu, Z., & Balasubramanian, R. (2014). Upgrading of waste biomass by hydrothermal carbonization (HTC) and low temperature pyrolysis (LTP): A comparative evaluation. Applied Energy, 114, 857–864.CrossRef Liu, Z., & Balasubramanian, R. (2014). Upgrading of waste biomass by hydrothermal carbonization (HTC) and low temperature pyrolysis (LTP): A comparative evaluation. Applied Energy, 114, 857–864.CrossRef
go back to reference Liu, Z., & Zhang, F.-S. (2011). Removal of copper (II) and phenol from aqueous solution using porous carbons derived from hydrothermal chars. Desalination, 267, 101–106.CrossRef Liu, Z., & Zhang, F.-S. (2011). Removal of copper (II) and phenol from aqueous solution using porous carbons derived from hydrothermal chars. Desalination, 267, 101–106.CrossRef
go back to reference Lyu, H. H., Gao, B., He, F., Ding, C., Tang, J. C., & Crittenden, J. C. (2017). Ball-milled carbon nanomaterials for energy and environmental applications. ACS Sustainable Chemistry & Engineering, 5, 9568–9585.CrossRef Lyu, H. H., Gao, B., He, F., Ding, C., Tang, J. C., & Crittenden, J. C. (2017). Ball-milled carbon nanomaterials for energy and environmental applications. ACS Sustainable Chemistry & Engineering, 5, 9568–9585.CrossRef
go back to reference Lyu, H. H., Gao, B., He, F., Zimmerman, A. R., Ding, C., Huang, H., & Tang, J. C. (2018). Effects of ball milling on the physicochemical and sorptive properties of biochar: Experimental observations and governing mechanisms. Environmental Pollution, 233, 54–63.CrossRef Lyu, H. H., Gao, B., He, F., Zimmerman, A. R., Ding, C., Huang, H., & Tang, J. C. (2018). Effects of ball milling on the physicochemical and sorptive properties of biochar: Experimental observations and governing mechanisms. Environmental Pollution, 233, 54–63.CrossRef
go back to reference Manya, J. J., Gonzalez, B., Azuara, M., & Arner, G. (2018). Ultra-microporous adsorbents prepared from vine shoots-derived biochar with high CO2 uptake and CO2/N2 selectivity. Chemical Engineering Journal, 345, 631–639.CrossRef Manya, J. J., Gonzalez, B., Azuara, M., & Arner, G. (2018). Ultra-microporous adsorbents prepared from vine shoots-derived biochar with high CO2 uptake and CO2/N2 selectivity. Chemical Engineering Journal, 345, 631–639.CrossRef
go back to reference Marcus, Y. (1999). On transport properties of hot liquid and supercritical water and their relationship to the hydrogen bonding. Fluid Phase Equilibria, 164(1), 131–142.CrossRef Marcus, Y. (1999). On transport properties of hot liquid and supercritical water and their relationship to the hydrogen bonding. Fluid Phase Equilibria, 164(1), 131–142.CrossRef
go back to reference Mcbeath, A. V., Wurster, C. M., & Bird, M. I. (2015). Influence of feedstock properties and pyrolysis conditions on biochar carbon stability as determined by hydrogen pyrolysis. Biomass Bioenergy, 73, 155–173.CrossRef Mcbeath, A. V., Wurster, C. M., & Bird, M. I. (2015). Influence of feedstock properties and pyrolysis conditions on biochar carbon stability as determined by hydrogen pyrolysis. Biomass Bioenergy, 73, 155–173.CrossRef
go back to reference Mishra, P. C., & Patel, R. K. (2009). Use of agricultural waste for the removal of nitrate-nitrogen from aqueous medium. Journal of Environmental Management, 90(1), 519–522.CrossRef Mishra, P. C., & Patel, R. K. (2009). Use of agricultural waste for the removal of nitrate-nitrogen from aqueous medium. Journal of Environmental Management, 90(1), 519–522.CrossRef
go back to reference Mizuta, K., Matsumoto, T., Hatate, Y., Nishihara, K., & Nakanishi, T. (2004). Removal of nitrate-nitrogen from drinking water using bamboo powder charcoal. Bioresource Technology, 95(3), 255–257.CrossRef Mizuta, K., Matsumoto, T., Hatate, Y., Nishihara, K., & Nakanishi, T. (2004). Removal of nitrate-nitrogen from drinking water using bamboo powder charcoal. Bioresource Technology, 95(3), 255–257.CrossRef
go back to reference Mohan, D., Kumar, S., & Srivastava, A. (2014). Fluoride removal from ground water using magnetic and nonmagnetic corn Stover biochars. Ecological Engineering, 73, 798–808.CrossRef Mohan, D., Kumar, S., & Srivastava, A. (2014). Fluoride removal from ground water using magnetic and nonmagnetic corn Stover biochars. Ecological Engineering, 73, 798–808.CrossRef
go back to reference Mohan, D., Pittman, C. U., & Steele, P. H. (2006). Pyrolysis of wood/biomass for bio-oil: A critical review. Energy & Fuels, 20, 848–889.CrossRef Mohan, D., Pittman, C. U., & Steele, P. H. (2006). Pyrolysis of wood/biomass for bio-oil: A critical review. Energy & Fuels, 20, 848–889.CrossRef
go back to reference Mohan, D., Sharma, R., Singh, V. K., Steele, P., & Pittman, J. C. U. (2011). Fluoride removal from water using bio-char, a green waste, low-cost adsorbent: Equilibrium uptake and sorption dynamics modelling. Industrial and Engineering Chemistry Research, 51(2), 900–914.CrossRef Mohan, D., Sharma, R., Singh, V. K., Steele, P., & Pittman, J. C. U. (2011). Fluoride removal from water using bio-char, a green waste, low-cost adsorbent: Equilibrium uptake and sorption dynamics modelling. Industrial and Engineering Chemistry Research, 51(2), 900–914.CrossRef
go back to reference Mohan, D. S., Singh, K. P., & Singh, V. K. (2005). Removal of hexavalent chromium from aqueous solution using low cost activated carbons derived from agricultural waste materials and activated carbon fabric cloth. Industrial and Engineering Chemistry Research, 44(4), 1027–1042.CrossRef Mohan, D. S., Singh, K. P., & Singh, V. K. (2005). Removal of hexavalent chromium from aqueous solution using low cost activated carbons derived from agricultural waste materials and activated carbon fabric cloth. Industrial and Engineering Chemistry Research, 44(4), 1027–1042.CrossRef
go back to reference Ni, B. J., Huang, Q. S., Wang, C., Ni, T. Y., Sun, J., & Wei, W. (2019). Competitive adsorption of heavy metals in aqueous solution onto biochar derived from anaerobically digested sludge. Chemosphere, 219, 351–357.CrossRef Ni, B. J., Huang, Q. S., Wang, C., Ni, T. Y., Sun, J., & Wei, W. (2019). Competitive adsorption of heavy metals in aqueous solution onto biochar derived from anaerobically digested sludge. Chemosphere, 219, 351–357.CrossRef
go back to reference Niazi, N. K., Bibi, I., Shahid, M., Ok, Y. S., Burton, E. D., Wang, H., Shaheen, S. M., Rinklebe, J., & Luttge, A. (2018b). Arsenic removal by perilla leaf biochar in aqueous solutions and groundwater: An integrated spectroscopic and microscopic examination. Environmental Pollution, 232, 31–41.CrossRef Niazi, N. K., Bibi, I., Shahid, M., Ok, Y. S., Burton, E. D., Wang, H., Shaheen, S. M., Rinklebe, J., & Luttge, A. (2018b). Arsenic removal by perilla leaf biochar in aqueous solutions and groundwater: An integrated spectroscopic and microscopic examination. Environmental Pollution, 232, 31–41.CrossRef
go back to reference Niazi, N. K., Bibi, I., Shahid, M., Ok, Y. S., Shaheen, S. M., Rinklebe, J., Wang, H., Murtaza, B., Islam, E., Nawaz, M. F., & Luttge, A. (2018a). Arsenic removal by Japanese oak wood biochar in aqueous solutions and well water: Investigating arsenic fate using integrated spectroscopic and microscopic techniques. Science of the Total Environment, 621, 1642–1651.CrossRef Niazi, N. K., Bibi, I., Shahid, M., Ok, Y. S., Shaheen, S. M., Rinklebe, J., Wang, H., Murtaza, B., Islam, E., Nawaz, M. F., & Luttge, A. (2018a). Arsenic removal by Japanese oak wood biochar in aqueous solutions and well water: Investigating arsenic fate using integrated spectroscopic and microscopic techniques. Science of the Total Environment, 621, 1642–1651.CrossRef
go back to reference Nowrouzi, M., Younesi, H., & Bahramifar, N. (2018). Superior CO2 capture performance on biomass-derived carbon/metal oxides nanocomposites from Persian ironwood by H3PO4 activation. Fuel, 223, 99–114.CrossRef Nowrouzi, M., Younesi, H., & Bahramifar, N. (2018). Superior CO2 capture performance on biomass-derived carbon/metal oxides nanocomposites from Persian ironwood by H3PO4 activation. Fuel, 223, 99–114.CrossRef
go back to reference Onay, O., & Kockar, O. M. (2003). Slow, fast and flash pyrolysis of rapeseed. Renewable Energy, 28, 2417–2433.CrossRef Onay, O., & Kockar, O. M. (2003). Slow, fast and flash pyrolysis of rapeseed. Renewable Energy, 28, 2417–2433.CrossRef
go back to reference Oschatz, M., & Antonietti, M. (2018). A search for selectivity to enable CO2 capture with porous adsorbents. Energy & Environmental Science, 11(1), 57–70.CrossRef Oschatz, M., & Antonietti, M. (2018). A search for selectivity to enable CO2 capture with porous adsorbents. Energy & Environmental Science, 11(1), 57–70.CrossRef
go back to reference Pandey, A., Bhaskar, T., Stocker, M., & Sukumaran, R. K. (Eds.). (2015). Recent advances in thermochemical conversion of biomass (pp. 331–346). Amsterdam: Elsevier. Pandey, A., Bhaskar, T., Stocker, M., & Sukumaran, R. K. (Eds.). (2015). Recent advances in thermochemical conversion of biomass (pp. 331–346). Amsterdam: Elsevier.
go back to reference Parikh, J., Channiwala, S. A., & Ghosal, G. K. (2005). A correlation for calculating HHV from proximate analysis of solid fuels. Fuel, 84, 487–494.CrossRef Parikh, J., Channiwala, S. A., & Ghosal, G. K. (2005). A correlation for calculating HHV from proximate analysis of solid fuels. Fuel, 84, 487–494.CrossRef
go back to reference Parikh, J., Channiwala, S. A., & Ghosal, G. K. (2007). A correlation for calculating elemental composition from proximate analysis of biomass materials. Fuel, 86, 1710–1719.CrossRef Parikh, J., Channiwala, S. A., & Ghosal, G. K. (2007). A correlation for calculating elemental composition from proximate analysis of biomass materials. Fuel, 86, 1710–1719.CrossRef
go back to reference Park, J. H., Wang, J. J., Meng, Y., Wei, Z., DeLaune, R. D., & Seo, D. C. (2019). Adsorption/desorption behavior of cationic and anionic dyes by biochars prepared at normal and high pyrolysis temperatures. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 572, 274–282.CrossRef Park, J. H., Wang, J. J., Meng, Y., Wei, Z., DeLaune, R. D., & Seo, D. C. (2019). Adsorption/desorption behavior of cationic and anionic dyes by biochars prepared at normal and high pyrolysis temperatures. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 572, 274–282.CrossRef
go back to reference Randolph, P., Bansode, R. R., Hassan, O. A., Rehrah, D., Ravella, R., Reddy, M. R., Watts, D. W., Novak, J. M., & Ahmedna, M. (2017). Effect of biochars produced from solid organic municipal waste on soil quality parameters. Journal of Environmental Management, 192, 271–280.CrossRef Randolph, P., Bansode, R. R., Hassan, O. A., Rehrah, D., Ravella, R., Reddy, M. R., Watts, D. W., Novak, J. M., & Ahmedna, M. (2017). Effect of biochars produced from solid organic municipal waste on soil quality parameters. Journal of Environmental Management, 192, 271–280.CrossRef
go back to reference Rashidi, N. A., & Yusup, S. (2016). An overview of activated carbons utilization for the post-combustion carbon dioxide capture. Journal of CO2 Utilization, 13, 1–16.CrossRef Rashidi, N. A., & Yusup, S. (2016). An overview of activated carbons utilization for the post-combustion carbon dioxide capture. Journal of CO2 Utilization, 13, 1–16.CrossRef
go back to reference Rosales, E., Meijide, J., Pazos, M., & Sanromán, M. A. (2017). Challenges and recent advances in biochar as low-cost biosorbent: From batch assays to continuous-flow systems. Bioresource Technology, 246, 176–192.CrossRef Rosales, E., Meijide, J., Pazos, M., & Sanromán, M. A. (2017). Challenges and recent advances in biochar as low-cost biosorbent: From batch assays to continuous-flow systems. Bioresource Technology, 246, 176–192.CrossRef
go back to reference Rouzitalab, Z., Maklavany, D. M., Rashidi, A., & Jafarinejad, S. (2018). Synthesis of N-doped nanoporous carbon from walnut shell for enhancing CO2 adsorption capacity and separation. Journal of Environmental Chemical Engineering, 6(5), 6653–6663.CrossRef Rouzitalab, Z., Maklavany, D. M., Rashidi, A., & Jafarinejad, S. (2018). Synthesis of N-doped nanoporous carbon from walnut shell for enhancing CO2 adsorption capacity and separation. Journal of Environmental Chemical Engineering, 6(5), 6653–6663.CrossRef
go back to reference Runtti, H., Tuomikoski, S., Kangas, T., Lassi, U., Kuokkanena, T., & Rämö, J. (2014). Chemically activated carbon residue from biomass gasification as a sorbent for iron(II), copper(II) and nickel(II) ions. Journal of Water Process Engineering, 4, 12–24.CrossRef Runtti, H., Tuomikoski, S., Kangas, T., Lassi, U., Kuokkanena, T., & Rämö, J. (2014). Chemically activated carbon residue from biomass gasification as a sorbent for iron(II), copper(II) and nickel(II) ions. Journal of Water Process Engineering, 4, 12–24.CrossRef
go back to reference Senthilkumar, R., Reddy, P. D. M., Govindarajan, L., Saravanakumar, K., & Naveen, P. B. S. (2020). Synthesis of green marine algal-based biochar for remediation of arsenic(V) from contaminated waters in batch and column mode of operation. International Journal of Phytoremediation, 22, 279–286.CrossRef Senthilkumar, R., Reddy, P. D. M., Govindarajan, L., Saravanakumar, K., & Naveen, P. B. S. (2020). Synthesis of green marine algal-based biochar for remediation of arsenic(V) from contaminated waters in batch and column mode of operation. International Journal of Phytoremediation, 22, 279–286.CrossRef
go back to reference Singh, G., Kim, I. Y., Lakhi, K. S., Srivastava, P., Naidu, R., & Vinu, A. (2017). Single step synthesis of activated bio-carbons with a high surface area and their excellent CO2 adsorption capacity. Carbon, 116, 448–455.CrossRef Singh, G., Kim, I. Y., Lakhi, K. S., Srivastava, P., Naidu, R., & Vinu, A. (2017). Single step synthesis of activated bio-carbons with a high surface area and their excellent CO2 adsorption capacity. Carbon, 116, 448–455.CrossRef
go back to reference Son, E. B., Poo, K. M., Chang, J. S., & Chae, K. J. (2018). Heavy metal removal from aqueous solutions using engineered magnetic biochars derived from waste marine macro-algal biomass. Science of the Total Environment, 615, 161–168.CrossRef Son, E. B., Poo, K. M., Chang, J. S., & Chae, K. J. (2018). Heavy metal removal from aqueous solutions using engineered magnetic biochars derived from waste marine macro-algal biomass. Science of the Total Environment, 615, 161–168.CrossRef
go back to reference Stemann, J., Erlach, B., & Ziegler, F. (2013). Hydrothermal carbonisation of empty palm oil fruit bunches: Laboratory trials, plant simulation, carbon avoidance, and economic feasibility. Waste and Biomass Valorization, 4, 441–454.CrossRef Stemann, J., Erlach, B., & Ziegler, F. (2013). Hydrothermal carbonisation of empty palm oil fruit bunches: Laboratory trials, plant simulation, carbon avoidance, and economic feasibility. Waste and Biomass Valorization, 4, 441–454.CrossRef
go back to reference Tan, X., Liu, Y., Gu, Y., Xu, Y., Zeng, G., Hu, X., Liu, S., Wang, X., Liu, S., & Li, J. (2016). Biochar based nano-composites for the decontamination of wastewater: A review. Bioresource Technology, 212, 318–333.CrossRef Tan, X., Liu, Y., Gu, Y., Xu, Y., Zeng, G., Hu, X., Liu, S., Wang, X., Liu, S., & Li, J. (2016). Biochar based nano-composites for the decontamination of wastewater: A review. Bioresource Technology, 212, 318–333.CrossRef
go back to reference Tan, Z., Sun, L., Xiang, J., Zeng, H., Liu, Z., Hu, S., & Qiu, J. (2012). Gas-phase elemental mercury removal by novel carbon-based sorbents. Carbon, 50(2), 362–371.CrossRef Tan, Z., Sun, L., Xiang, J., Zeng, H., Liu, Z., Hu, S., & Qiu, J. (2012). Gas-phase elemental mercury removal by novel carbon-based sorbents. Carbon, 50(2), 362–371.CrossRef
go back to reference Tang, L., Yu, J., Pang, Y., Zeng, G., Deng, Y., Wang, J., Ren, X., Ye, S., Peng, B., & Feng, H. (2018). Sustainable efficient adsorbent: Alkali-acid modified magnetic biochar derived from sewage sludge for aqueous organic contaminant removal. Chemical Engineering Journal, 336, 160–169.CrossRef Tang, L., Yu, J., Pang, Y., Zeng, G., Deng, Y., Wang, J., Ren, X., Ye, S., Peng, B., & Feng, H. (2018). Sustainable efficient adsorbent: Alkali-acid modified magnetic biochar derived from sewage sludge for aqueous organic contaminant removal. Chemical Engineering Journal, 336, 160–169.CrossRef
go back to reference Tang, Y., Alam, M. S., Konhauser, K. O., Alessi, D. S., Xu, S., Tian, W., & Liu, Y. (2019). Influence of pyrolysis temperature on production of digested sludge biochar and its application for ammonium removal from municipal wastewater. Journal of Cleaner Production, 209, 927–936.CrossRef Tang, Y., Alam, M. S., Konhauser, K. O., Alessi, D. S., Xu, S., Tian, W., & Liu, Y. (2019). Influence of pyrolysis temperature on production of digested sludge biochar and its application for ammonium removal from municipal wastewater. Journal of Cleaner Production, 209, 927–936.CrossRef
go back to reference Tortosa Masia, A. A., Buhre, B. J. P., Gupta, R. P., & Wall, T. F. (2007). Characterising ash of biomass and waste. Fuel Processing Technology, 88, 1071–1081.CrossRef Tortosa Masia, A. A., Buhre, B. J. P., Gupta, R. P., & Wall, T. F. (2007). Characterising ash of biomass and waste. Fuel Processing Technology, 88, 1071–1081.CrossRef
go back to reference Vijayaraghavan, K., & Yun, Y. S. (2008). Bacterial biosorbents and biosorption. Biotechnology Advances, 26, 266–291.CrossRef Vijayaraghavan, K., & Yun, Y. S. (2008). Bacterial biosorbents and biosorption. Biotechnology Advances, 26, 266–291.CrossRef
go back to reference Vinh, V. N., Zafar, M., Behera, S. K., & Park, H. S. (2015). Arsenic(III) removal from aqueous solution by raw and zinc-loaded pine cone biochar: Equilibrium, kinetics, and thermodynamics studies. International journal of Environmental Science and Technology, 12(4), 1283–1294.CrossRef Vinh, V. N., Zafar, M., Behera, S. K., & Park, H. S. (2015). Arsenic(III) removal from aqueous solution by raw and zinc-loaded pine cone biochar: Equilibrium, kinetics, and thermodynamics studies. International journal of Environmental Science and Technology, 12(4), 1283–1294.CrossRef
go back to reference Wan, S., Wu, J., Zhou, S., Wang, R., Gao, B., & He, F. (2018). Enhanced lead and cadmium removal using biochar-supported hydrated manganese oxide (HMO) nanoparticles: Behavior and mechanism. Science of the Total Environment, 616–617, 1298–1306.CrossRef Wan, S., Wu, J., Zhou, S., Wang, R., Gao, B., & He, F. (2018). Enhanced lead and cadmium removal using biochar-supported hydrated manganese oxide (HMO) nanoparticles: Behavior and mechanism. Science of the Total Environment, 616–617, 1298–1306.CrossRef
go back to reference Wang, B., Lehmann, J., Hanley, K., Hestrin, R., & Enders, A. (2016). Ammonium retention by oxidized biochars produced at different pyrolysis temperatures and residence times. RSC Advances, 6, 41907–41913.CrossRef Wang, B., Lehmann, J., Hanley, K., Hestrin, R., & Enders, A. (2016). Ammonium retention by oxidized biochars produced at different pyrolysis temperatures and residence times. RSC Advances, 6, 41907–41913.CrossRef
go back to reference Wang, C., & Wang, H. (2018). Pb(II) sorption from aqueous solution by novel biochar loaded with nano-particles. Chemosphere, 192, 1–4.CrossRef Wang, C., & Wang, H. (2018). Pb(II) sorption from aqueous solution by novel biochar loaded with nano-particles. Chemosphere, 192, 1–4.CrossRef
go back to reference Wang, H., Gao, B., Wang, S., Fang, J., Xue, Y., & Yang, K. (2015e). Removal of Pb(II), Cu(II), and Cd(II) from aqueous solutions by biochar derived from KMnO4 treated hickory wood. Bioresource Technology, 197, 356–362.CrossRef Wang, H., Gao, B., Wang, S., Fang, J., Xue, Y., & Yang, K. (2015e). Removal of Pb(II), Cu(II), and Cd(II) from aqueous solutions by biochar derived from KMnO4 treated hickory wood. Bioresource Technology, 197, 356–362.CrossRef
go back to reference Wang, L., Wang, Y., Ma, F., Tankpa, V., Bai, S., Guo, X., & Wang, X. (2019). Mechanisms and reutilization of modified biochar used for removal of heavy metals from wastewater: A review. Science of the Total Environment, 668, 1298–1309.CrossRef Wang, L., Wang, Y., Ma, F., Tankpa, V., Bai, S., Guo, X., & Wang, X. (2019). Mechanisms and reutilization of modified biochar used for removal of heavy metals from wastewater: A review. Science of the Total Environment, 668, 1298–1309.CrossRef
go back to reference Wang, S., Gao, B., Zimmerman, A. R., Li, Y., Ma, L., Harris, W. G., & Migliaccio, K. W. (2015a). Physicochemical and sorptive properties of biochars derived from woody and herbaceous biomass. Chemosphere, 134, 257–262.CrossRef Wang, S., Gao, B., Zimmerman, A. R., Li, Y., Ma, L., Harris, W. G., & Migliaccio, K. W. (2015a). Physicochemical and sorptive properties of biochars derived from woody and herbaceous biomass. Chemosphere, 134, 257–262.CrossRef
go back to reference Wang, S., Gao, B., Zimmerman, A. R., Li, Y., Ma, L., Harris, W. G., & Migliaccio, K. W. (2015d). Removal of arsenic by magnetic biochar prepared from pinewood and natural hematite. Bioresource Technology, 175, 391–395.CrossRef Wang, S., Gao, B., Zimmerman, A. R., Li, Y., Ma, L., Harris, W. G., & Migliaccio, K. W. (2015d). Removal of arsenic by magnetic biochar prepared from pinewood and natural hematite. Bioresource Technology, 175, 391–395.CrossRef
go back to reference Wang, S., Zhou, Y., Gao, B., Wang, X., Yin, X., Feng, K., & Wang, J. (2017a). The sorptive and reductive capacities of biochar supported nanoscaled zero-valent iron (nZVI) in relation to its crystallite size. Chemosphere, 186, 495–500.CrossRef Wang, S., Zhou, Y., Gao, B., Wang, X., Yin, X., Feng, K., & Wang, J. (2017a). The sorptive and reductive capacities of biochar supported nanoscaled zero-valent iron (nZVI) in relation to its crystallite size. Chemosphere, 186, 495–500.CrossRef
go back to reference Wang, S. S., Gao, B., Li, Y. C., Mosa, A., Zimmerman, A. R., Ma, L. Q., Harris, W. G., & Migliaccio, K. W. (2015b). Manganese oxide-modified biochars: Preparation, characterization, and sorption of arsenate and lead. Bioresource Technology, 181, 13–17.CrossRef Wang, S. S., Gao, B., Li, Y. C., Mosa, A., Zimmerman, A. R., Ma, L. Q., Harris, W. G., & Migliaccio, K. W. (2015b). Manganese oxide-modified biochars: Preparation, characterization, and sorption of arsenate and lead. Bioresource Technology, 181, 13–17.CrossRef
go back to reference Wang, S. S., Gao, B., Li, Y. C., Ok, Y. S., Shen, C. F., & Xue, S. G. (2017b). Biochar provides a safe and value-added solution for hyperaccumulating plant disposal: A case study of Phytolacca acinosa Roxb. (Phytolaccaceae). Chemosphere, 178, 59–64.CrossRef Wang, S. S., Gao, B., Li, Y. C., Ok, Y. S., Shen, C. F., & Xue, S. G. (2017b). Biochar provides a safe and value-added solution for hyperaccumulating plant disposal: A case study of Phytolacca acinosa Roxb. (Phytolaccaceae). Chemosphere, 178, 59–64.CrossRef
go back to reference Wang, Y., Hu, Y., Zhao, X., Wang, S., & Xing, G. (2013). Comparisons of biochar properties from wood material and crop residues at different temperatures and residence times. Energy and Fuels, 27, 5890–5899.CrossRef Wang, Y., Hu, Y., Zhao, X., Wang, S., & Xing, G. (2013). Comparisons of biochar properties from wood material and crop residues at different temperatures and residence times. Energy and Fuels, 27, 5890–5899.CrossRef
go back to reference Wang, Y., & Liu, R. (2018). H2O2 treatment enhanced the heavy metals removal by manure biochar in aqueous solutions. Science of the Total Environment, 628–629, 1139–1148.CrossRef Wang, Y., & Liu, R. (2018). H2O2 treatment enhanced the heavy metals removal by manure biochar in aqueous solutions. Science of the Total Environment, 628–629, 1139–1148.CrossRef
go back to reference Wang, Z., Guo, H., Shen, F., Yang, G., Zhang, Y., Zeng, Y., Wang, L., Xiao, H., & Deng, S. (2015c). Biochar produced from oak sawdust by lanthanum (La)-involved pyrolysis for adsorption of ammonium (NH4+), nitrate (NO3−), and phosphate (PO43−). Chemosphere, 119, 646–653.CrossRef Wang, Z., Guo, H., Shen, F., Yang, G., Zhang, Y., Zeng, Y., Wang, L., Xiao, H., & Deng, S. (2015c). Biochar produced from oak sawdust by lanthanum (La)-involved pyrolysis for adsorption of ammonium (NH4+), nitrate (NO3), and phosphate (PO43−). Chemosphere, 119, 646–653.CrossRef
go back to reference Weber, R., Yoshida, S., & Miwa, K. (2002). PCB destruction in subcritical and supercritical water evaluation of PCDF formation and initial steps of degradation mechanisms. Environmental Science & Technology, 36, 1839–1844.CrossRef Weber, R., Yoshida, S., & Miwa, K. (2002). PCB destruction in subcritical and supercritical water evaluation of PCDF formation and initial steps of degradation mechanisms. Environmental Science & Technology, 36, 1839–1844.CrossRef
go back to reference Wu, C., Huang, L., Xue, S. G., Huang, Y. Y., Hartley, W., Cui, M. Q., & Wong, M. H. (2017b). Arsenic sorption by red mud-modified biochar produced from rice straw. Environmental Science and Pollution Research, 24(22), 18168–18178.CrossRef Wu, C., Huang, L., Xue, S. G., Huang, Y. Y., Hartley, W., Cui, M. Q., & Wong, M. H. (2017b). Arsenic sorption by red mud-modified biochar produced from rice straw. Environmental Science and Pollution Research, 24(22), 18168–18178.CrossRef
go back to reference Wu, W., Li, J., Lan, T., Müller, K., Niazi, N. K., Chen, X., Xu, S., Zheng, L., Chu, Y., Li, J., Yuan, G., & Wang, H. (2017a). Unraveling sorption of lead in aqueous solutions by chemically modified biochar derived from coconut fiber: A microscopic and spectroscopic investigation. Science of the Total Environment, 576, 766–774.CrossRef Wu, W., Li, J., Lan, T., Müller, K., Niazi, N. K., Chen, X., Xu, S., Zheng, L., Chu, Y., Li, J., Yuan, G., & Wang, H. (2017a). Unraveling sorption of lead in aqueous solutions by chemically modified biochar derived from coconut fiber: A microscopic and spectroscopic investigation. Science of the Total Environment, 576, 766–774.CrossRef
go back to reference Xie, R., Jin, Y., Chen, Y., & Jiang, W. (2017). The importance of surface functional groups in the adsorption of copper onto walnut shell derived activated carbon. Water Science and Technology, 76, 3022–3034.CrossRef Xie, R., Jin, Y., Chen, Y., & Jiang, W. (2017). The importance of surface functional groups in the adsorption of copper onto walnut shell derived activated carbon. Water Science and Technology, 76, 3022–3034.CrossRef
go back to reference Xu, X., Zheng, Y., Gao, B., & Cao, X. (2019). N-doped biochar synthesized by a facile ball-milling method for enhanced sorption of CO2 and reactive red. Chemical Engineering Journal, 368, 564–572.CrossRef Xu, X., Zheng, Y., Gao, B., & Cao, X. (2019). N-doped biochar synthesized by a facile ball-milling method for enhanced sorption of CO2 and reactive red. Chemical Engineering Journal, 368, 564–572.CrossRef
go back to reference Yaman, S. (2004). Pyrolysis of biomass to produce fuels and chemical feedstocks. Energy Conversion and Management, 45, 651–671.CrossRef Yaman, S. (2004). Pyrolysis of biomass to produce fuels and chemical feedstocks. Energy Conversion and Management, 45, 651–671.CrossRef
go back to reference Yang, G., Wu, L., Xian, Q. M., Shen, F., Wu, J., & Zhang, Y. Z. (2016). Removal of Congo red and methylene blue from aqueous solutions by vermicompost-derived biochars. PLoS One, 11(5), e0154562.CrossRef Yang, G., Wu, L., Xian, Q. M., Shen, F., Wu, J., & Zhang, Y. Z. (2016). Removal of Congo red and methylene blue from aqueous solutions by vermicompost-derived biochars. PLoS One, 11(5), e0154562.CrossRef
go back to reference Yang, J., Yue, L., Hu, X., Wang, L., Zhao, Y., Lin, Y., Sun, Y., DaCosta, H., & Guo, L. (2017). Efficient CO2 capture by porous carbons derived from coconut shell. Energy & Fuels, 31(4), 4287–4293.CrossRef Yang, J., Yue, L., Hu, X., Wang, L., Zhao, Y., Lin, Y., Sun, Y., DaCosta, H., & Guo, L. (2017). Efficient CO2 capture by porous carbons derived from coconut shell. Energy & Fuels, 31(4), 4287–4293.CrossRef
go back to reference Yao, Y., Gao, B., Fang, J., Zhang, M., Chen, H., Zhou, Y., Creamer, A. E., Sun, Y., & Yang, L. (2014). Characterization and environmental applications of clay-biochar composites. Chemical Engineering Journal, 242, 136–143.CrossRef Yao, Y., Gao, B., Fang, J., Zhang, M., Chen, H., Zhou, Y., Creamer, A. E., Sun, Y., & Yang, L. (2014). Characterization and environmental applications of clay-biochar composites. Chemical Engineering Journal, 242, 136–143.CrossRef
go back to reference Yao, Y., Gao, B., Inyang, M., Zimmerman, A. R., Cao, X., Pullammanappallil, P., & Yang, L. (2011). Biochar derived from anaerobically digested sugar beet tailings: Characterization and phosphate removal potential. Bioresource Technology, 102, 6273–6278.CrossRef Yao, Y., Gao, B., Inyang, M., Zimmerman, A. R., Cao, X., Pullammanappallil, P., & Yang, L. (2011). Biochar derived from anaerobically digested sugar beet tailings: Characterization and phosphate removal potential. Bioresource Technology, 102, 6273–6278.CrossRef
go back to reference Yao, Y., Gao, B., Wu, F., Zhang, C., & Yang, L. (2015). Engineered biochar from biofuel residue: Characterization and its silver removal potential. ACS Appled Materials and Interfaces, 7, 10634–10640.CrossRef Yao, Y., Gao, B., Wu, F., Zhang, C., & Yang, L. (2015). Engineered biochar from biofuel residue: Characterization and its silver removal potential. ACS Appled Materials and Interfaces, 7, 10634–10640.CrossRef
go back to reference Yap, M. W., Mubarak, N. M., Sahu, J. N., & Abdullah, E. C. (2017). Microwave induced synthesis of magnetic biochar from agricultural biomass for removal of lead and cadmium from wastewater. Journal of Industrial and Engineering Chemistry, 45, 287–295.CrossRef Yap, M. W., Mubarak, N. M., Sahu, J. N., & Abdullah, E. C. (2017). Microwave induced synthesis of magnetic biochar from agricultural biomass for removal of lead and cadmium from wastewater. Journal of Industrial and Engineering Chemistry, 45, 287–295.CrossRef
go back to reference Yoon, K., Cho, D. W., Tsang, D. C. W., Bolan, N., Rinklebe, J., & Song, H. (2017). Fabrication of engineered biochar from paper mill sludge and its application into removal of arsenic and cadmium in acidic water. Bioresource Technology, 246, 69–75.CrossRef Yoon, K., Cho, D. W., Tsang, D. C. W., Bolan, N., Rinklebe, J., & Song, H. (2017). Fabrication of engineered biochar from paper mill sludge and its application into removal of arsenic and cadmium in acidic water. Bioresource Technology, 246, 69–75.CrossRef
go back to reference Zhang, C., Song, W., Ma, Q., Xie, L., Zhang, X., & Guo, H. (2016). Enhancement of CO2 capture on biomass-based carbon from black locust by KOH activation and ammonia modification. Energy & Fuels, 30(5), 4181–4190.CrossRef Zhang, C., Song, W., Ma, Q., Xie, L., Zhang, X., & Guo, H. (2016). Enhancement of CO2 capture on biomass-based carbon from black locust by KOH activation and ammonia modification. Energy & Fuels, 30(5), 4181–4190.CrossRef
go back to reference Zhang, H., Chen, C., Gray, E. M., & Boyd, S. E. (2017b). Effect of feedstock and pyrolysis temperature on properties of biochar governing end use efficacy. Biomass Bioenergy, 105, 136–146.CrossRef Zhang, H., Chen, C., Gray, E. M., & Boyd, S. E. (2017b). Effect of feedstock and pyrolysis temperature on properties of biochar governing end use efficacy. Biomass Bioenergy, 105, 136–146.CrossRef
go back to reference Zhang, L., Xu, C., & Champagne, P. (2010). Overview of recent advances in thermo-chemical conversion of biomass. Energy Conversion and Management, 51, 969–982.CrossRef Zhang, L., Xu, C., & Champagne, P. (2010). Overview of recent advances in thermo-chemical conversion of biomass. Energy Conversion and Management, 51, 969–982.CrossRef
go back to reference Zhang, M., & Gao, B. (2013). Removal of arsenic, methylene blue, and phosphate by biochar/AlOOH nanocomposite. Chemical Engineering Journal, 226, 286–292.CrossRef Zhang, M., & Gao, B. (2013). Removal of arsenic, methylene blue, and phosphate by biochar/AlOOH nanocomposite. Chemical Engineering Journal, 226, 286–292.CrossRef
go back to reference Zhang, M., Gao, B., Varnoosfaderani, S., Hebard, A., Yao, Y., & Inyang, M. (2013). Preparation and characterization of a novel magnetic biochar for arsenic removal. Bioresource Technology, 130, 457–462.CrossRef Zhang, M., Gao, B., Varnoosfaderani, S., Hebard, A., Yao, Y., & Inyang, M. (2013). Preparation and characterization of a novel magnetic biochar for arsenic removal. Bioresource Technology, 130, 457–462.CrossRef
go back to reference Zhang, M., Gao, B., Yao, Y., Xue, Y. W., & Inyang, M. (2012). Synthesis of porous MgO-biochar nanocomposites for removal of phosphate and nitrate from aqueous solutions. Chemical Engineering Journal, 210, 26–32.CrossRef Zhang, M., Gao, B., Yao, Y., Xue, Y. W., & Inyang, M. (2012). Synthesis of porous MgO-biochar nanocomposites for removal of phosphate and nitrate from aqueous solutions. Chemical Engineering Journal, 210, 26–32.CrossRef
go back to reference Zhang, X., Gao, B., Creamer, A. E., Cao, C., & Li, Y. (2017a). Adsorption of VOCs onto engineered carbon materials: A review. Journal of Hazardous Materials, 338, 102–123.CrossRef Zhang, X., Gao, B., Creamer, A. E., Cao, C., & Li, Y. (2017a). Adsorption of VOCs onto engineered carbon materials: A review. Journal of Hazardous Materials, 338, 102–123.CrossRef
go back to reference Zhang, X., Zhang, S., Yang, H., Feng, Y., Chen, Y., Wang, X., & Chen, H. (2014). Nitrogen enriched biochar modified by high temperature CO2–ammonia treatment: Characterization and adsorption of CO2. Chemical Engineering Journal, 257, 20–27.CrossRef Zhang, X., Zhang, S., Yang, H., Feng, Y., Chen, Y., Wang, X., & Chen, H. (2014). Nitrogen enriched biochar modified by high temperature CO2–ammonia treatment: Characterization and adsorption of CO2. Chemical Engineering Journal, 257, 20–27.CrossRef
go back to reference Zhang, X., Zhang, S., Yang, H., Shao, J., Chen, Y., Feng, Y., Wang, X., & Chen, H. (2015). Effects of hydrofluoric acid pre-deashing of rice husk on physicochemical properties and CO2 adsorption performance of nitrogen-enriched biochar. Energy, 91, 903–910.CrossRef Zhang, X., Zhang, S., Yang, H., Shao, J., Chen, Y., Feng, Y., Wang, X., & Chen, H. (2015). Effects of hydrofluoric acid pre-deashing of rice husk on physicochemical properties and CO2 adsorption performance of nitrogen-enriched biochar. Energy, 91, 903–910.CrossRef
go back to reference Zhao, M., Dai, Y., Zhang, M., Feng, C., Qin, B., Zhang, W., Zhao, N., Li, Y., Ni, Z., Xu, Z., Tsang, D. C. W., & Qui, R. (2020). Mechanisms of Pb and/or Zn adsorption by different biochars: Biochar characteristics, stability, and binding energies. Science of the Total Environment, 717, 136894.CrossRef Zhao, M., Dai, Y., Zhang, M., Feng, C., Qin, B., Zhang, W., Zhao, N., Li, Y., Ni, Z., Xu, Z., Tsang, D. C. W., & Qui, R. (2020). Mechanisms of Pb and/or Zn adsorption by different biochars: Biochar characteristics, stability, and binding energies. Science of the Total Environment, 717, 136894.CrossRef
go back to reference Zhao, P., Shen, Y., Ge, S., Chen, Z., & Yoshikawa, K. (2014). Clean solid biofuel production from high moisture content waste biomass employing hydrothermal treatment. Applied Energy, 131, 345–367.CrossRef Zhao, P., Shen, Y., Ge, S., Chen, Z., & Yoshikawa, K. (2014). Clean solid biofuel production from high moisture content waste biomass employing hydrothermal treatment. Applied Energy, 131, 345–367.CrossRef
go back to reference Zhao, T., Yao, Y., Li, D., Wu, F., Zhang, C., & Gao, B. (2018). Facile low-temperature one-step synthesis of pomelo peel biochar under air atmosphere and its adsorption behaviors for ag(I) and Pb(II). Science of the Total Environment, 640–641, 73–79.CrossRef Zhao, T., Yao, Y., Li, D., Wu, F., Zhang, C., & Gao, B. (2018). Facile low-temperature one-step synthesis of pomelo peel biochar under air atmosphere and its adsorption behaviors for ag(I) and Pb(II). Science of the Total Environment, 640–641, 73–79.CrossRef
go back to reference Zhao, X., Ouyang, W., Hao, F., Lin, C., Wang, F., Han, S., & Geng, X. (2013). Properties comparison of biochars from corn straw with different pretreatment and sorption behaviour of atrazine. Bioresource Technology, 147, 338–344.CrossRef Zhao, X., Ouyang, W., Hao, F., Lin, C., Wang, F., Han, S., & Geng, X. (2013). Properties comparison of biochars from corn straw with different pretreatment and sorption behaviour of atrazine. Bioresource Technology, 147, 338–344.CrossRef
go back to reference Zhou, L., Liu, Y. G., Liu, S. B., Yin, Y. C., Zeng, G. M., Tan, X. F., Hu, X., Hu, X., Jiang, L., Ding, Y., Liu, S., & Huang, X. (2016). Investigation of the adsorption reduction mechanisms of hexavalent chromium by ramie biochars of different pyrolytic temperatures. Bioresource Technology, 218, 351–359.CrossRef Zhou, L., Liu, Y. G., Liu, S. B., Yin, Y. C., Zeng, G. M., Tan, X. F., Hu, X., Hu, X., Jiang, L., Ding, Y., Liu, S., & Huang, X. (2016). Investigation of the adsorption reduction mechanisms of hexavalent chromium by ramie biochars of different pyrolytic temperatures. Bioresource Technology, 218, 351–359.CrossRef
go back to reference Zhou, N., Chen, H., Xi, J., Yao, D., Zhou, Z., Tian, Y., & Lu, X. (2017). Biochars with excellent Pb (II) adsorption property produced from fresh and dehydrated Banana peels via hydrothermal carbonization. Bioresource Technology, 232, 204–210.CrossRef Zhou, N., Chen, H., Xi, J., Yao, D., Zhou, Z., Tian, Y., & Lu, X. (2017). Biochars with excellent Pb (II) adsorption property produced from fresh and dehydrated Banana peels via hydrothermal carbonization. Bioresource Technology, 232, 204–210.CrossRef
go back to reference Zhu, H. Y., Fu, Y. Q., Jiang, R., Jiang, J. H., Xiao, L., Zeng, G. M., Zhao, S. L., & Wang, Y. (2011). Adsorption removal of Congo red onto magnetic cellulose/Fe3O4/activated carbon composite: Equilibrium, kinetic and thermodynamic studies. Chemical Engineering Journal, 173(2), 494–502.CrossRef Zhu, H. Y., Fu, Y. Q., Jiang, R., Jiang, J. H., Xiao, L., Zeng, G. M., Zhao, S. L., & Wang, Y. (2011). Adsorption removal of Congo red onto magnetic cellulose/Fe3O4/activated carbon composite: Equilibrium, kinetic and thermodynamic studies. Chemical Engineering Journal, 173(2), 494–502.CrossRef
go back to reference Zhu, N., Yan, T., Qiao, J., & Cao, H. (2016). Adsorption of arsenic, phosphorus and chromium by bismuth impregnated biochar: Adsorption mechanism and depleted adsorbent utilization. Chemosphere, 164, 32–40.CrossRef Zhu, N., Yan, T., Qiao, J., & Cao, H. (2016). Adsorption of arsenic, phosphorus and chromium by bismuth impregnated biochar: Adsorption mechanism and depleted adsorbent utilization. Chemosphere, 164, 32–40.CrossRef
go back to reference Zhu, S., Huang, X., Wang, D., Wang, L., & Ma, F. (2018). Enhanced hexavalent chromium removal performance and stabilization by magnetic iron nanoparticles assisted biochar in aqueous solution: Mechanisms and application potential. Chemosphere, 207, 50–59.CrossRef Zhu, S., Huang, X., Wang, D., Wang, L., & Ma, F. (2018). Enhanced hexavalent chromium removal performance and stabilization by magnetic iron nanoparticles assisted biochar in aqueous solution: Mechanisms and application potential. Chemosphere, 207, 50–59.CrossRef
Metadata
Title
Environmental Benign Biochar Technologies: Strategic Utilization for CO2 Capture and Wastewater Treatment
Authors
Mohd Danish Khan
Ji Whan Ahn
Copyright Year
2021
DOI
https://doi.org/10.1007/978-3-030-68502-7_8