Skip to main content
Top

2015 | OriginalPaper | Chapter

6. Environmental Bioeffects and Safety Assessment of Silver Nanoparticles

Authors : Sujuan Yu, Lingxiangyu Li, Qunfang Zhou, Jingfu Liu, Guibin Jiang

Published in: Silver Nanoparticles in the Environment

Publisher: Springer Berlin Heidelberg

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The large production and expanding application of silver nanoparticles (AgNPs) in consumer market would inevitably bring additional sources of AgNPs in the natural environment, and the long-term and incremental exposure to both biota and human is also expected, which prompts scientists to consider more comprehensively the impacts of AgNPs on ecosystem health and safety in light of their toxicity as shown in Chap. 5. As the number of literature focused on the ecological effects of AgNPs gradually increase, it is possible to describe preliminarily the current knowledge of environmental bioeffects and safety assessment of AgNPs. In this chapter, we try to summarize and discuss the works that has been done so far to follow the environmental bioeffects and risk assessment of AgNPs.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Gondikas AP, Morris A, Reinsch BC, Marinakos SM, Lowry GV, Hsu-Kim H (2012) Cysteine-induced modifications of zero-valent silver nanomaterials: implications for particle surface chemistry, aggregation, dissolution, and silver speciation. Environ Sci Technol 46(13):7037–7045. doi:10.1021/es3001757CrossRef Gondikas AP, Morris A, Reinsch BC, Marinakos SM, Lowry GV, Hsu-Kim H (2012) Cysteine-induced modifications of zero-valent silver nanomaterials: implications for particle surface chemistry, aggregation, dissolution, and silver speciation. Environ Sci Technol 46(13):7037–7045. doi:10.1021/es3001757CrossRef
2.
go back to reference Maurer-Jones MA, Gunsolus IL, Murphy CJ, Haynes CL (2013) Toxicity of engineered nanoparticles in the environment. Anal Chem 85(6):3036–3049. doi:10.1021/ac303636sCrossRef Maurer-Jones MA, Gunsolus IL, Murphy CJ, Haynes CL (2013) Toxicity of engineered nanoparticles in the environment. Anal Chem 85(6):3036–3049. doi:10.1021/ac303636sCrossRef
3.
go back to reference Fabrega J, Luoma SN, Tyler CR, Galloway TS, Lead JR (2011) Silver nanoparticles: behaviour and effects in the aquatic environment. Environ Int 37(2):517–531. doi:10.1016/j.envint.2010.10.012CrossRef Fabrega J, Luoma SN, Tyler CR, Galloway TS, Lead JR (2011) Silver nanoparticles: behaviour and effects in the aquatic environment. Environ Int 37(2):517–531. doi:10.1016/j.envint.2010.10.012CrossRef
4.
go back to reference Lubick N (2008) Nanosilver toxicity: ions, nanoparticles-or both? Environ Sci Technol 42(23):8617–8617. doi:10.1021/es8026314CrossRef Lubick N (2008) Nanosilver toxicity: ions, nanoparticles-or both? Environ Sci Technol 42(23):8617–8617. doi:10.1021/es8026314CrossRef
5.
go back to reference George S, Lin SJ, Jo ZX, Thomas CR, Li LJ, Mecklenburg M, Meng H, Wang X, Zhang HY, Xia T, Hohman JN, Lin S, Zink JI, Weiss PS, Nel AE (2012) Surface defects on plate-shaped silver nanoparticles contribute to its hazard potential in a fish gill cell line and zebrafish embryos. ACS Nano 6 (5):3745?3759. doi:10.1021/nn204671vCrossRef George S, Lin SJ, Jo ZX, Thomas CR, Li LJ, Mecklenburg M, Meng H, Wang X, Zhang HY, Xia T, Hohman JN, Lin S, Zink JI, Weiss PS, Nel AE (2012) Surface defects on plate-shaped silver nanoparticles contribute to its hazard potential in a fish gill cell line and zebrafish embryos. ACS Nano 6 (5):3745?3759. doi:10.1021/nn204671vCrossRef
6.
go back to reference Zhao CM, Wang WX (2012) Size-dependent uptake of silver nanoparticles in Daphnia magna. Environ Sci Technol 46(20):11345?11351. doi:10.1021/es3014375CrossRef Zhao CM, Wang WX (2012) Size-dependent uptake of silver nanoparticles in Daphnia magna. Environ Sci Technol 46(20):11345?11351. doi:10.1021/es3014375CrossRef
7.
go back to reference Cunningham S, Brennan-Fournet ME, Ledwith D, Byrnes L, Joshi L (2013) Effect of nanoparticle stabilization and physicochemical properties on exposure outcome: acute toxicity of silver nanoparticle preparations in zebrafish (Danio rerio). Environ Sci Technol 47(8):3883?3892. doi:10.1021/es303695fCrossRef Cunningham S, Brennan-Fournet ME, Ledwith D, Byrnes L, Joshi L (2013) Effect of nanoparticle stabilization and physicochemical properties on exposure outcome: acute toxicity of silver nanoparticle preparations in zebrafish (Danio rerio). Environ Sci Technol 47(8):3883?3892. doi:10.1021/es303695fCrossRef
8.
go back to reference Li X, Lenhart JJ (2012) Aggregation and dissolution of silver nanoparticles in natural surface water. Environ Sci Technol 46(10):5378?5386. doi:10.1021/es204531yCrossRef Li X, Lenhart JJ (2012) Aggregation and dissolution of silver nanoparticles in natural surface water. Environ Sci Technol 46(10):5378?5386. doi:10.1021/es204531yCrossRef
9.
go back to reference Levard C, Mitra S, Yang T, Jew AD, Badireddy AR, Lowry GV, Brown GE Jr (2013) Effect of chloride on the dissolution rate of silver nanoparticles and toxicity to  5. George S, Lin SJ, Jo ZX, Thomas CR, Li LJ, Mecklenburg M, Meng H, Wang X, Zhang HY, Xia T, Hohman JN, Lin S, Zink JI, Weiss PS, Nel AE (2012) Surface defects on plate-shaped silver nanoparticles contribute to its hazard potential in a fish gill cell line and zebrafish embryos. ACS Nano 6 (5):3745–3759. doi:10.1021/nn204671vCrossRef Levard C, Mitra S, Yang T, Jew AD, Badireddy AR, Lowry GV, Brown GE Jr (2013) Effect of chloride on the dissolution rate of silver nanoparticles and toxicity to  5. George S, Lin SJ, Jo ZX, Thomas CR, Li LJ, Mecklenburg M, Meng H, Wang X, Zhang HY, Xia T, Hohman JN, Lin S, Zink JI, Weiss PS, Nel AE (2012) Surface defects on plate-shaped silver nanoparticles contribute to its hazard potential in a fish gill cell line and zebrafish embryos. ACS Nano 6 (5):3745–3759. doi:10.1021/nn204671vCrossRef
52.
go back to reference Zhao CM, Wang WX (2012) Size-dependent uptake of silver nanoparticles in Daphnia magna. Environ Sci Technol 46(20):11345–11351. doi:10.1021/es3014375 Zhao CM, Wang WX (2012) Size-dependent uptake of silver nanoparticles in Daphnia magna. Environ Sci Technol 46(20):11345–11351. doi:10.1021/es3014375
53.
go back to reference Cunningham S, Brennan-Fournet ME, Ledwith D, Byrnes L, Joshi L (2013) Effect of nanoparticle stabilization and physicochemical properties on exposure outcome: acute toxicity of silver nanoparticle preparations in zebrafish (Danio rerio). Environ Sci Technol 47(8):3883–3892. doi:10.1021/es303695f Cunningham S, Brennan-Fournet ME, Ledwith D, Byrnes L, Joshi L (2013) Effect of nanoparticle stabilization and physicochemical properties on exposure outcome: acute toxicity of silver nanoparticle preparations in zebrafish (Danio rerio). Environ Sci Technol 47(8):3883–3892. doi:10.1021/es303695f
54.
go back to reference Li X, Lenhart JJ (2012) Aggregation and dissolution of silver nanoparticles in natural surface water. Environ Sci Technol 46(10):5378–5386. doi:10.1021/es204531y Li X, Lenhart JJ (2012) Aggregation and dissolution of silver nanoparticles in natural surface water. Environ Sci Technol 46(10):5378–5386. doi:10.1021/es204531y
10.
go back to reference Yang XY, Jiang CJ, Hsu-Kim H, Badireddy AR, Dykstra M, Wiesner M, Hinton DE, Meyer JN (2014) Silver nanoparticle behavior, uptake, and toxicity in Caenorhabditis elegans: effects of natural organic matter. Environ Sci Technol 48(6):3486–3495. doi:10.1021/es404444nCrossRef Yang XY, Jiang CJ, Hsu-Kim H, Badireddy AR, Dykstra M, Wiesner M, Hinton DE, Meyer JN (2014) Silver nanoparticle behavior, uptake, and toxicity in Caenorhabditis elegans: effects of natural organic matter. Environ Sci Technol 48(6):3486–3495. doi:10.1021/es404444nCrossRef
11.
go back to reference Wirth SM, Lowry GV, Tilton RD (2012) Natural organic matter alters biofilm tolerance to silver nanoparticles and dissolved silver. Environ Sci Technol 46(22):12687–12696. doi:10.1021/es301521pCrossRef Wirth SM, Lowry GV, Tilton RD (2012) Natural organic matter alters biofilm tolerance to silver nanoparticles and dissolved silver. Environ Sci Technol 46(22):12687–12696. doi:10.1021/es301521pCrossRef
12.
go back to reference Kennedy AJ, Chappell MA, Bednar AJ, Ryan AC, Laird JG, Stanley JK, Steevens JA (2012) Impact of organic carbon on the stability and toxicity of fresh and stored silver nanoparticles. Environ Sci Technol 46(19):10772–10780. doi:10.1021/es302322yCrossRef Kennedy AJ, Chappell MA, Bednar AJ, Ryan AC, Laird JG, Stanley JK, Steevens JA (2012) Impact of organic carbon on the stability and toxicity of fresh and stored silver nanoparticles. Environ Sci Technol 46(19):10772–10780. doi:10.1021/es302322yCrossRef
13.
go back to reference Wang J, Wang WX (2014) Salinity influences on the uptake of silver nanoparticles and silver nitrate by marine medaka (Oryzias melastigma). Environ Toxicol Chem 33(3):632–640. doi:10.1002/etc.2471CrossRef Wang J, Wang WX (2014) Salinity influences on the uptake of silver nanoparticles and silver nitrate by marine medaka (Oryzias melastigma). Environ Toxicol Chem 33(3):632–640. doi:10.1002/etc.2471CrossRef
14.
go back to reference Yang X, Gondikas AP, Marinakos SM, Auffan M, Liu J, Hsu-Kim H, Meyer JN (2012) Mechanism of silver nanoparticle toxicity is dependent on dissolved silver and surface coating in Caenorhabditis elegans. Environ Sci Technol 46(2):1119–1127. doi:10.1021/es202417tCrossRef Yang X, Gondikas AP, Marinakos SM, Auffan M, Liu J, Hsu-Kim H, Meyer JN (2012) Mechanism of silver nanoparticle toxicity is dependent on dissolved silver and surface coating in Caenorhabditis elegans. Environ Sci Technol 46(2):1119–1127. doi:10.1021/es202417tCrossRef
15.
go back to reference van Aerle R Lange A Moorhouse A Paszkiewicz K Ball K Johnston BD de-Bastos E Booth T Tyler CR Santos EM (2013) Molecular mechanisms of toxicity of silver nanoparticles in zebrafish embryos. Environ Sci Technol 47(14):8005–8014. doi:10.1021/es401758dCrossRef van Aerle R Lange A Moorhouse A Paszkiewicz K Ball K Johnston BD de-Bastos E Booth T Tyler CR Santos EM (2013) Molecular mechanisms of toxicity of silver nanoparticles in zebrafish embryos. Environ Sci Technol 47(14):8005–8014. doi:10.1021/es401758dCrossRef
16.
go back to reference Levard C, Hotze EM, Colman BP, Dale AL, Truong L, Yang XY, Bone AJ, Brown GE, Tanguay RL, Di Giulio RT, Bernhardt ES, Meyer JN, Wiesner MR, Lowry GV (2013) Sulfidation of silver nanoparticles: natural antidote to their toxicity. Environ Sci Technol 47(23):13440–13448. doi:10.1021/es403527nCrossRef Levard C, Hotze EM, Colman BP, Dale AL, Truong L, Yang XY, Bone AJ, Brown GE, Tanguay RL, Di Giulio RT, Bernhardt ES, Meyer JN, Wiesner MR, Lowry GV (2013) Sulfidation of silver nanoparticles: natural antidote to their toxicity. Environ Sci Technol 47(23):13440–13448. doi:10.1021/es403527nCrossRef
17.
go back to reference Levard C, Reinsch BC, Michel FM, Oumahi C, Lowry GV, Brown GE (2011) Sulfidation processes of PVP-coated silver nanoparticles in aqueous solution: impact on dissolution rate. Environ Sci Technol 45(12):5260–5266. doi:10.1021/es2007758CrossRef Levard C, Reinsch BC, Michel FM, Oumahi C, Lowry GV, Brown GE (2011) Sulfidation processes of PVP-coated silver nanoparticles in aqueous solution: impact on dissolution rate. Environ Sci Technol 45(12):5260–5266. doi:10.1021/es2007758CrossRef
18.
go back to reference Kim B, Park CS, Murayama M, Hochella MF (2010) Discovery and characterization of silver sulfide nanoparticles in final sewage sludge products. Environ Sci Technol 44(19):7509–7514. doi:10.1021/es101565jCrossRef Kim B, Park CS, Murayama M, Hochella MF (2010) Discovery and characterization of silver sulfide nanoparticles in final sewage sludge products. Environ Sci Technol 44(19):7509–7514. doi:10.1021/es101565jCrossRef
19.
go back to reference Reinsch BC, Levard C, Li Z, Ma R, Wise A, Gregory KB, Brown GE Jr, Lowry GV (2012) Sulfidation of silver nanoparticles decreases Escherichia coli growth inhibition. Environ Sci Technol 46(13):6992–7000. doi:10.1021/es203732xCrossRef Reinsch BC, Levard C, Li Z, Ma R, Wise A, Gregory KB, Brown GE Jr, Lowry GV (2012) Sulfidation of silver nanoparticles decreases Escherichia coli growth inhibition. Environ Sci Technol 46(13):6992–7000. doi:10.1021/es203732xCrossRef
20.
go back to reference Thalmann B, Voegelin A, Sinnet B, Morgenroth E, Kaegi R (2014) Sulfidation kinetics of silver nanoparticles reacted with metal sulfides. Environ Sci Technol 48(9):4885–4892. doi:10.1021/es5003378CrossRef Thalmann B, Voegelin A, Sinnet B, Morgenroth E, Kaegi R (2014) Sulfidation kinetics of silver nanoparticles reacted with metal sulfides. Environ Sci Technol 48(9):4885–4892. doi:10.1021/es5003378CrossRef
21.
go back to reference Xiu Z, Zhang Q, Puppala HL, Colvin VL, Alvarez PJJ (2012) Negligible particle-specific antibacterial activity of silver nanoparticles. Nano lett 12(8):4271–4275. doi:10.1021/nl301934w Xiu Z, Zhang Q, Puppala HL, Colvin VL, Alvarez PJJ (2012) Negligible particle-specific antibacterial activity of silver nanoparticles. Nano lett 12(8):4271–4275. doi:10.1021/nl301934w
22.
go back to reference Fabrega J, Fawcett SR, Renshaw JC, Lead JR (2009) Silver nanoparticle impact on bacterial growth: effect of pH, concentration, and organic matter. Environ Sci Technol 43(19):7285–7290. doi:10.1021/es803259gCrossRef Fabrega J, Fawcett SR, Renshaw JC, Lead JR (2009) Silver nanoparticle impact on bacterial growth: effect of pH, concentration, and organic matter. Environ Sci Technol 43(19):7285–7290. doi:10.1021/es803259gCrossRef
23.
go back to reference Das P, Xenopoulos MA, Williams CJ, Hoque ME, Metcalfe CD (2012) Effects of silver nanoparticles on bacterial activity in natural waters. Environ Toxicol Chem 31(1):122–130. doi:10.1002/etc.716CrossRef Das P, Xenopoulos MA, Williams CJ, Hoque ME, Metcalfe CD (2012) Effects of silver nanoparticles on bacterial activity in natural waters. Environ Toxicol Chem 31(1):122–130. doi:10.1002/etc.716CrossRef
25.
go back to reference Wang J, Koo Y, Alexander A, Yang Y, Westerhof S, Zhang QB, Schnoor JL, Colvin VL, Braam J, Alvarez PJJ (2013) Phytostimulation of poplars and arabidopsis exposed to silver nanoparticles and Ag+ at sublethal concentrations. Environ Sci Technol 47(10):5442–5449. doi:10.1021/es4004334CrossRef Wang J, Koo Y, Alexander A, Yang Y, Westerhof S, Zhang QB, Schnoor JL, Colvin VL, Braam J, Alvarez PJJ (2013) Phytostimulation of poplars and arabidopsis exposed to silver nanoparticles and Ag+ at sublethal concentrations. Environ Sci Technol 47(10):5442–5449. doi:10.1021/es4004334CrossRef
24.
go back to reference Dimkpa CO, McLean JE, Martineau N, Britt DW, Haverkamp R, Anderson AJ (2013) Silver nanoparticles disrupt wheat (Triticum aestivum L.) growth in a sand matrix. Environ Sci Technol 47(2):1082–1090. doi:10.1021/es302973yCrossRef Dimkpa CO, McLean JE, Martineau N, Britt DW, Haverkamp R, Anderson AJ (2013) Silver nanoparticles disrupt wheat (Triticum aestivum L.) growth in a sand matrix. Environ Sci Technol 47(2):1082–1090. doi:10.1021/es302973yCrossRef
26.
go back to reference Kaveh R, Li YS, Ranjbar S, Tehrani R, Brueck CL, Van Aken B (2013) Changes in Arabidopsis thaliana gene expression in response to silver nanoparticles and silver ions. Environ Sci Technol 47(18):10637–10644. doi:10.1021/es402209w Kaveh R, Li YS, Ranjbar S, Tehrani R, Brueck CL, Van Aken B (2013) Changes in Arabidopsis thaliana gene expression in response to silver nanoparticles and silver ions. Environ Sci Technol 47(18):10637–10644. doi:10.1021/es402209w
27.
go back to reference Patlolla AK, Berry A, May L, Tchounwou PB (2012) Genotoxicity of silver nanoparticles in Vicia faba: a pilot study on the environmental monitoring of nanoparticles. Int J Env Res Public Health 9(5):1649–1662. doi:10.3390/ijerph9051649CrossRef Patlolla AK, Berry A, May L, Tchounwou PB (2012) Genotoxicity of silver nanoparticles in Vicia faba: a pilot study on the environmental monitoring of nanoparticles. Int J Env Res Public Health 9(5):1649–1662. doi:10.3390/ijerph9051649CrossRef
28.
go back to reference Panacek A, Prucek R, Safarova D, Dittrich M, Richtrova J, Benickova K, Zboril R, Kvitek L (2011) Acute and chronic toxicity effects of silver nanoparticles (NPs) on Drosophila melanogaster. Environ Sci Technol 45(11):4974–4979. doi:10.1021/es104216bCrossRef Panacek A, Prucek R, Safarova D, Dittrich M, Richtrova J, Benickova K, Zboril R, Kvitek L (2011) Acute and chronic toxicity effects of silver nanoparticles (NPs) on Drosophila melanogaster. Environ Sci Technol 45(11):4974–4979. doi:10.1021/es104216bCrossRef
29.
go back to reference Ahamed M, Posgai R, Gorey TJ, Nielsen M, Hussain SM, Rowe JJ (2010) Silver nanoparticles induced heat shock protein 70, oxidative stress and apoptosis in Drosophila melanogaster. Toxicol Appl Pharmcol 242(3):263–269. doi:10.1016/j.taap.2009.10.016CrossRef Ahamed M, Posgai R, Gorey TJ, Nielsen M, Hussain SM, Rowe JJ (2010) Silver nanoparticles induced heat shock protein 70, oxidative stress and apoptosis in Drosophila melanogaster. Toxicol Appl Pharmcol 242(3):263–269. doi:10.1016/j.taap.2009.10.016CrossRef
30.
go back to reference Kwok KWH, Auffan M, Badireddy AR, Nelson CM, Wiesner MR, Chilkoti A, Liu J, Marinakos SM, Hinton DE (2012) Uptake of silver nanoparticles and toxicity to early life stages of Japanese medaka (Oryzias latipes): effect of coating materials. Aquat Toxicol 120:59–66. doi:10.1016/j.aquatox.2012.04.012CrossRef Kwok KWH, Auffan M, Badireddy AR, Nelson CM, Wiesner MR, Chilkoti A, Liu J, Marinakos SM, Hinton DE (2012) Uptake of silver nanoparticles and toxicity to early life stages of Japanese medaka (Oryzias latipes): effect of coating materials. Aquat Toxicol 120:59–66. doi:10.1016/j.aquatox.2012.04.012CrossRef
31.
go back to reference Bar-Ilan O, Albrecht RM, Fako VE, Furgeson DY (2009) Toxicity assessments of multisized gold and silver nanoparticles in zebrafish embryos. Small 5 (16):1897–1910. doi:10.1002/smll.200801716CrossRef Bar-Ilan O, Albrecht RM, Fako VE, Furgeson DY (2009) Toxicity assessments of multisized gold and silver nanoparticles in zebrafish embryos. Small 5 (16):1897–1910. doi:10.1002/smll.200801716CrossRef
32.
go back to reference Powers CM, Slotkin TA, Seidler FJ, Badireddy AR, Padilla S (2011) Silver nanoparticles alter zebrafish development and larval behavior: distinct roles for particle size, coating and composition. Neurotoxicol Teratol 33(6):708–714. doi:10.1016/j.ntt.2011.02.002CrossRef Powers CM, Slotkin TA, Seidler FJ, Badireddy AR, Padilla S (2011) Silver nanoparticles alter zebrafish development and larval behavior: distinct roles for particle size, coating and composition. Neurotoxicol Teratol 33(6):708–714. doi:10.1016/j.ntt.2011.02.002CrossRef
33.
go back to reference Jang M, Kim W, Lee S, Henry TB, Park J (2014) Uptake, tissue distribution, and depuration of total silver in common carp (Cyprinus carpio) after aqueous exposure to silver nanoparticles. Environ Sci Technol 48(19):11568–11574. doi:10.1021/es5022813CrossRef Jang M, Kim W, Lee S, Henry TB, Park J (2014) Uptake, tissue distribution, and depuration of total silver in common carp (Cyprinus carpio) after aqueous exposure to silver nanoparticles. Environ Sci Technol 48(19):11568–11574. doi:10.1021/es5022813CrossRef
34.
go back to reference Heckmann LH, Hovgaard MB, Sutherland DS, Autrup H, Besenbacher F, Scott-Fordsmand JJ (2011) Limit-test toxicity screening of selected inorganic nanoparticles to the earthworm Eisenia fetida. Ecotoxicology 20(1):226–233. doi:10.1007/s10646-010-0574-0CrossRef Heckmann LH, Hovgaard MB, Sutherland DS, Autrup H, Besenbacher F, Scott-Fordsmand JJ (2011) Limit-test toxicity screening of selected inorganic nanoparticles to the earthworm Eisenia fetida. Ecotoxicology 20(1):226–233. doi:10.1007/s10646-010-0574-0CrossRef
35.
go back to reference Shoults-Wilson WA, Reinsch BC, Tsyusko OV, Bertsch PM, Lowry GV, Unrine JM (2011) Role of particle size and soil type in toxicity of silver nanoparticles to earthworms. Soil Sci Soc Am J 75(2):365–377. doi:10.2136/sssaj2010.0127npsCrossRef Shoults-Wilson WA, Reinsch BC, Tsyusko OV, Bertsch PM, Lowry GV, Unrine JM (2011) Role of particle size and soil type in toxicity of silver nanoparticles to earthworms. Soil Sci Soc Am J 75(2):365–377. doi:10.2136/sssaj2010.0127npsCrossRef
36.
go back to reference Hu C, Li M, Wang W, Cui Y, Chen J, Yang L (2012) Ecotoxicity of silver nanoparticles on earthworm Eisenia fetida: responses of the antioxidant system, acid phosphatase and ATPase. Toxicol Environ Chem 94(4):732–741. doi:10.1080/02772248.2012.668020CrossRef Hu C, Li M, Wang W, Cui Y, Chen J, Yang L (2012) Ecotoxicity of silver nanoparticles on earthworm Eisenia fetida: responses of the antioxidant system, acid phosphatase and ATPase. Toxicol Environ Chem 94(4):732–741. doi:10.1080/02772248.2012.668020CrossRef
37.
go back to reference Ghosh IN, Patil SD, Sharma TK, Srivastava SK, Pathania R, Navani NK (2013) Synergistic action of cinnamaldehyde with silver nanoparticles against spore-forming bacteria: a case for judicious use of silver nanoparticles for antibacterial applications. Int J Nanomed 8:4721–4731. doi:10.2147/ijn.s49649 Ghosh IN, Patil SD, Sharma TK, Srivastava SK, Pathania R, Navani NK (2013) Synergistic action of cinnamaldehyde with silver nanoparticles against spore-forming bacteria: a case for judicious use of silver nanoparticles for antibacterial applications. Int J Nanomed 8:4721–4731. doi:10.2147/ijn.s49649
38.
go back to reference Li P, Li J, Wu CZ, Wu QS (2005) Synergistic antibacterial effects of beta-lactam antibiotic combined with silver nanoparticles. Nanotechnology 16(9):1912–1917. doi:10.1088/0957-4484/16/9/082CrossRef Li P, Li J, Wu CZ, Wu QS (2005) Synergistic antibacterial effects of beta-lactam antibiotic combined with silver nanoparticles. Nanotechnology 16(9):1912–1917. doi:10.1088/0957-4484/16/9/082CrossRef
39.
go back to reference Hwang IS, Hwang JH, Choi H, Kim KJ, Lee DG (2012) Synergistic effects between silver nanoparticles and antibiotics and the mechanisms involved. J Med Microbiol 61(12):1719–1726. doi:10.1099/jmm.0.047100-0CrossRef Hwang IS, Hwang JH, Choi H, Kim KJ, Lee DG (2012) Synergistic effects between silver nanoparticles and antibiotics and the mechanisms involved. J Med Microbiol 61(12):1719–1726. doi:10.1099/jmm.0.047100-0CrossRef
40.
go back to reference De La Torre-Roche R Hawthorne J Musante C Xing BS Newman LA Ma XM White JC (2013) Impact of Ag nanoparticle exposure on p,p’-DDE bioaccumulation by Cucurbita pepo (zucchini) and Glycine max (soybean). Environ Sci Technol 47(2):718–725. doi:10.1021/es3041829CrossRef De La Torre-Roche R Hawthorne J Musante C Xing BS Newman LA Ma XM White JC (2013) Impact of Ag nanoparticle exposure on p,p’-DDE bioaccumulation by Cucurbita pepo (zucchini) and Glycine max (soybean). Environ Sci Technol 47(2):718–725. doi:10.1021/es3041829CrossRef
41.
go back to reference Li Y, Niu JF, Shang EX, Crittenden J (2014) Photochemical transformation and photoinduced toxicity reduction of silver nanoparticles in the presence of perfluorocarboxylic acids under UV irradiation. Environ Sci Technol 48(9):4946–4953. doi:10.1021/es500596aCrossRef Li Y, Niu JF, Shang EX, Crittenden J (2014) Photochemical transformation and photoinduced toxicity reduction of silver nanoparticles in the presence of perfluorocarboxylic acids under UV irradiation. Environ Sci Technol 48(9):4946–4953. doi:10.1021/es500596aCrossRef
42.
go back to reference Mueller NC, Nowack B (2008) Exposure modeling of engineered nanoparticles in the environment. Environ Sci Technol 42(12):4447–4453. doi:10.1021/es7029637CrossRef Mueller NC, Nowack B (2008) Exposure modeling of engineered nanoparticles in the environment. Environ Sci Technol 42(12):4447–4453. doi:10.1021/es7029637CrossRef
44.
go back to reference Wijnhoven SWP, Peijnenburg W, Herberts CA, Hagens WI, Oomen AG, Heugens EHW, Roszek B, Bisschops J, Gosens I, Van de Meent D, Dekkers S, De Jong WH, Van Zijverden M, Sips A, Geertsma RE (2009) Nano-silver—a review of available data and knowledge gaps in human and environmental risk assessment. Nanotoxicology 3(2):109–138. doi:10.1080/17435390902725914CrossRef Wijnhoven SWP, Peijnenburg W, Herberts CA, Hagens WI, Oomen AG, Heugens EHW, Roszek B, Bisschops J, Gosens I, Van de Meent D, Dekkers S, De Jong WH, Van Zijverden M, Sips A, Geertsma RE (2009) Nano-silver—a review of available data and knowledge gaps in human and environmental risk assessment. Nanotoxicology 3(2):109–138. doi:10.1080/17435390902725914CrossRef
45.
go back to reference Kulthong K, Srisung S, Boonpavanitchakul K, Kangwansupamonkon W, Maniratanachote R (2010) Determination of silver nanoparticle release from antibacterial fabrics into artificial sweat. Part Fibre Toxicol 7. doi:10.1186/1743-8977-7-8 Kulthong K, Srisung S, Boonpavanitchakul K, Kangwansupamonkon W, Maniratanachote R (2010) Determination of silver nanoparticle release from antibacterial fabrics into artificial sweat. Part Fibre Toxicol 7. doi:10.1186/1743-8977-7-8
46.
go back to reference Quadros ME, Marr LC (2011) Silver nanoparticles and total aerosols emitted by nanotechnology-related consumer spray products. Environ Sci Technol 45 (24):10713–10719. doi:10.1021/es202770mCrossRef Quadros ME, Marr LC (2011) Silver nanoparticles and total aerosols emitted by nanotechnology-related consumer spray products. Environ Sci Technol 45 (24):10713–10719. doi:10.1021/es202770mCrossRef
47.
go back to reference EPA US (2012) Nanomaterial case study: nanoscale silver in disinfectant spray (Final report). US Environmental Protection Agency, Washington, DC:EPA/600/R-610/081F EPA US (2012) Nanomaterial case study: nanoscale silver in disinfectant spray (Final report). US Environmental Protection Agency, Washington, DC:EPA/600/R-610/081F
48.
go back to reference Hedberg J, Skoglund S, Karlsson ME, Wold S, Wallinder IO, Hedberg Y (2014) Sequential studies of silver released from silver nanoparticles in aqueous media simulating sweat, laundry detergent solutions and surface water. Environ Sci Technol 48(13):7314–7322. doi:10.1021/es500234yCrossRef Hedberg J, Skoglund S, Karlsson ME, Wold S, Wallinder IO, Hedberg Y (2014) Sequential studies of silver released from silver nanoparticles in aqueous media simulating sweat, laundry detergent solutions and surface water. Environ Sci Technol 48(13):7314–7322. doi:10.1021/es500234yCrossRef
49.
go back to reference Gottschalk F, Sonderer T, Scholz RW, Nowack B (2009) Modeled environmental concentrations of engineered nanomaterials (TiO2, ZnO, Ag, CNT, fullerenes) for different regions. Environ Sci Technol 43(24):9216–9222. doi:10.1021/es9015553CrossRef Gottschalk F, Sonderer T, Scholz RW, Nowack B (2009) Modeled environmental concentrations of engineered nanomaterials (TiO2, ZnO, Ag, CNT, fullerenes) for different regions. Environ Sci Technol 43(24):9216–9222. doi:10.1021/es9015553CrossRef
50.
go back to reference Comfort KK, Braydich-Stolle LK, Maurer EI, Hussain SM (2014) Less is more: Long-term in vitro exposure to low levels of silver nanoparticles provides new insights for nanomaterial evaluation. ACS Nano 8(4):3260–3271. doi:10.1021/nn5009116CrossRef Comfort KK, Braydich-Stolle LK, Maurer EI, Hussain SM (2014) Less is more: Long-term in vitro exposure to low levels of silver nanoparticles provides new insights for nanomaterial evaluation. ACS Nano 8(4):3260–3271. doi:10.1021/nn5009116CrossRef
Metadata
Title
Environmental Bioeffects and Safety Assessment of Silver Nanoparticles
Authors
Sujuan Yu
Lingxiangyu Li
Qunfang Zhou
Jingfu Liu
Guibin Jiang
Copyright Year
2015
Publisher
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-662-46070-2_6