Skip to main content
Top

2017 | OriginalPaper | Chapter

4. Epidemic Models with Switching

Authors : Xinzhi Liu, Peter Stechlinski

Published in: Infectious Disease Modeling

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this chapter, the methods developed thus far are applied to a variety of infectious disease models with different physiological and epidemiological assumptions. Many of the previous results are immediately applicable, thanks to the flexibility of the simple techniques used here. However, some complicating modeling assumptions lead to a need for different switched systems techniques not present in the previous chapter. First, the so-called SIS model is considered, followed by incorporation of media coverage, network epidemic models with interconnected cities (or patches), and diseases spread by vector agents (e.g., mosquitoes) which are modeled using time delays. Straightforward extensions of eradication results are given for models with vertical transmission, disease-induced mortality, waning immunity, passive immunity, and a model with general compartments.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
11.
16.
17.
go back to reference E. Beretta, Y. Takeuchi, Convergence results in SIR epidemic models with varying population sizes. Nonlinear Anal. Theory Methods Appl. 28 (12), 1909–1921 (1997)MathSciNetCrossRefMATH E. Beretta, Y. Takeuchi, Convergence results in SIR epidemic models with varying population sizes. Nonlinear Anal. Theory Methods Appl. 28 (12), 1909–1921 (1997)MathSciNetCrossRefMATH
19.
go back to reference E. Beretta, T. Hara, W. Ma, Y. Takeuchi, Global asymptotic stability of an SIR epidemic model with distributed time delay. Nonlinear Anal. Theory Methods Appl. 47 (6), 4107–4115 (2001)MathSciNetCrossRefMATH E. Beretta, T. Hara, W. Ma, Y. Takeuchi, Global asymptotic stability of an SIR epidemic model with distributed time delay. Nonlinear Anal. Theory Methods Appl. 47 (6), 4107–4115 (2001)MathSciNetCrossRefMATH
24.
go back to reference T. Burton, Volterra Integral and Differential Equations (Elsevier, Amsterdam, 2005)MATH T. Burton, Volterra Integral and Differential Equations (Elsevier, Amsterdam, 2005)MATH
36.
go back to reference A. d’Onofrio, Pulse vaccination strategy in the SIR epidemic model: global asymptotic stable eradication in presence of vaccine failures. Math. Comput. Model. 36 (4–5), 473–489 (2002)MathSciNetCrossRefMATH A. d’Onofrio, Pulse vaccination strategy in the SIR epidemic model: global asymptotic stable eradication in presence of vaccine failures. Math. Comput. Model. 36 (4–5), 473–489 (2002)MathSciNetCrossRefMATH
37.
go back to reference A. d’Onofrio, On pulse vaccination strategy in the SIR epidemic model with vertical transmission. Appl. Math. Lett. 18 (7), 729–737 (2005)MathSciNetCrossRefMATH A. d’Onofrio, On pulse vaccination strategy in the SIR epidemic model with vertical transmission. Appl. Math. Lett. 18 (7), 729–737 (2005)MathSciNetCrossRefMATH
46.
go back to reference M. Fan, M. Y. Li, K. Wang, Global stability of an SEIS epidemic model with recruitment and a varying total population size. Math. Biosci. 170, 199–208 (2001)MathSciNetCrossRefMATH M. Fan, M. Y. Li, K. Wang, Global stability of an SEIS epidemic model with recruitment and a varying total population size. Math. Biosci. 170, 199–208 (2001)MathSciNetCrossRefMATH
49.
go back to reference S. Gao, L. Chen, J.J. Nieto, A. Torres, Analysis of a delayed epidemic model with pulse vaccination and saturation incidence. Vaccine 24 (35–36), 6037–6045 (2006)CrossRef S. Gao, L. Chen, J.J. Nieto, A. Torres, Analysis of a delayed epidemic model with pulse vaccination and saturation incidence. Vaccine 24 (35–36), 6037–6045 (2006)CrossRef
50.
go back to reference S. Gao, Z. Teng, J.J. Nieto, A. Torres, Analysis of an SIR epidemic model with pulse vaccination and distributed time delay. J. Biomed. Biotechnol. 2007, 1–10 (2007)CrossRef S. Gao, Z. Teng, J.J. Nieto, A. Torres, Analysis of an SIR epidemic model with pulse vaccination and distributed time delay. J. Biomed. Biotechnol. 2007, 1–10 (2007)CrossRef
63.
go back to reference H.W. Hethcote, Three basic epidemiological models, in Applied Mathematical Ecology, ed. by S.A. Levin, T.G. Hallam, L.J. Gross (Springer, Berlin, 1989), pp. 119–144CrossRef H.W. Hethcote, Three basic epidemiological models, in Applied Mathematical Ecology, ed. by S.A. Levin, T.G. Hallam, L.J. Gross (Springer, Berlin, 1989), pp. 119–144CrossRef
64.
go back to reference H.W. Hethcote, A thousand and one epidemic models, in Frontiers in Theoretical Biology, ed. by S.A. Levin (Springer, Berlin, 1994), pp. 504–515CrossRef H.W. Hethcote, A thousand and one epidemic models, in Frontiers in Theoretical Biology, ed. by S.A. Levin (Springer, Berlin, 1994), pp. 504–515CrossRef
67.
go back to reference H.W. Hethcote, P. van den Driessche, An SIS epidemic model with variable population size and a delay. J. Math. Biol. 34 (2), 177–194 (1995)MathSciNetCrossRefMATH H.W. Hethcote, P. van den Driessche, An SIS epidemic model with variable population size and a delay. J. Math. Biol. 34 (2), 177–194 (1995)MathSciNetCrossRefMATH
68.
go back to reference Z. Jin, M. Haque, Q. Liu, Pulse vaccination in the periodic infection rate SIR epidemic model. Int. J. Biomath. 1, 409–432 (2008)MathSciNetCrossRefMATH Z. Jin, M. Haque, Q. Liu, Pulse vaccination in the periodic infection rate SIR epidemic model. Int. J. Biomath. 1, 409–432 (2008)MathSciNetCrossRefMATH
69.
go back to reference M.J. Keeling, P. Rohani, Modeling Infectious Diseases in Humans and Animals (Princeton University Press, Princeton, 2008)MATH M.J. Keeling, P. Rohani, Modeling Infectious Diseases in Humans and Animals (Princeton University Press, Princeton, 2008)MATH
73.
go back to reference A. Korobeinikov, Lyapunov functions and global stability for SIR and SIRS epidemiological models with non-linear transmission. Bull. Math. Biol. 30, 615–626 (2006)MathSciNetCrossRefMATH A. Korobeinikov, Lyapunov functions and global stability for SIR and SIRS epidemiological models with non-linear transmission. Bull. Math. Biol. 30, 615–626 (2006)MathSciNetCrossRefMATH
78.
go back to reference V. Lakshmikantham, M.R.M. Rao, Theory of Integro-Differential Equations (Gordon and Breach, Amsterdam, 1995)MATH V. Lakshmikantham, M.R.M. Rao, Theory of Integro-Differential Equations (Gordon and Breach, Amsterdam, 1995)MATH
82.
go back to reference M.Y. Li, Z. Shuai, C. Wang, Global stability of multi-group epidemic models with distributed delays. J. Math. Anal. Appl. 361 (1), 38–47 (2010)MathSciNetCrossRefMATH M.Y. Li, Z. Shuai, C. Wang, Global stability of multi-group epidemic models with distributed delays. J. Math. Anal. Appl. 361 (1), 38–47 (2010)MathSciNetCrossRefMATH
83.
go back to reference Y. Li, J. Cui, The effect of constant and pulse vaccination on SIS epidemic models incorporating media coverage. Commun. Nonlinear Sci. Numer. Simul. 14 (5), 2353–2365 (2009)MathSciNetCrossRefMATH Y. Li, J. Cui, The effect of constant and pulse vaccination on SIS epidemic models incorporating media coverage. Commun. Nonlinear Sci. Numer. Simul. 14 (5), 2353–2365 (2009)MathSciNetCrossRefMATH
88.
go back to reference J. Liu, Y. Zhou, Global stability of an SIRS epidemic model with transport-related infection. Chaos Solitons Fractals 40 (1), 145–158 (2009)MathSciNetCrossRefMATH J. Liu, Y. Zhou, Global stability of an SIRS epidemic model with transport-related infection. Chaos Solitons Fractals 40 (1), 145–158 (2009)MathSciNetCrossRefMATH
97.
go back to reference X. Liu, P. Stechlinski, Transmission dynamics of a switched multi-city model with transport-related infections. Nonlinear Anal. Real World Appl. 14, 264–279 (2013)MathSciNetCrossRefMATH X. Liu, P. Stechlinski, Transmission dynamics of a switched multi-city model with transport-related infections. Nonlinear Anal. Real World Appl. 14, 264–279 (2013)MathSciNetCrossRefMATH
98.
100.
go back to reference X. Liu, Y. Takeuchi, Spread of disease with transport-related infection and entry screening. J. Theor. Biol. 242 (2), 517–528 (2006)MathSciNetCrossRef X. Liu, Y. Takeuchi, Spread of disease with transport-related infection and entry screening. J. Theor. Biol. 242 (2), 517–528 (2006)MathSciNetCrossRef
101.
go back to reference X. Liu, Y. Takeuchi, S. Iwami, SVIR epidemic models with vaccination strategies. J. Theor. Biol. 253 (1), 1–11 (2008)MathSciNetCrossRef X. Liu, Y. Takeuchi, S. Iwami, SVIR epidemic models with vaccination strategies. J. Theor. Biol. 253 (1), 1–11 (2008)MathSciNetCrossRef
102.
go back to reference Z. Lu, X. Chi, L. Chen, The effect of constant and pulse vaccination on SIR epidemic model with horizontal and vertical transmission. Math. Comput. Model. 36, 1039–1057 (2002)MathSciNetCrossRefMATH Z. Lu, X. Chi, L. Chen, The effect of constant and pulse vaccination on SIR epidemic model with horizontal and vertical transmission. Math. Comput. Model. 36, 1039–1057 (2002)MathSciNetCrossRefMATH
103.
104.
go back to reference W. Ma, Y. Takeuchi, T. Hara, E. Beretta, Permanence of an SIR epidemic model with distributed time delays. Tohoku Math. J. Second Ser. 54 (4), 581–591 (2002)MathSciNetCrossRefMATH W. Ma, Y. Takeuchi, T. Hara, E. Beretta, Permanence of an SIR epidemic model with distributed time delays. Tohoku Math. J. Second Ser. 54 (4), 581–591 (2002)MathSciNetCrossRefMATH
107.
go back to reference C.C. McCluskey, Global stability for an SEIR epidemiological model with varying infectivity and infinite delay. Math. Biosci. Eng. 6 (3), 603–610 (2009)MathSciNetCrossRefMATH C.C. McCluskey, Global stability for an SEIR epidemiological model with varying infectivity and infinite delay. Math. Biosci. Eng. 6 (3), 603–610 (2009)MathSciNetCrossRefMATH
108.
go back to reference C.C. McCluskey, Complete global stability for an SIR epidemic model with delay – distributed or discrete. Nonlinear Anal. Real World Appl. 11 (1), 55–59 (2010)MathSciNetCrossRefMATH C.C. McCluskey, Complete global stability for an SIR epidemic model with delay – distributed or discrete. Nonlinear Anal. Real World Appl. 11 (1), 55–59 (2010)MathSciNetCrossRefMATH
113.
go back to reference D. Moulay, M.A. Aziz-Alaoui, M. Cadivel, The chikungunya disease: modeling, vector and transmission global dynamics. Math. Biosci. 229 (1), 50–63 (2011)MathSciNetCrossRefMATH D. Moulay, M.A. Aziz-Alaoui, M. Cadivel, The chikungunya disease: modeling, vector and transmission global dynamics. Math. Biosci. 229 (1), 50–63 (2011)MathSciNetCrossRefMATH
114.
go back to reference D. Moulay, M.A. Aziz-Alaoui, H.-D. Kwon, Optimal control of chikungunya disease: larvae reduction, treatment and prevention. Math. Biosci. Eng. 9 (2), 369–393 (2012)MathSciNetCrossRefMATH D. Moulay, M.A. Aziz-Alaoui, H.-D. Kwon, Optimal control of chikungunya disease: larvae reduction, treatment and prevention. Math. Biosci. Eng. 9 (2), 369–393 (2012)MathSciNetCrossRefMATH
127.
go back to reference G. Rezza, L. Nicoletti, R. Angelini, R. Romi, A. Finarelli, M. Panning, P. Cordioli, C. Fortuna, S. Boros, F. Magurano, G. Silvi, P. Angelini, M. Dottori, M. Ciufolini, G. Majori, A. Cassone, Infection with chikungunya virus in Italy: an outbreak in a temperate region. Lancet 370 (9602), 1840–1846 (2007)CrossRef G. Rezza, L. Nicoletti, R. Angelini, R. Romi, A. Finarelli, M. Panning, P. Cordioli, C. Fortuna, S. Boros, F. Magurano, G. Silvi, P. Angelini, M. Dottori, M. Ciufolini, G. Majori, A. Cassone, Infection with chikungunya virus in Italy: an outbreak in a temperate region. Lancet 370 (9602), 1840–1846 (2007)CrossRef
129.
go back to reference G. Röst, SEI model with varying transmission and mortality rates, in WSPC Proceedings (2010), pp. 1–10 G. Röst, SEI model with varying transmission and mortality rates, in WSPC Proceedings (2010), pp. 1–10
130.
132.
go back to reference L. Sattenspiel, K. Dietz, A structured epidemic model incorporating geographic mobility among regions. Math. Biosci. 128 (1–2), 71–91 (1995)CrossRefMATH L. Sattenspiel, K. Dietz, A structured epidemic model incorporating geographic mobility among regions. Math. Biosci. 128 (1–2), 71–91 (1995)CrossRefMATH
137.
go back to reference H. Shu, D. Fan, J. Wei, Global stability of multi-group SEIR epidemic models with distributed delays and nonlinear transmission. Nonlinear Anal. Real World Appl. 13 (4), 1581–1592 (2012)MathSciNetCrossRefMATH H. Shu, D. Fan, J. Wei, Global stability of multi-group SEIR epidemic models with distributed delays and nonlinear transmission. Nonlinear Anal. Real World Appl. 13 (4), 1581–1592 (2012)MathSciNetCrossRefMATH
140.
go back to reference H.L. Smith, M.Y. Li, L. Wang, Global dynamics of an SEIR epidemic model with vertical transmission. SIAM J. Appl. Math. 62, 58–69 (2001)MathSciNetCrossRefMATH H.L. Smith, M.Y. Li, L. Wang, Global dynamics of an SEIR epidemic model with vertical transmission. SIAM J. Appl. Math. 62, 58–69 (2001)MathSciNetCrossRefMATH
143.
go back to reference P. Stechlinski, X. Liu, Switching vaccination schemes for vector-borne diseases with seasonal fluctuations. Submitted (2016) P. Stechlinski, X. Liu, Switching vaccination schemes for vector-borne diseases with seasonal fluctuations. Submitted (2016)
145.
go back to reference Y. Takeuchi, W. Ma, E. Beretta, Global asymptotic properties of a delay SIR epidemic model with finite incubation times. Nonlinear Anal. Theory Methods Appl. 42 (6), 931–947 (2000)MathSciNetCrossRefMATH Y. Takeuchi, W. Ma, E. Beretta, Global asymptotic properties of a delay SIR epidemic model with finite incubation times. Nonlinear Anal. Theory Methods Appl. 42 (6), 931–947 (2000)MathSciNetCrossRefMATH
146.
go back to reference Y. Takeuchi, J. Cui, Y. Saito, Spreading disease with transport-related infection. J. Theor. Biol. 239 (3), 376–390 (2006)MathSciNetCrossRef Y. Takeuchi, J. Cui, Y. Saito, Spreading disease with transport-related infection. J. Theor. Biol. 239 (3), 376–390 (2006)MathSciNetCrossRef
147.
go back to reference Y. Takeuchi, X. Liu, J. Cui, Global dynamics of SIS models with transport-related infection. J. Math. Anal. Appl. 329 (2), 1460–1471 (2007)MathSciNetCrossRefMATH Y. Takeuchi, X. Liu, J. Cui, Global dynamics of SIS models with transport-related infection. J. Math. Anal. Appl. 329 (2), 1460–1471 (2007)MathSciNetCrossRefMATH
148.
go back to reference H.R. Thieme, Uniform persistence and permanence for non-autonomous semiflows in population biology. Math. Biosci. 166, 173–201 (2000)MathSciNetCrossRefMATH H.R. Thieme, Uniform persistence and permanence for non-autonomous semiflows in population biology. Math. Biosci. 166, 173–201 (2000)MathSciNetCrossRefMATH
152.
go back to reference P. van den Driessche, J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Math. Biosci. 180 (1–2), 29–48 (2002)MathSciNetCrossRefMATH P. van den Driessche, J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Math. Biosci. 180 (1–2), 29–48 (2002)MathSciNetCrossRefMATH
155.
156.
158.
165.
go back to reference H. Yang, M. Macoris, K. Galvani, M. Andrighetti, D. Wanderley, Assessing the effects of temperature on dengue transmission. Epidemiol. Infect. 137, 1179–1187 (2009)CrossRef H. Yang, M. Macoris, K. Galvani, M. Andrighetti, D. Wanderley, Assessing the effects of temperature on dengue transmission. Epidemiol. Infect. 137, 1179–1187 (2009)CrossRef
166.
go back to reference H. Yang, M. Macoris, K. Galvani, M. Andrighetti, D. Wanderley, Assessing the effects of temperature on the population of Aedes aegypti, the vector of dengue. Epidemiol. Infect. 137, 1188–1202 (2009)CrossRef H. Yang, M. Macoris, K. Galvani, M. Andrighetti, D. Wanderley, Assessing the effects of temperature on the population of Aedes aegypti, the vector of dengue. Epidemiol. Infect. 137, 1188–1202 (2009)CrossRef
167.
go back to reference Y. Yang, Y. Xiao, The effects of population dispersal and pulse vaccination on disease control. Math. Comput. Model. 52 (9–10), 1591–1604 (2010)MathSciNetCrossRefMATH Y. Yang, Y. Xiao, The effects of population dispersal and pulse vaccination on disease control. Math. Comput. Model. 52 (9–10), 1591–1604 (2010)MathSciNetCrossRefMATH
170.
171.
go back to reference X. Zhang, X. Liu, Backward bifurcation and global dynamics of an SIS epidemic model with general incidence rate and treatment. Nonlinear Anal. Real World Appl. 10 (2), 565–575 (2009)MathSciNetCrossRefMATH X. Zhang, X. Liu, Backward bifurcation and global dynamics of an SIS epidemic model with general incidence rate and treatment. Nonlinear Anal. Real World Appl. 10 (2), 565–575 (2009)MathSciNetCrossRefMATH
173.
go back to reference Y. Zhou, H. Liu, Stability of periodic solutions for an SIS model with pulse vaccination. Math. Comput. Model. 38 (3–4), 299–308 (2003)MathSciNetCrossRefMATH Y. Zhou, H. Liu, Stability of periodic solutions for an SIS model with pulse vaccination. Math. Comput. Model. 38 (3–4), 299–308 (2003)MathSciNetCrossRefMATH
Metadata
Title
Epidemic Models with Switching
Authors
Xinzhi Liu
Peter Stechlinski
Copyright Year
2017
DOI
https://doi.org/10.1007/978-3-319-53208-0_4

Premium Partners