Skip to main content
Top
Published in: Continuum Mechanics and Thermodynamics 1/2024

17-11-2023 | Original Article

Equivalent analytical formulation-based multibody elastic system analysis using one-dimensional finite elements

Authors: Sorin Vlase, Marin Marin, Andreas Öchsner, Omar El Moutea

Published in: Continuum Mechanics and Thermodynamics | Issue 1/2024

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

For the particular case of an elastic multibody system (MBS) that can be modeled using one-dimensional finite elements, the main methods offered by analytical mechanics in its classical form for analysis are presented in a unitary description. The aim of the work is to present in a unitary form the main methods offered by classical mechanics for the analysis of solid systems. There is also a review of the literature that uses and highlights these methods, which need to be reconsidered considering the progress of the industry and the complexity of the studied systems. Thus, the kinematics of a finite element is described for the calculation of the main quantities used in the modeling of multibody systems and in analytical mechanics. The main methods used in the research of MBS systems are presented and analyzed. Thus, Lagrange’s equations, Gibbs–Appell equations, Maggi’s formalism, Kane’s equations and Hamilton’s equations are studied in turn. This presentation is determined by the advantages that alternatives to Lagrange’s equations can offer, which currently represent the method most used by researchers.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Sklar, L.: From virtual work to Lagrange’s equation. In: Vol. Philosophy and the Foundations of Dynamics, pp. 96–101 (2013) Sklar, L.: From virtual work to Lagrange’s equation. In: Vol. Philosophy and the Foundations of Dynamics, pp. 96–101 (2013)
2.
go back to reference Fabien, B.C.: Lagrange’s equation of motion. In: Vol. Analytical System Dynamics: Modeling and Simulation, pp. 109–160 (2009) Fabien, B.C.: Lagrange’s equation of motion. In: Vol. Analytical System Dynamics: Modeling and Simulation, pp. 109–160 (2009)
3.
go back to reference Bianchini, S.: On the Euler–Lagrange equation for a variational problem. Differ. Equ. Chaos Var. Probl. 75, 61–77 (2008)MathSciNet Bianchini, S.: On the Euler–Lagrange equation for a variational problem. Differ. Equ. Chaos Var. Probl. 75, 61–77 (2008)MathSciNet
4.
go back to reference Sun, W.: Dynamic iteration method for Lagrange’s equations of multibody systems. In: Proceedings of the 31st Chinese Control and Decision Conference (CCDC-2019), Nanchang, China, pp. 571–575 (2019) Sun, W.: Dynamic iteration method for Lagrange’s equations of multibody systems. In: Proceedings of the 31st Chinese Control and Decision Conference (CCDC-2019), Nanchang, China, pp. 571–575 (2019)
5.
go back to reference Malvezzi, F., Orsino, R.M.M., Coelho, T.A.H.: Lagrange’s, Maggi’s and Kane’s equations applied to the dynamic modelling of serial manipulator. In: Proceedings of the 17th International Symposium on Dynamic Problems of Mechanics (DIINAME 2017), Sao Sebastiao, Brazil, pp. 291–304 (2017). https://doi.org/10.1007/978-3-319-91217-2_20 Malvezzi, F., Orsino, R.M.M., Coelho, T.A.H.: Lagrange’s, Maggi’s and Kane’s equations applied to the dynamic modelling of serial manipulator. In: Proceedings of the 17th International Symposium on Dynamic Problems of Mechanics (DIINAME 2017), Sao Sebastiao, Brazil, pp. 291–304 (2017). https://​doi.​org/​10.​1007/​978-3-319-91217-2_​20
6.
8.
go back to reference Gans, F.R.: Engineering Dynamics: from the Lagrangian to Simulation. Springer, New York (2013)CrossRef Gans, F.R.: Engineering Dynamics: from the Lagrangian to Simulation. Springer, New York (2013)CrossRef
9.
go back to reference Shi, Z., Meacci, M., Meli, E., Wang, K.Y., Rindi, A.: Validation of a finite element multibody system model for vehicle-slab track application. In: 26th Symposium of the International Association of Vehicle System Dynamics (IAVSD), Gothenburg, Sweden, August 12–16, 2019. In Advanced in Dynamics of Vehicle on Roads and Tracks, IAVSD 2019, Proceedings Paper, in Book Series, Lecture Notes in Mechanical Engineering, pp. 407–414 (2020). https://doi.org/10.1007/978-3-030-38077-9_48 Shi, Z., Meacci, M., Meli, E., Wang, K.Y., Rindi, A.: Validation of a finite element multibody system model for vehicle-slab track application. In: 26th Symposium of the International Association of Vehicle System Dynamics (IAVSD), Gothenburg, Sweden, August 12–16, 2019. In Advanced in Dynamics of Vehicle on Roads and Tracks, IAVSD 2019, Proceedings Paper, in Book Series, Lecture Notes in Mechanical Engineering, pp. 407–414 (2020). https://​doi.​org/​10.​1007/​978-3-030-38077-9_​48
10.
go back to reference Tokarczyk, J.: Migration of computational models in virtual prototyping of complex mechanical systems. In: Book Group Author IAENG. World Congress on Engineering and Computer Science, WCECS 2012, San Francisco, CA, 2012, VOL II, Proceedings Paper, Book Series: Lecture Notes in Engineering and Computer Science, pp. 1334–1337 (2012) Tokarczyk, J.: Migration of computational models in virtual prototyping of complex mechanical systems. In: Book Group Author IAENG. World Congress on Engineering and Computer Science, WCECS 2012, San Francisco, CA, 2012, VOL II, Proceedings Paper, Book Series: Lecture Notes in Engineering and Computer Science, pp. 1334–1337 (2012)
11.
go back to reference Marce-Nogue, J., Klodowski, A., Sanchez, M., Gil, L.: Coupling finite element analysis and multibody system dynamics for biological research. Palaeontol. Electron. 18(2), 1–14 (2015) Marce-Nogue, J., Klodowski, A., Sanchez, M., Gil, L.: Coupling finite element analysis and multibody system dynamics for biological research. Palaeontol. Electron. 18(2), 1–14 (2015)
13.
go back to reference Wallrapp, O., Sachau, D.: Space flight dynamic simulations using finite element results in multibody system codes. In: 2nd International Conference on Computational Structures Technology, Athens, Greece, 1994, Proceedings Paper. In Advanced in Computational Mechanics, pp. 149–158 (1994) Wallrapp, O., Sachau, D.: Space flight dynamic simulations using finite element results in multibody system codes. In: 2nd International Conference on Computational Structures Technology, Athens, Greece, 1994, Proceedings Paper. In Advanced in Computational Mechanics, pp. 149–158 (1994)
14.
go back to reference Scutaru, M.L., Chircan, E., Marin, M., Grif, H.S.: Liaison forces eliminating and assembling of the motion equation in the study of multibody system with elastic elements. In: 13th International Conference Interdisciplinarity in Engineering (Inter-Eng. 2019), Targu Mures, ROMANIA, 2019, Proceedings Paper, Book Series: Procedia Manufacturing, vol. 46, pp. 78–86 (2020). https://doi.org/10.1016/j.promfg.2020.03.013 Scutaru, M.L., Chircan, E., Marin, M., Grif, H.S.: Liaison forces eliminating and assembling of the motion equation in the study of multibody system with elastic elements. In: 13th International Conference Interdisciplinarity in Engineering (Inter-Eng. 2019), Targu Mures, ROMANIA, 2019, Proceedings Paper, Book Series: Procedia Manufacturing, vol. 46, pp. 78–86 (2020). https://​doi.​org/​10.​1016/​j.​promfg.​2020.​03.​013
15.
go back to reference Shabana, A.A.: On the integration of large deformation finite element and multibody system algorithms. In: Proceedings of the International Conference on Mechanical Engineering and Mechanics 2005, Vols. 1 and 2, pp. 63–70 (2005) Shabana, A.A.: On the integration of large deformation finite element and multibody system algorithms. In: Proceedings of the International Conference on Mechanical Engineering and Mechanics 2005, Vols. 1 and 2, pp. 63–70 (2005)
17.
go back to reference Rui, X., Rong, B., Wang, G.: New method for dynamics modeling and simulation of flexible multibody system. In: Proceedings of the third International Conference on Mechanical Engineering and Mechanics, Beijing, China, 2009, Proceedings Vols. 1 and 2, pp. 17–23 (2009) Rui, X., Rong, B., Wang, G.: New method for dynamics modeling and simulation of flexible multibody system. In: Proceedings of the third International Conference on Mechanical Engineering and Mechanics, Beijing, China, 2009, Proceedings Vols. 1 and 2, pp. 17–23 (2009)
19.
go back to reference Öchsner, A.: Computational Statics and Dynamics, An Introduction Based on the Finite Element Method. Springer, Singapore (2020)CrossRef Öchsner, A.: Computational Statics and Dynamics, An Introduction Based on the Finite Element Method. Springer, Singapore (2020)CrossRef
23.
go back to reference Zhang, J.H., Jiang, S.S.: Rigid-flexible coupling model and dynamic analysis of rocket sled. In: International Conference on Sustainable Construction Materials and Computer Engineering (ICSCMCE 2011). Sustainable Construction Materials and Computer Engineering, Kunming, China, 2011, Proceedings Paper, Book Series: Advanced Materials Research, vol. 346, pp. 447–454 (2012). https://doi.org/10.4028/www.scientific.net/AMR.346.447 Zhang, J.H., Jiang, S.S.: Rigid-flexible coupling model and dynamic analysis of rocket sled. In: International Conference on Sustainable Construction Materials and Computer Engineering (ICSCMCE 2011). Sustainable Construction Materials and Computer Engineering, Kunming, China, 2011, Proceedings Paper, Book Series: Advanced Materials Research, vol. 346, pp. 447–454 (2012). https://​doi.​org/​10.​4028/​www.​scientific.​net/​AMR.​346.​447
28.
go back to reference Manca, A.G., Pappalardo, C.M.: Topology optimization procedure of aircraft mechanical components based on computer-aided design, multibody dynamics and finite element analysis. In: 3rd International Conference on Design, Simulation, Manufacturing - (DSMIE), Kharkiv, Ukraine, 2020, Advances in Design, Simulation and Manufacturing III: Mechanical and Chemical Engineering, Vol. 2, Book Series: Lecture Notes in Mechanical Engineering, pp. 159-168 (2020). https://doi.org/10.1007/978-3-030-50491-5_16 Manca, A.G., Pappalardo, C.M.: Topology optimization procedure of aircraft mechanical components based on computer-aided design, multibody dynamics and finite element analysis. In: 3rd International Conference on Design, Simulation, Manufacturing - (DSMIE), Kharkiv, Ukraine, 2020, Advances in Design, Simulation and Manufacturing III: Mechanical and Chemical Engineering, Vol. 2, Book Series: Lecture Notes in Mechanical Engineering, pp. 159-168 (2020). https://​doi.​org/​10.​1007/​978-3-030-50491-5_​16
32.
go back to reference Marin, M.: Some estimates on vibrations in thermoelasticity of dipolar bodies. J. Vib. Control 16(1), 33–47 (2010)MathSciNetCrossRef Marin, M.: Some estimates on vibrations in thermoelasticity of dipolar bodies. J. Vib. Control 16(1), 33–47 (2010)MathSciNetCrossRef
35.
go back to reference Bagci, C.: Elastodynamic response of mechanical systems using matrix exponential mode uncoupling and incremental forcing techniques with finite element method. In: Proceedings of the Sixth Word Congress on Theory of Machines and Mechanisms, India, p. 472 (1983) Bagci, C.: Elastodynamic response of mechanical systems using matrix exponential mode uncoupling and incremental forcing techniques with finite element method. In: Proceedings of the Sixth Word Congress on Theory of Machines and Mechanisms, India, p. 472 (1983)
36.
go back to reference Bahgat, B.M., Willmert, K.D.: Finite element vibrational analysis of planar mechanisms. Mech. Mach. Theory 11, 47 (1976)CrossRef Bahgat, B.M., Willmert, K.D.: Finite element vibrational analysis of planar mechanisms. Mech. Mach. Theory 11, 47 (1976)CrossRef
37.
go back to reference Cleghorn, W.L., Fenton, E.G., Tabarrok, K.B.: Finite element analysis of high-speed flexible mechanisms. Mech. Mach. Theory 16, 407 (1981)CrossRef Cleghorn, W.L., Fenton, E.G., Tabarrok, K.B.: Finite element analysis of high-speed flexible mechanisms. Mech. Mach. Theory 16, 407 (1981)CrossRef
38.
go back to reference Vlase, S., Dănăşel, C., Scutaru, M.L., Mihălcică, M.: Finite element analysis of a two-dimensional linear elastic systems with a plane ’ ’rigid motion. Rom. Journ. Phys. 59(5–6), 476–487 (2014) Vlase, S., Dănăşel, C., Scutaru, M.L., Mihălcică, M.: Finite element analysis of a two-dimensional linear elastic systems with a plane ’ ’rigid motion. Rom. Journ. Phys. 59(5–6), 476–487 (2014)
39.
go back to reference Deü, J.-F., Galucio, A.C., Ohayon, R.: Dynamic responses of flexible-link mechanisms with passive/active damping treatment. Comput. Struct. 86(3–5), 258–265 (2008)CrossRef Deü, J.-F., Galucio, A.C., Ohayon, R.: Dynamic responses of flexible-link mechanisms with passive/active damping treatment. Comput. Struct. 86(3–5), 258–265 (2008)CrossRef
40.
go back to reference Othman, M.I.A., Fekry, M., Marin, M.: Plane waves in generalized magneto-thermo-viscoelastic medium with voids under the effect of initial stress and laser pulse heating. Struct. Eng. Mech. 73(6), 621–629 (2020) Othman, M.I.A., Fekry, M., Marin, M.: Plane waves in generalized magneto-thermo-viscoelastic medium with voids under the effect of initial stress and laser pulse heating. Struct. Eng. Mech. 73(6), 621–629 (2020)
41.
go back to reference Neto, M.A., Ambrósio, J.A.C., Leal, R.P.: Composite materials in flexible multibody systems. Comput. Methods Appl. Mech. Eng. 195(50–51), 6860–6873 (2006)CrossRefADS Neto, M.A., Ambrósio, J.A.C., Leal, R.P.: Composite materials in flexible multibody systems. Comput. Methods Appl. Mech. Eng. 195(50–51), 6860–6873 (2006)CrossRefADS
42.
go back to reference Piras, G., Cleghorn, W.L., Mills, J.K.: Dynamic finite-element analysis of a planar high-speed, high-precision parallel manipulator with flexible links. Mech. Mach. Theory 40(7), 849–862 (2005)CrossRef Piras, G., Cleghorn, W.L., Mills, J.K.: Dynamic finite-element analysis of a planar high-speed, high-precision parallel manipulator with flexible links. Mech. Mach. Theory 40(7), 849–862 (2005)CrossRef
43.
go back to reference Abo-Dahab, S.M., Abouelregal, A.E., Marin, M.: Generalized thermoelastic functionally graded on a thin slim strip non-Gaussian laser beam. Symmetry 12(7), 1094 (2020)CrossRefADS Abo-Dahab, S.M., Abouelregal, A.E., Marin, M.: Generalized thermoelastic functionally graded on a thin slim strip non-Gaussian laser beam. Symmetry 12(7), 1094 (2020)CrossRefADS
44.
go back to reference Zhang, X., Erdman, A.G.: Dynamic responses of flexible linkage mechanisms with viscoelastic constrained layer damping treatment. Comput. Struct. 79(13), 1265–1274 (2001)CrossRef Zhang, X., Erdman, A.G.: Dynamic responses of flexible linkage mechanisms with viscoelastic constrained layer damping treatment. Comput. Struct. 79(13), 1265–1274 (2001)CrossRef
46.
go back to reference Trapp, M., Öchsner, A.: One-dimensional continuum approach. In: Computational Plasticity for Finite Elements: A Fortran-Based Introduction, pp. 7–18 (2018) Trapp, M., Öchsner, A.: One-dimensional continuum approach. In: Computational Plasticity for Finite Elements: A Fortran-Based Introduction, pp. 7–18 (2018)
47.
go back to reference Öchsner, A.: Special numerical techniques to joint design. In: Handbook of Adhesion Technology, vols. 1 and 2, pp. 661–688 (2011) Öchsner, A.: Special numerical techniques to joint design. In: Handbook of Adhesion Technology, vols. 1 and 2, pp. 661–688 (2011)
48.
go back to reference Cockburn, B., Lin, S.Y., Shu, C.W.: TVB Runge-Kutta local projection discontinuous Galerkin finite-element method for conservation-laws. 3. One-dimensional systems. J. Comput. Phys. 84(1), 90–113 (1989)MathSciNetCrossRefADS Cockburn, B., Lin, S.Y., Shu, C.W.: TVB Runge-Kutta local projection discontinuous Galerkin finite-element method for conservation-laws. 3. One-dimensional systems. J. Comput. Phys. 84(1), 90–113 (1989)MathSciNetCrossRefADS
49.
go back to reference Adjerid, S., Flaherty, J.E.: A moving finite-element method with error estimation and refinement for one-dimensional time-dependent partial-differential equations. SIAM J. Numer. Anal. 23(4), 778–796 (1986)MathSciNetCrossRefADS Adjerid, S., Flaherty, J.E.: A moving finite-element method with error estimation and refinement for one-dimensional time-dependent partial-differential equations. SIAM J. Numer. Anal. 23(4), 778–796 (1986)MathSciNetCrossRefADS
50.
go back to reference Babuska, I., Rheinboldt, W.C.: A posteriori error analysis of finite-element solutions for one-dimensional problems. SIAM J. Numer. Anal. 18(3), 565–589 (1981)MathSciNetCrossRefADS Babuska, I., Rheinboldt, W.C.: A posteriori error analysis of finite-element solutions for one-dimensional problems. SIAM J. Numer. Anal. 18(3), 565–589 (1981)MathSciNetCrossRefADS
51.
go back to reference Zhou, W.J.J., Ichchou, M.N., Bareille, O.: Finite element techniques for calculations of wave modes in one-dimensional structural waveguides. Struct. Control Health Monit. 18(7), 737–751 (2011)CrossRef Zhou, W.J.J., Ichchou, M.N., Bareille, O.: Finite element techniques for calculations of wave modes in one-dimensional structural waveguides. Struct. Control Health Monit. 18(7), 737–751 (2011)CrossRef
52.
go back to reference Hui, Y., Giunta, G., Belouettar, S., Huang, Q., Hu, H., Carrera, E.: A free vibration analysis of three-dimensional sandwich beams using hierarchical one-dimensional finite elements. Compos. Part B Eng. 110, 7–19 (2017)CrossRef Hui, Y., Giunta, G., Belouettar, S., Huang, Q., Hu, H., Carrera, E.: A free vibration analysis of three-dimensional sandwich beams using hierarchical one-dimensional finite elements. Compos. Part B Eng. 110, 7–19 (2017)CrossRef
53.
go back to reference Freund, M., Ihlemann, J.: Generalization of one-dimensional material models for the finite element method. ZAMM-Z. Agnew. Math. Mech. 90(5), 399–417 (2010)MathSciNetCrossRef Freund, M., Ihlemann, J.: Generalization of one-dimensional material models for the finite element method. ZAMM-Z. Agnew. Math. Mech. 90(5), 399–417 (2010)MathSciNetCrossRef
54.
go back to reference Carrera, E., Filippi, M.: Variable kinematic one-dimensional finite elements for the analysis of rotors made of composite materials. J. Eng. Gas Turbines Power Trans. ASME 136(9), 092501 (2014)CrossRef Carrera, E., Filippi, M.: Variable kinematic one-dimensional finite elements for the analysis of rotors made of composite materials. J. Eng. Gas Turbines Power Trans. ASME 136(9), 092501 (2014)CrossRef
55.
go back to reference Carrera, E., Zappino, E.: One-dimensional finite element formulation with node-dependent kinematics. Comput. Struct. 192, 114–125 (2017)CrossRef Carrera, E., Zappino, E.: One-dimensional finite element formulation with node-dependent kinematics. Comput. Struct. 192, 114–125 (2017)CrossRef
56.
go back to reference Öchsner, A., Merkel, M.: One-Dimensional Finite Elements, An Introduction to the FE Method. Springer, Cham (2018)CrossRef Öchsner, A., Merkel, M.: One-Dimensional Finite Elements, An Introduction to the FE Method. Springer, Cham (2018)CrossRef
57.
go back to reference Ursu-Fisher, N.: Elements of Analytical Mechanics. House of Science Book Press, C-Napoca (2015) Ursu-Fisher, N.: Elements of Analytical Mechanics. House of Science Book Press, C-Napoca (2015)
59.
go back to reference Appell, P.: Sur une forme générale des equations de la dynamique. C.R. Acad. Sci. Paris, vol. 129 (1899) Appell, P.: Sur une forme générale des equations de la dynamique. C.R. Acad. Sci. Paris, vol. 129 (1899)
60.
go back to reference Negrean, I., Crisan, A., Serdean, F., Vlase, S.: New formulations on kinetic energy and acceleration energies in applied mechanics of systems. Symmetry-Basel 14(5), 896 (2022)CrossRefADS Negrean, I., Crisan, A., Serdean, F., Vlase, S.: New formulations on kinetic energy and acceleration energies in applied mechanics of systems. Symmetry-Basel 14(5), 896 (2022)CrossRefADS
61.
go back to reference Mirtaheri, S.M., Zohoor, H.: The explicit Gibbs–Appell equations of motion for rigid-body constrained mechanical system. In: Book Series: RSI International Conference on Robotics and Mechatronics ICRoM, pp. 304–309 (2018) Mirtaheri, S.M., Zohoor, H.: The explicit Gibbs–Appell equations of motion for rigid-body constrained mechanical system. In: Book Series: RSI International Conference on Robotics and Mechatronics ICRoM, pp. 304–309 (2018)
62.
go back to reference Korayem, M.H., Dehkordi, S.F.: Motion equations of cooperative multi flexible mobile manipulator via recursive Gibbs–Appell formulation. Appl. Math. Model. 65, 443–463 (2019)MathSciNetCrossRef Korayem, M.H., Dehkordi, S.F.: Motion equations of cooperative multi flexible mobile manipulator via recursive Gibbs–Appell formulation. Appl. Math. Model. 65, 443–463 (2019)MathSciNetCrossRef
63.
go back to reference Shafei, A.M., Shafei, H.R.: A systematic method for the hybrid dynamic modeling of open kinematic chains confined in a closed environment. Multibody Syst. Dyn. 38(1), 21–42 (2017)MathSciNetCrossRef Shafei, A.M., Shafei, H.R.: A systematic method for the hybrid dynamic modeling of open kinematic chains confined in a closed environment. Multibody Syst. Dyn. 38(1), 21–42 (2017)MathSciNetCrossRef
64.
go back to reference Korayem, M.H., Dehkordi, S.F.: Derivation of dynamic equation of viscoelastic manipulator with revolute-prismatic joint using recursive Gibbs–Appell formulation. Nonlinear Dyn. 89(3), 2041–2064 (2017)CrossRef Korayem, M.H., Dehkordi, S.F.: Derivation of dynamic equation of viscoelastic manipulator with revolute-prismatic joint using recursive Gibbs–Appell formulation. Nonlinear Dyn. 89(3), 2041–2064 (2017)CrossRef
65.
go back to reference Marin, M., Seadawy, A., Vlase, S., Chirila, A.: On mixed problem in thermos-elasticity of type III for Cosserat media. J. Taibah Univ. Sci. 16(1), 1264–1274 (2022)CrossRef Marin, M., Seadawy, A., Vlase, S., Chirila, A.: On mixed problem in thermos-elasticity of type III for Cosserat media. J. Taibah Univ. Sci. 16(1), 1264–1274 (2022)CrossRef
67.
go back to reference Abbas, I., Hobiny, A., Marin, M.: Photo-thermal interactions in a semi-conductor material with cylindrical cavities and variable thermal conductivity. J. Taibah Univ. Sci. 14(1), 1369–1376 (2020)CrossRef Abbas, I., Hobiny, A., Marin, M.: Photo-thermal interactions in a semi-conductor material with cylindrical cavities and variable thermal conductivity. J. Taibah Univ. Sci. 14(1), 1369–1376 (2020)CrossRef
72.
go back to reference Bratu, P., Nitu, M.C., Tonciu, O.: Effect of vibration transmission in the case of the vibratory roller compactor. Romanian J. Acoust. Vib. 20(1), 67–72 (2023) Bratu, P., Nitu, M.C., Tonciu, O.: Effect of vibration transmission in the case of the vibratory roller compactor. Romanian J. Acoust. Vib. 20(1), 67–72 (2023)
75.
go back to reference Bratu, P., Vlase, S., Dragan, N., Vasile, O., Itu, C., Nitu, M.C.: Modal analysis of the inertial platform of the laser ELI-NP facility in Magurele–Bucharest. Romanian J. Acoust. Vib. 19(2), 112–120 (2022) Bratu, P., Vlase, S., Dragan, N., Vasile, O., Itu, C., Nitu, M.C.: Modal analysis of the inertial platform of the laser ELI-NP facility in Magurele–Bucharest. Romanian J. Acoust. Vib. 19(2), 112–120 (2022)
76.
go back to reference Haug, E.J.: Extension of Maggi and Kane equations to holonomic dynamic systems. J. Comput. Nonlinear Dyn. 13(6), 121003 (2018)CrossRef Haug, E.J.: Extension of Maggi and Kane equations to holonomic dynamic systems. J. Comput. Nonlinear Dyn. 13(6), 121003 (2018)CrossRef
77.
go back to reference Noorani, M.R.S.: Hybrid dynamical model of a gait training robot using Maggi’s method for constrained motions. In: 6th RSI International Conference on Robotics and Mechatronics IcRoM, pp. 183–188 (2018) Noorani, M.R.S.: Hybrid dynamical model of a gait training robot using Maggi’s method for constrained motions. In: 6th RSI International Conference on Robotics and Mechatronics IcRoM, pp. 183–188 (2018)
78.
go back to reference Amengonu, Y.H., Kakad, Y.P.: Dynamics and control for constrained multibody systems modeled with Maggi’s equation: application to differential mobile robots Part II. In: Proceedings of the 27th International Conference on CADCAM, Robotics and Factories of the Future 2014, London, UK, 22–24 (July 2014) Amengonu, Y.H., Kakad, Y.P.: Dynamics and control for constrained multibody systems modeled with Maggi’s equation: application to differential mobile robots Part II. In: Proceedings of the 27th International Conference on CADCAM, Robotics and Factories of the Future 2014, London, UK, 22–24 (July 2014)
79.
go back to reference de Jalon, J.G., Callejo, A., Hidalgo, A.F.: Efficient solution of Maggi’s equations. J. Comput. Nonlinear Dyn. 7(2) (2012) de Jalon, J.G., Callejo, A., Hidalgo, A.F.: Efficient solution of Maggi’s equations. J. Comput. Nonlinear Dyn. 7(2) (2012)
80.
go back to reference Chen, Y.H.: Equations of motion of mechanical systems under servo constraints: the Maggi approach. Mechatronics 18(4), 208–217 (2008)CrossRef Chen, Y.H.: Equations of motion of mechanical systems under servo constraints: the Maggi approach. Mechatronics 18(4), 208–217 (2008)CrossRef
81.
82.
go back to reference Codarcea-Munteanu, L., Marin, M., Vlase, S.: The study of vibrations in the context of porous micropolar media thermoelasticity and the absence of energy dissipation. J. Comput. Appl. Mech. 54(3), 437–454 (2023) Codarcea-Munteanu, L., Marin, M., Vlase, S.: The study of vibrations in the context of porous micropolar media thermoelasticity and the absence of energy dissipation. J. Comput. Appl. Mech. 54(3), 437–454 (2023)
83.
go back to reference Marin, M., et al.: Some results on eigenvalue problems in the theory of piezoelectric porous dipolar bodies. Contin. Mech. Thermodyn. 35, 1969–1979 (2023)MathSciNetCrossRefADS Marin, M., et al.: Some results on eigenvalue problems in the theory of piezoelectric porous dipolar bodies. Contin. Mech. Thermodyn. 35, 1969–1979 (2023)MathSciNetCrossRefADS
84.
go back to reference Marin, M., Öchsner, A.: The effect of a dipolar structure on the Hölder stability in Green–Naghdi thermoelasticity. Contin. Mech. Thermodyn. 29, 1365–1374 (2017)MathSciNetCrossRefADS Marin, M., Öchsner, A.: The effect of a dipolar structure on the Hölder stability in Green–Naghdi thermoelasticity. Contin. Mech. Thermodyn. 29, 1365–1374 (2017)MathSciNetCrossRefADS
85.
go back to reference Ghavamian, A., Öchsner, A.: Numerical modeling of eigenmodes and eigenfrequencies of single- and multi-walled carbon nanotubes under the influence of atomic defects. Comput. Mater. Sci. 72, 42–48 (2013)CrossRef Ghavamian, A., Öchsner, A.: Numerical modeling of eigenmodes and eigenfrequencies of single- and multi-walled carbon nanotubes under the influence of atomic defects. Comput. Mater. Sci. 72, 42–48 (2013)CrossRef
86.
go back to reference Groza, G., Khan, S.M.A., Pop, N.: Approximate solutions of boundary value problems for ODEs using Newton interpolating series. Carpathian J. Math. 25(1), 73–81 (2009)MathSciNet Groza, G., Khan, S.M.A., Pop, N.: Approximate solutions of boundary value problems for ODEs using Newton interpolating series. Carpathian J. Math. 25(1), 73–81 (2009)MathSciNet
87.
go back to reference Groza, G., Pop, N.: A numerical method for solving of the boundary value problems for ordinary differential equations. Results Math. 53(3/4), 295–302 (2009)MathSciNetCrossRef Groza, G., Pop, N.: A numerical method for solving of the boundary value problems for ordinary differential equations. Results Math. 53(3/4), 295–302 (2009)MathSciNetCrossRef
88.
go back to reference Bhatti, M.M., Ellahi, R.: Numerical investigation of non-Darcian nanofluid flow across a stretchy elastic medium with velocity and thermal slips. Numer. Heat Transf. B: Fundam. 83(5), 323–343 (2023)CrossRefADS Bhatti, M.M., Ellahi, R.: Numerical investigation of non-Darcian nanofluid flow across a stretchy elastic medium with velocity and thermal slips. Numer. Heat Transf. B: Fundam. 83(5), 323–343 (2023)CrossRefADS
89.
go back to reference Bhatti, M.M., Oztop, H.F., Ellahi, R.: Study of the magnetized hybrid nanofluid flow through a flat elastic surface with applications in solar energy. Materials 15(12), 7507 (2022)CrossRefADS Bhatti, M.M., Oztop, H.F., Ellahi, R.: Study of the magnetized hybrid nanofluid flow through a flat elastic surface with applications in solar energy. Materials 15(12), 7507 (2022)CrossRefADS
Metadata
Title
Equivalent analytical formulation-based multibody elastic system analysis using one-dimensional finite elements
Authors
Sorin Vlase
Marin Marin
Andreas Öchsner
Omar El Moutea
Publication date
17-11-2023
Publisher
Springer Berlin Heidelberg
Published in
Continuum Mechanics and Thermodynamics / Issue 1/2024
Print ISSN: 0935-1175
Electronic ISSN: 1432-0959
DOI
https://doi.org/10.1007/s00161-023-01270-4

Other articles of this Issue 1/2024

Continuum Mechanics and Thermodynamics 1/2024 Go to the issue

Premium Partners