Skip to main content
Top
Published in: Journal of Inequalities and Applications 1/2015

Open Access 01-12-2015 | Research

Ergodicity of the implicit midpoint rule for nonexpansive mappings

Authors: Hong-Kun Xu, Maryam A Alghamdi, Naseer Shahzad

Published in: Journal of Inequalities and Applications | Issue 1/2015

Activate our intelligent search to find suitable subject content or patents.

search-config
download
DOWNLOAD
print
PRINT
insite
SEARCH
loading …

Abstract

We prove a mean ergodic theorem for the implicit midpoint rule for nonexpansivemappings in a Hilbert space. We obtain weak convergence for the general case andstrong convergence for certain special cases.
MSC: 47J25, 47N20, 34G20, 65J15.
Notes

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

All authors contributed equally to the writing of this paper. All authors read andapproved the final manuscript.

1 Introduction

The first mean ergodic theorem for nonlinear noncompact operators was proved byBaillon [1]. Let C be a closed convex subset of a Hilbert space Hand let https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-4/MediaObjects/13660_2014_1515_IEq1_HTML.gif be a nonexpansive mapping (i.e., https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-4/MediaObjects/13660_2014_1515_IEq2_HTML.gif for all https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-4/MediaObjects/13660_2014_1515_IEq3_HTML.gif ) with fixed points. Then, for each https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-4/MediaObjects/13660_2014_1515_IEq4_HTML.gif , the Cesàro means
https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-4/MediaObjects/13660_2014_1515_Equa_HTML.gif
converge weakly to a fixed point of T. This mean ergodic theorem wasextended by Bruck [2] to the setting of Banach spaces that are uniformly convex and have aFréchet differentiable norm. Baillon and Clement [3] also investigated ergodicity of the nonlinear Volterra integral equationsin Hilbert spaces.
It is quite natural to consider ergodic convergence of iterative algorithms in thecase where the sequences generated by the algorithms either are not guaranteed toconverge or not convergent at all. For instance, the double-backward method ofPassty [4] generates a sequence https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-4/MediaObjects/13660_2014_1515_IEq5_HTML.gif in the recursive manner:
https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-4/MediaObjects/13660_2014_1515_Equ1_HTML.gif
(1.1)
where A and B are maximal monotone operators in a Hilbert spacesuch that https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-4/MediaObjects/13660_2014_1515_IEq6_HTML.gif is also maximal monotone and the inclusion https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-4/MediaObjects/13660_2014_1515_IEq7_HTML.gif is solvable, and https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-4/MediaObjects/13660_2014_1515_IEq8_HTML.gif and https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-4/MediaObjects/13660_2014_1515_IEq9_HTML.gif are the resolvents of A and B,respectively, that is, https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-4/MediaObjects/13660_2014_1515_IEq10_HTML.gif and https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-4/MediaObjects/13660_2014_1515_IEq11_HTML.gif . It is well known [5] that the sequence https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-4/MediaObjects/13660_2014_1515_IEq5_HTML.gif generated by the double-backward method (1.1) failsto converge weakly, in general. However, Passty [4] showed that if the sequence of parameters, https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-4/MediaObjects/13660_2014_1515_IEq12_HTML.gif , is in https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-4/MediaObjects/13660_2014_1515_IEq13_HTML.gif , then the averages
https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-4/MediaObjects/13660_2014_1515_Equ2_HTML.gif
(1.2)
converge weakly to a solution to the inclusion https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-4/MediaObjects/13660_2014_1515_IEq7_HTML.gif .
The implicit midpoint rule (IMR) for nonexpansive mappings in a Hilbert spaceH, inspired by the IMR for ordinary differential equations [612], was introduced in [13]. This rule generates a sequence https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-4/MediaObjects/13660_2014_1515_IEq5_HTML.gif via the semi-implicit procedure:
https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-4/MediaObjects/13660_2014_1515_Equ3_HTML.gif
(1.3)
where the initial guess https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-4/MediaObjects/13660_2014_1515_IEq14_HTML.gif is arbitrarily chosen, https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-4/MediaObjects/13660_2014_1515_IEq15_HTML.gif for all n, and https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-4/MediaObjects/13660_2014_1515_IEq1_HTML.gif is a nonexpansive mapping with fixed points.
The IMR (1.3) is proved to converge weakly [13] in the Hilbert space setting provided the sequence https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-4/MediaObjects/13660_2014_1515_IEq16_HTML.gif satisfies the two conditions:
(C1) https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-4/MediaObjects/13660_2014_1515_IEq17_HTML.gif for all https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-4/MediaObjects/13660_2014_1515_IEq18_HTML.gif and some https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-4/MediaObjects/13660_2014_1515_IEq19_HTML.gif , and
(C2) https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-4/MediaObjects/13660_2014_1515_IEq20_HTML.gif .
However, this algorithm may fail to converge weakly without the assumption (C2). Wetherefore turn our attention to the ergodic convergence of the algorithm. We willshow that for any sequence https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-4/MediaObjects/13660_2014_1515_IEq16_HTML.gif in the interval https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-4/MediaObjects/13660_2014_1515_IEq21_HTML.gif , the mean averages https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-4/MediaObjects/13660_2014_1515_IEq22_HTML.gif as defined by (1.2) will always converge weakly to afixed point of T as long as https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-4/MediaObjects/13660_2014_1515_IEq5_HTML.gif is an approximate fixed point of T(i.e., https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-4/MediaObjects/13660_2014_1515_IEq23_HTML.gif ). We will also show that under certain additionalconditions the means https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-4/MediaObjects/13660_2014_1515_IEq24_HTML.gif can converge in norm to a fixed point of T.This paper is organized as follows. In the next section we introduce the concept ofnearest point projections and properties of nonexpansive mappings. The main resultsof this paper (i.e., weak and strong ergodicity of the IMR (1.3)) arepresented in Section 3.

2 Preliminaries

Let C be a nonempty closed convex subset of a Hilbert space H.Recall that the nearest point projection from H to C, https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-4/MediaObjects/13660_2014_1515_IEq25_HTML.gif , is defined by
https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-4/MediaObjects/13660_2014_1515_Equ4_HTML.gif
(2.1)
We need the following characterization of projections.
Lemma 2.1LetCbe a nonempty closed convex subset of a Hilbert spaceH. Given https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-4/MediaObjects/13660_2014_1515_IEq26_HTML.gif and https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-4/MediaObjects/13660_2014_1515_IEq27_HTML.gif , then https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-4/MediaObjects/13660_2014_1515_IEq28_HTML.gif if and only if any one of the following properties is satisfied:
(i)
https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-4/MediaObjects/13660_2014_1515_IEq29_HTML.gif for all https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-4/MediaObjects/13660_2014_1515_IEq30_HTML.gif ;
 
(ii)
https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-4/MediaObjects/13660_2014_1515_IEq31_HTML.gif for all https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-4/MediaObjects/13660_2014_1515_IEq30_HTML.gif ;
 
(iii)
https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-4/MediaObjects/13660_2014_1515_IEq32_HTML.gif for all https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-4/MediaObjects/13660_2014_1515_IEq30_HTML.gif .
 
Recall that a mapping https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-4/MediaObjects/13660_2014_1515_IEq1_HTML.gif is said to be nonexpansive if
https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-4/MediaObjects/13660_2014_1515_Equb_HTML.gif
A point https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-4/MediaObjects/13660_2014_1515_IEq4_HTML.gif such that https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-4/MediaObjects/13660_2014_1515_IEq33_HTML.gif is said to be a fixed point of T. The set ofall fixed points of T is denoted by https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-4/MediaObjects/13660_2014_1515_IEq34_HTML.gif , namely,
https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-4/MediaObjects/13660_2014_1515_Equc_HTML.gif
In the rest of this paper we always assume https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-4/MediaObjects/13660_2014_1515_IEq35_HTML.gif .
We need the demiclosedness principle of nonexpansive mappings as described below.
Lemma 2.2[14]
LetCbe a closed convex subset of a Hilbert spaceHand let https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-4/MediaObjects/13660_2014_1515_IEq36_HTML.gif be a nonexpansive mapping. Then the mapping https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-4/MediaObjects/13660_2014_1515_IEq37_HTML.gif is demiclosed in the sense that, for any sequence https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-4/MediaObjects/13660_2014_1515_IEq5_HTML.gif ofC, the following implication holds:
https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-4/MediaObjects/13660_2014_1515_Equd_HTML.gif
Next we need the following lemma (not hard to prove).
Lemma 2.3[15]
For each integer https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-4/MediaObjects/13660_2014_1515_IEq38_HTML.gif , https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-4/MediaObjects/13660_2014_1515_IEq39_HTML.gif such that https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-4/MediaObjects/13660_2014_1515_IEq40_HTML.gif , points https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-4/MediaObjects/13660_2014_1515_IEq41_HTML.gif , and any nonexpansive mapping https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-4/MediaObjects/13660_2014_1515_IEq1_HTML.gif , we have
https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-4/MediaObjects/13660_2014_1515_Equ5_HTML.gif
(2.2)
Recall also that the implicit midpoint rule (IMR) [13] generates a sequence https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-4/MediaObjects/13660_2014_1515_IEq5_HTML.gif by the recursion process
https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-4/MediaObjects/13660_2014_1515_Equ6_HTML.gif
(2.3)
where https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-4/MediaObjects/13660_2014_1515_IEq42_HTML.gif for all n, and https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-4/MediaObjects/13660_2014_1515_IEq1_HTML.gif is a nonexpansive mapping.
The following properties of the IMR (2.3) are proved in [13].
Lemma 2.4Let https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-4/MediaObjects/13660_2014_1515_IEq16_HTML.gif be any sequence in https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-4/MediaObjects/13660_2014_1515_IEq21_HTML.gif and let https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-4/MediaObjects/13660_2014_1515_IEq5_HTML.gif be the sequence generated by the IMR (2.3). Then
(i)
https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-4/MediaObjects/13660_2014_1515_IEq43_HTML.gif for all https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-4/MediaObjects/13660_2014_1515_IEq18_HTML.gif and https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-4/MediaObjects/13660_2014_1515_IEq44_HTML.gif . In particular, https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-4/MediaObjects/13660_2014_1515_IEq5_HTML.gif is bounded, and moreover, we have
https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-4/MediaObjects/13660_2014_1515_Equ7_HTML.gif
(2.4)
 
(ii)
https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-4/MediaObjects/13660_2014_1515_IEq45_HTML.gif .
 
(iii)
https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-4/MediaObjects/13660_2014_1515_IEq46_HTML.gif .
 
The convergence of the IMR (2.3) is proved in [13].
Theorem 2.5LetCbe a nonempty closed convex subset of a Hilbert spaceHand https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-4/MediaObjects/13660_2014_1515_IEq1_HTML.gif be a nonexpansive mapping with https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-4/MediaObjects/13660_2014_1515_IEq35_HTML.gif . Assume https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-4/MediaObjects/13660_2014_1515_IEq5_HTML.gif is generated by the IMR (2.3) where the sequence https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-4/MediaObjects/13660_2014_1515_IEq16_HTML.gif of parameters satisfies the conditions (C1) and (C2) in theIntroduction. Then https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-4/MediaObjects/13660_2014_1515_IEq5_HTML.gif converges weakly to a fixed point ofT.

3 Ergodicity

In this section we discuss the ergodic convergence of the sequence https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-4/MediaObjects/13660_2014_1515_IEq47_HTML.gif generated by the IMR (2.3), that is, the convergenceof the means
https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-4/MediaObjects/13660_2014_1515_Equ8_HTML.gif
(3.1)
where https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-4/MediaObjects/13660_2014_1515_IEq48_HTML.gif is a sequence of positive numbers such that
https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-4/MediaObjects/13660_2014_1515_Equ9_HTML.gif
(3.2)
Set https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-4/MediaObjects/13660_2014_1515_IEq49_HTML.gif and let https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-4/MediaObjects/13660_2014_1515_IEq50_HTML.gif be the nearest point projection from H toF.
Lemma 3.1The sequence https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-4/MediaObjects/13660_2014_1515_IEq51_HTML.gif is convergent in norm.
Proof First observe that
https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-4/MediaObjects/13660_2014_1515_Equ10_HTML.gif
(3.3)
As a matter of fact, we get for https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-4/MediaObjects/13660_2014_1515_IEq52_HTML.gif , by Lemma 2.1(i) and Lemma 2.4(i),
https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-4/MediaObjects/13660_2014_1515_Eque_HTML.gif
That is, https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-4/MediaObjects/13660_2014_1515_IEq53_HTML.gif is decreasing and (3.3) is proven.
Applying the inequality (Lemma 2.1(iii))
https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-4/MediaObjects/13660_2014_1515_Equ11_HTML.gif
(3.4)
to the case where https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-4/MediaObjects/13660_2014_1515_IEq54_HTML.gif and https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-4/MediaObjects/13660_2014_1515_IEq55_HTML.gif (with https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-4/MediaObjects/13660_2014_1515_IEq52_HTML.gif ) together with Lemma 2.4(i), we get
https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-4/MediaObjects/13660_2014_1515_Equf_HTML.gif
The strong convergence of https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-4/MediaObjects/13660_2014_1515_IEq51_HTML.gif follows immediately from the fact(3.3). □
Remark 3.2 The limit of https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-4/MediaObjects/13660_2014_1515_IEq51_HTML.gif , which we denote by https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-4/MediaObjects/13660_2014_1515_IEq56_HTML.gif , can also be identified as the asymptotic center ofthe sequence https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-4/MediaObjects/13660_2014_1515_IEq5_HTML.gif with respect to the fixed point set F ofT. In other words,
https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-4/MediaObjects/13660_2014_1515_Equ12_HTML.gif
(3.5)
As a matter of fact, by (3.4) we get, for any https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-4/MediaObjects/13660_2014_1515_IEq57_HTML.gif ,
https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-4/MediaObjects/13660_2014_1515_Equg_HTML.gif
Upon taking limsup we immediately obtain
https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-4/MediaObjects/13660_2014_1515_Equh_HTML.gif
Hence, (3.5) holds.
Theorem 3.3LetCbe a closed convex subset of a Hilbert spaceHand let https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-4/MediaObjects/13660_2014_1515_IEq1_HTML.gif be a nonexpansive mapping such that https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-4/MediaObjects/13660_2014_1515_IEq58_HTML.gif . Assume https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-4/MediaObjects/13660_2014_1515_IEq16_HTML.gif is any sequence of positive numbers in the unit interval https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-4/MediaObjects/13660_2014_1515_IEq21_HTML.gif and let https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-4/MediaObjects/13660_2014_1515_IEq5_HTML.gif be the sequence generated by the IMR (2.3). Define the means https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-4/MediaObjects/13660_2014_1515_IEq22_HTML.gif by (3.1), where the weights https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-4/MediaObjects/13660_2014_1515_IEq48_HTML.gif are all positive and satisfy the condition (3.2). Assume, inaddition, https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-4/MediaObjects/13660_2014_1515_IEq59_HTML.gif . Then https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-4/MediaObjects/13660_2014_1515_IEq22_HTML.gif converges weakly to a pointz, where https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-4/MediaObjects/13660_2014_1515_IEq60_HTML.gif (in norm).
Proof Let https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-4/MediaObjects/13660_2014_1515_IEq60_HTML.gif which is well defined by Lemma 3.1. ByLemma 2.1(ii), we have, for each k,
https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-4/MediaObjects/13660_2014_1515_Equi_HTML.gif
It turns out that, for https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-4/MediaObjects/13660_2014_1515_IEq61_HTML.gif ,
https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-4/MediaObjects/13660_2014_1515_Equj_HTML.gif
(Here M is a constant such that https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-4/MediaObjects/13660_2014_1515_IEq62_HTML.gif for all k.)
By multiplying by https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-4/MediaObjects/13660_2014_1515_IEq63_HTML.gif and then summing up from https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-4/MediaObjects/13660_2014_1515_IEq64_HTML.gif to n, we conclude
https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-4/MediaObjects/13660_2014_1515_Equ13_HTML.gif
(3.6)
We now claim that
https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-4/MediaObjects/13660_2014_1515_Equ14_HTML.gif
(3.7)
Consequently, by Lemma 2.2, each weak cluster point of https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-4/MediaObjects/13660_2014_1515_IEq22_HTML.gif falls in F.
To see (3.7), we will prove that
https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-4/MediaObjects/13660_2014_1515_Equ15_HTML.gif
(3.8)
for all n big enough, where https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-4/MediaObjects/13660_2014_1515_IEq65_HTML.gif as https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-4/MediaObjects/13660_2014_1515_IEq66_HTML.gif . For the sake of simplicity, we may, due to theassumption https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-4/MediaObjects/13660_2014_1515_IEq59_HTML.gif , assume that
https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-4/MediaObjects/13660_2014_1515_Equ16_HTML.gif
(3.9)
for all n.
Let https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-4/MediaObjects/13660_2014_1515_IEq67_HTML.gif for https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-4/MediaObjects/13660_2014_1515_IEq68_HTML.gif and let M be a constant such that https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-4/MediaObjects/13660_2014_1515_IEq69_HTML.gif . For each n, we put https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-4/MediaObjects/13660_2014_1515_IEq70_HTML.gif for https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-4/MediaObjects/13660_2014_1515_IEq71_HTML.gif and apply (2.2) to get
https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-4/MediaObjects/13660_2014_1515_Equ17_HTML.gif
(3.10)
Combining (3.9) and (3.10), we derive that
https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-4/MediaObjects/13660_2014_1515_Equ18_HTML.gif
(3.11)
It turns out that (3.8) with https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-4/MediaObjects/13660_2014_1515_IEq72_HTML.gif .
Now since https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-4/MediaObjects/13660_2014_1515_IEq73_HTML.gif in norm, we see that the means https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-4/MediaObjects/13660_2014_1515_IEq74_HTML.gif in norm, as well. Consequently, if https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-4/MediaObjects/13660_2014_1515_IEq75_HTML.gif is a subsequence weakly converging to some point https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-4/MediaObjects/13660_2014_1515_IEq76_HTML.gif , it follows from (3.6) that
https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-4/MediaObjects/13660_2014_1515_Equ19_HTML.gif
(3.12)
This together with the fact that https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-4/MediaObjects/13660_2014_1515_IEq77_HTML.gif implies that https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-4/MediaObjects/13660_2014_1515_IEq78_HTML.gif . That is, z is the only weak cluster pointof the sequence https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-4/MediaObjects/13660_2014_1515_IEq22_HTML.gif and therefore, we must have https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-4/MediaObjects/13660_2014_1515_IEq79_HTML.gif weakly. □
Remark 3.4 In Theorem 3.3 we assumed that https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-4/MediaObjects/13660_2014_1515_IEq80_HTML.gif . This assumption is guaranteed if the sequence https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-4/MediaObjects/13660_2014_1515_IEq16_HTML.gif satisfies the condition (C2) in the Introduction,that is, https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-4/MediaObjects/13660_2014_1515_IEq20_HTML.gif . Indeed, by (C2) and Lemma 2.4(ii), we find
https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-4/MediaObjects/13660_2014_1515_Equ20_HTML.gif
(3.13)
Since the definition of IMR (2.3) yields
https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-4/MediaObjects/13660_2014_1515_Equk_HTML.gif
we also have
https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-4/MediaObjects/13660_2014_1515_Equ21_HTML.gif
(3.14)
Combining (3.13) and (3.14), we infer that
https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-4/MediaObjects/13660_2014_1515_Equl_HTML.gif
Remark 3.5 If we assume (3.9) holds for all https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-4/MediaObjects/13660_2014_1515_IEq81_HTML.gif , then we need some more delicate technicalitiesdealing with (3.10). We may proceed as follows. Decompose https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-4/MediaObjects/13660_2014_1515_IEq82_HTML.gif (for https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-4/MediaObjects/13660_2014_1515_IEq81_HTML.gif ) as
https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-4/MediaObjects/13660_2014_1515_Equm_HTML.gif
where
https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-4/MediaObjects/13660_2014_1515_Equn_HTML.gif
As https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-4/MediaObjects/13660_2014_1515_IEq83_HTML.gif , we may assume https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-4/MediaObjects/13660_2014_1515_IEq84_HTML.gif . Repeating the argument for (3.10) and (3.11), we get
https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-4/MediaObjects/13660_2014_1515_Equo_HTML.gif
Let https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-4/MediaObjects/13660_2014_1515_IEq85_HTML.gif . We finally obtain, for https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-4/MediaObjects/13660_2014_1515_IEq81_HTML.gif ,
https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-4/MediaObjects/13660_2014_1515_Equp_HTML.gif
Next we show that in some circumstances, the sequence https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-4/MediaObjects/13660_2014_1515_IEq22_HTML.gif can converge strongly.
Theorem 3.6Let the assumptions of Theorem 3.3 holds. Then thesequence https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-4/MediaObjects/13660_2014_1515_IEq22_HTML.gif converges in norm to the point https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-4/MediaObjects/13660_2014_1515_IEq60_HTML.gif if, in addition, any one of the following conditions issatisfied:
(i)
The fixed point setFofThas nonempty interior.
 
(ii)
Tis a contraction, that is,
https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-4/MediaObjects/13660_2014_1515_Equq_HTML.gif
 
where https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-4/MediaObjects/13660_2014_1515_IEq86_HTML.gif is a constant. In this case, the sequence https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-4/MediaObjects/13660_2014_1515_IEq5_HTML.gif generated by the IMR (2.3) converges in norm to the unique fixed pointofT.
(iii)
Tis compact, namely, Tmaps bounded sets to relatively norm-compact sets.
 
Proof (i) By assumption, we have https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-4/MediaObjects/13660_2014_1515_IEq87_HTML.gif and https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-4/MediaObjects/13660_2014_1515_IEq88_HTML.gif such that
  • https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-4/MediaObjects/13660_2014_1515_IEq89_HTML.gif for all https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-4/MediaObjects/13660_2014_1515_IEq90_HTML.gif such that https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-4/MediaObjects/13660_2014_1515_IEq91_HTML.gif .
Therefore, upon substituting https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-4/MediaObjects/13660_2014_1515_IEq92_HTML.gif for u in (3.6) we obtain
https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-4/MediaObjects/13660_2014_1515_Equ22_HTML.gif
(3.15)
for all https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-4/MediaObjects/13660_2014_1515_IEq90_HTML.gif such that https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-4/MediaObjects/13660_2014_1515_IEq91_HTML.gif .
Taking the supremum in (3.15) over https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-4/MediaObjects/13660_2014_1515_IEq90_HTML.gif such that https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-4/MediaObjects/13660_2014_1515_IEq91_HTML.gif immediately yields
https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-4/MediaObjects/13660_2014_1515_Equr_HTML.gif
This verifies that https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-4/MediaObjects/13660_2014_1515_IEq79_HTML.gif in norm.
(ii)
Since T is a contraction, T has a unique fixed point which is denoted by p. By (2.3) we deduce that (noticing https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-4/MediaObjects/13660_2014_1515_IEq43_HTML.gif )
https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-4/MediaObjects/13660_2014_1515_Equs_HTML.gif
 
It turns out that
https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-4/MediaObjects/13660_2014_1515_Equt_HTML.gif
and hence
https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-4/MediaObjects/13660_2014_1515_Equu_HTML.gif
Since https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-4/MediaObjects/13660_2014_1515_IEq93_HTML.gif , we must have https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-4/MediaObjects/13660_2014_1515_IEq94_HTML.gif . However, since the sequence https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-4/MediaObjects/13660_2014_1515_IEq95_HTML.gif is decreasing, we must have https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-4/MediaObjects/13660_2014_1515_IEq96_HTML.gif . Namely, https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-4/MediaObjects/13660_2014_1515_IEq97_HTML.gif in norm, and so https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-4/MediaObjects/13660_2014_1515_IEq98_HTML.gif in norm.
(iii)
Since T is compact and since https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-4/MediaObjects/13660_2014_1515_IEq22_HTML.gif is weakly convergent, https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-4/MediaObjects/13660_2014_1515_IEq99_HTML.gif is relatively norm-compact. This together with (3.7) evidently implies that https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-4/MediaObjects/13660_2014_1515_IEq22_HTML.gif is relatively norm-compact. Therefore, https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-4/MediaObjects/13660_2014_1515_IEq22_HTML.gif must converge in norm to https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-4/MediaObjects/13660_2014_1515_IEq60_HTML.gif . □
 

Acknowledgements

The authors are grateful to the anonymous referees for their helpful comments andsuggestions, which improved the presentation of this manuscript. This projectwas funded by the Deanship of Scientific Research (DSR), King AbdulazizUniversity, under grant No. (49-130-35-HiCi). The authors, therefore,acknowledge technical and financial support of KAU.
Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://​creativecommons.​org/​licenses/​by/​4.​0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

All authors contributed equally to the writing of this paper. All authors read andapproved the final manuscript.
Literature
1.
go back to reference Baillon J-B: Un théorème de type ergodique pour les contractions nonlinéaires dans un espace de Hilbert.C. R. Acad. Sci. Paris Sér. A-B 1975,280(22):A1511-A1514. (in French)MATH Baillon J-B: Un théorème de type ergodique pour les contractions nonlinéaires dans un espace de Hilbert.C. R. Acad. Sci. Paris Sér. A-B 1975,280(22):A1511-A1514. (in French)MATH
2.
go back to reference Bruck RE: A simple proof of the mean ergodic theorem for nonlinear contractions inBanach spaces.Isr. J. Math. 1979,32(2–3):107–116. 10.1007/BF02764907CrossRefMATH Bruck RE: A simple proof of the mean ergodic theorem for nonlinear contractions inBanach spaces.Isr. J. Math. 1979,32(2–3):107–116. 10.1007/BF02764907CrossRefMATH
3.
go back to reference Baillon J-B, Clement P: Ergodic theorems for nonlinear Volterra equations in Hilbert space.Nonlinear Anal. 1981,5(7):789–801. 10.1016/0362-546X(81)90053-5MathSciNetCrossRefMATH Baillon J-B, Clement P: Ergodic theorems for nonlinear Volterra equations in Hilbert space.Nonlinear Anal. 1981,5(7):789–801. 10.1016/0362-546X(81)90053-5MathSciNetCrossRefMATH
4.
go back to reference Passty GB: Ergodic convergence to a zero of the sum of monotone operators in Hilbertspaces.J. Math. Anal. Appl. 1979, 72:383–390. 10.1016/0022-247X(79)90234-8MathSciNetCrossRefMATH Passty GB: Ergodic convergence to a zero of the sum of monotone operators in Hilbertspaces.J. Math. Anal. Appl. 1979, 72:383–390. 10.1016/0022-247X(79)90234-8MathSciNetCrossRefMATH
5.
go back to reference Lions PL, Mercier B: Splitting algorithms for the sum of two nonlinear operators.SIAM J. Numer. Anal. 1979, 16:964–979. 10.1137/0716071MathSciNetCrossRefMATH Lions PL, Mercier B: Splitting algorithms for the sum of two nonlinear operators.SIAM J. Numer. Anal. 1979, 16:964–979. 10.1137/0716071MathSciNetCrossRefMATH
6.
go back to reference Auzinger W, Frank R: Asymptotic error expansions for stiff equations: an analysis for the implicitmidpoint and trapezoidal rules in the strongly stiff case.Numer. Math. 1989, 56:469–499. 10.1007/BF01396649MathSciNetCrossRefMATH Auzinger W, Frank R: Asymptotic error expansions for stiff equations: an analysis for the implicitmidpoint and trapezoidal rules in the strongly stiff case.Numer. Math. 1989, 56:469–499. 10.1007/BF01396649MathSciNetCrossRefMATH
7.
go back to reference Bader G, Deuflhard P: A semi-implicit mid-point rule for stiff systems of ordinary differentialequations.Numer. Math. 1983, 41:373–398. 10.1007/BF01418331MathSciNetCrossRefMATH Bader G, Deuflhard P: A semi-implicit mid-point rule for stiff systems of ordinary differentialequations.Numer. Math. 1983, 41:373–398. 10.1007/BF01418331MathSciNetCrossRefMATH
8.
go back to reference Deuflhard P: Recent progress in extrapolation methods for ordinary differentialequations.SIAM Rev. 1985,27(4):505–535. 10.1137/1027140MathSciNetCrossRefMATH Deuflhard P: Recent progress in extrapolation methods for ordinary differentialequations.SIAM Rev. 1985,27(4):505–535. 10.1137/1027140MathSciNetCrossRefMATH
9.
go back to reference Edith, E: Numerical and approximative methods in some mathematical models.Ph.D. thesis, Babes-Bolyai University of Cluj-Napoca (2006) Edith, E: Numerical and approximative methods in some mathematical models.Ph.D. thesis, Babes-Bolyai University of Cluj-Napoca (2006)
10.
go back to reference Schneider C: Analysis of the linearly implicit mid-point rule for differential-algebraequations.Electron. Trans. Numer. Anal. 1993, 1:1–10.MathSciNetMATH Schneider C: Analysis of the linearly implicit mid-point rule for differential-algebraequations.Electron. Trans. Numer. Anal. 1993, 1:1–10.MathSciNetMATH
11.
go back to reference Somalia S: Implicit midpoint rule to the nonlinear degenerate boundary valueproblems.Int. J. Comput. Math. 2002,79(3):327–332. 10.1080/00207160211930MathSciNetCrossRef Somalia S: Implicit midpoint rule to the nonlinear degenerate boundary valueproblems.Int. J. Comput. Math. 2002,79(3):327–332. 10.1080/00207160211930MathSciNetCrossRef
12.
go back to reference Somalia S, Davulcua S: Implicit midpoint rule and extrapolation to singularly perturbed boundaryvalue problems.Int. J. Comput. Math. 2000,75(1):117–127. 10.1080/00207160008804969MathSciNetCrossRef Somalia S, Davulcua S: Implicit midpoint rule and extrapolation to singularly perturbed boundaryvalue problems.Int. J. Comput. Math. 2000,75(1):117–127. 10.1080/00207160008804969MathSciNetCrossRef
13.
go back to reference Alghamdi MA, Alghamdi MA, Shahzad N, Xu HK: The implicit midpoint rule for nonexpansive mappings.Fixed Point Theory Appl. 2014., 2014: Article ID 96 Alghamdi MA, Alghamdi MA, Shahzad N, Xu HK: The implicit midpoint rule for nonexpansive mappings.Fixed Point Theory Appl. 2014., 2014: Article ID 96
14.
go back to reference Goebel K, Kirk WA Cambridge Studies in Advanced Mathematics 28. In Topics in Metric Fixed Point Theory. Cambridge University Press, Cambridge; 1990.CrossRef Goebel K, Kirk WA Cambridge Studies in Advanced Mathematics 28. In Topics in Metric Fixed Point Theory. Cambridge University Press, Cambridge; 1990.CrossRef
15.
go back to reference Zarantonello EH: Projections on convex sets in Hilbert space and spectral theory. In Contributions to Nonlinear Functional Analysis. Edited by: Zarantonello EH. Academic Press, New York; 1971:237–424.CrossRef Zarantonello EH: Projections on convex sets in Hilbert space and spectral theory. In Contributions to Nonlinear Functional Analysis. Edited by: Zarantonello EH. Academic Press, New York; 1971:237–424.CrossRef
Metadata
Title
Ergodicity of the implicit midpoint rule for nonexpansive mappings
Authors
Hong-Kun Xu
Maryam A Alghamdi
Naseer Shahzad
Publication date
01-12-2015
Publisher
Springer International Publishing
Published in
Journal of Inequalities and Applications / Issue 1/2015
Electronic ISSN: 1029-242X
DOI
https://doi.org/10.1186/1029-242X-2015-4

Other articles of this Issue 1/2015

Journal of Inequalities and Applications 1/2015 Go to the issue

Premium Partner