Skip to main content
Top
Published in: Wireless Personal Communications 2/2021

02-01-2021

Error Analysis of Grouped Multilevel Space-Time Trellis Coding with the Combined Application of Massive MIMO and Cognitive Radio

Authors: Shakti Raj Chopra, Akhil Gupta

Published in: Wireless Personal Communications | Issue 2/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In today’s scenario, demand for error-correcting codes with minimal error constraints for wireless communications. Multilevel coding scheme with trellis codes as component codes provides flexible data transmission rates, coding gain, diversity gain with improved spectral efficiency and low decoding complexity. This paper investigates the potential improvements by using the Multilevel coding scheme with massive Multiple-Input Multiple-Output in Cognitive Radio Networks with trellis codes as component codes. This paper discussed space-time coding with beamforming and antenna grouping according to the channel state information. Multilevel Space-time coding is based on multi-level Quadrature Amplitude Modulation signaling and beamforming to mitigate the effect of primary users for the enactment of secondary users in Cognitive Radio. The primary users provide channels dynamically to the secondary user for an unknown duration. Our transmission use Quadrature Amplitude Modulation based signals, with an adaptive grouping of antenna which weight according to the optimization, which inherently depends upon the resource allocation of the secondary user. The results show that the proposed coded system achieves Bit error rate/Symbol error rate/Frame error rate and Signal to noise ratio varies according to sources sensing time.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Imai, H., & Hirakawa, S. (1977). A new multilevel coding method using error-correcting codes. IEEE Transactions on Information Theory, 23(3), 371–377.CrossRef Imai, H., & Hirakawa, S. (1977). A new multilevel coding method using error-correcting codes. IEEE Transactions on Information Theory, 23(3), 371–377.CrossRef
2.
go back to reference Ungerboeck, G. (1982). Channel coding with multilevel/phase signals. IEEE Transactions on Information Theory, 28(1), 55–67.MathSciNetCrossRef Ungerboeck, G. (1982). Channel coding with multilevel/phase signals. IEEE Transactions on Information Theory, 28(1), 55–67.MathSciNetCrossRef
3.
go back to reference Sklar, B., & Harris, F. J. (1988). Digital communications: fundamentals and applications (Vol. 2001). Englewood Cliffs, NJ: Prentice-hall.MATH Sklar, B., & Harris, F. J. (1988). Digital communications: fundamentals and applications (Vol. 2001). Englewood Cliffs, NJ: Prentice-hall.MATH
4.
go back to reference Cheng, J.-F, Chuang, C.-H, & Lee, L.-S. (1993). Complexity-reduced multilevel coding with rate-compatible punctured convolutional codes. In Proceedings of GLOBECOM’93. IEEE Global Telecommunications Conference, pp. 814–818. IEEE. Cheng, J.-F, Chuang, C.-H, & Lee, L.-S. (1993). Complexity-reduced multilevel coding with rate-compatible punctured convolutional codes. In Proceedings of GLOBECOM’93. IEEE Global Telecommunications Conference, pp. 814–818. IEEE.
5.
go back to reference Kofman, Y., Zehavi, E., & Shamai, S. (1994). Performance analysis of a multilevel coded modulation system. IEEE Transactions on Communications, 42(234), 299–312.CrossRef Kofman, Y., Zehavi, E., & Shamai, S. (1994). Performance analysis of a multilevel coded modulation system. IEEE Transactions on Communications, 42(234), 299–312.CrossRef
6.
go back to reference Morelos-Zaragoza, R. H., & Imai, H. (1998). Binary multilevel convolutional codes with unequal error protection capabilities. IEEE Transactions on Communications, 46(7), 850–853.CrossRef Morelos-Zaragoza, R. H., & Imai, H. (1998). Binary multilevel convolutional codes with unequal error protection capabilities. IEEE Transactions on Communications, 46(7), 850–853.CrossRef
7.
go back to reference Isaka, M., & Imai, H. (2001). On the iterative decoding of multilevel codes. IEEE Journal on Selected Areas in Communications, 19(5), 935–943.CrossRef Isaka, M., & Imai, H. (2001). On the iterative decoding of multilevel codes. IEEE Journal on Selected Areas in Communications, 19(5), 935–943.CrossRef
8.
go back to reference Djordjevic, I. B., Vasic, B., & Neifeld, M. A. (2006). Multilevel coding in free-space optical MIMO transmission with Q-are PPM over the atmospheric turbulence channel. IEEE Photonics Technology Letters, 18(14), 1491–1493.CrossRef Djordjevic, I. B., Vasic, B., & Neifeld, M. A. (2006). Multilevel coding in free-space optical MIMO transmission with Q-are PPM over the atmospheric turbulence channel. IEEE Photonics Technology Letters, 18(14), 1491–1493.CrossRef
9.
go back to reference Kumar, V., & Ram Singla, C. (2014). Space-time block code analysis for MIMO-OFDM system. Space, 100(2), 1–7. Kumar, V., & Ram Singla, C. (2014). Space-time block code analysis for MIMO-OFDM system. Space, 100(2), 1–7.
10.
go back to reference Avendi, M. R., & Jafarkhani, H. (2015). Differential distributed space-time coding with imperfect synchronization in frequency-selective channels. IEEE Transactions on Wireless Communications, 14(4), 1811–1822.CrossRef Avendi, M. R., & Jafarkhani, H. (2015). Differential distributed space-time coding with imperfect synchronization in frequency-selective channels. IEEE Transactions on Wireless Communications, 14(4), 1811–1822.CrossRef
11.
go back to reference Ozcelikkale, A., & Duman, T. M. (2014). Short length trellis-based codes for gaussian multiple-access channels. IEEE Signal Processing Letters, 21(10), 1177–1181.CrossRef Ozcelikkale, A., & Duman, T. M. (2014). Short length trellis-based codes for gaussian multiple-access channels. IEEE Signal Processing Letters, 21(10), 1177–1181.CrossRef
12.
go back to reference Jafarkhani, H., & NambiSeshadri. (2003). Super-orthogonal STCs. IEEE Transactions on Information Theory, 49(4), 937–950.MathSciNetCrossRef Jafarkhani, H., & NambiSeshadri. (2003). Super-orthogonal STCs. IEEE Transactions on Information Theory, 49(4), 937–950.MathSciNetCrossRef
13.
go back to reference Jafarkhani, H., & NavidHassanpour. (2005). Super-quasi-orthogonal STCs for four transmit antennas. IEEE Transactions on Wireless Communications, 4(1), 215–227.CrossRef Jafarkhani, H., & NavidHassanpour. (2005). Super-quasi-orthogonal STCs for four transmit antennas. IEEE Transactions on Wireless Communications, 4(1), 215–227.CrossRef
14.
go back to reference Jain, D., & Sharma, S. (2014). Adaptive generator sequence selection in multilevel STCs. Wireless Personal Communications, 75(4), 1851–1862.CrossRef Jain, D., & Sharma, S. (2014). Adaptive generator sequence selection in multilevel STCs. Wireless Personal Communications, 75(4), 1851–1862.CrossRef
15.
go back to reference Jain, D., & Sharma, S. (2015). Weighted adaptively grouped multilevel STCs. International Journal of Electronics, 102(5), 886–896.CrossRef Jain, D., & Sharma, S. (2015). Weighted adaptively grouped multilevel STCs. International Journal of Electronics, 102(5), 886–896.CrossRef
16.
go back to reference Tarokh, V., Naguib, A., Seshadri, N., & Calderbank, A. R. (May 1999). Combined array processing and space-time coding. IEEE Transactions on Information Theory, 45(4), 1121–1128.MathSciNetCrossRef Tarokh, V., Naguib, A., Seshadri, N., & Calderbank, A. R. (May 1999). Combined array processing and space-time coding. IEEE Transactions on Information Theory, 45(4), 1121–1128.MathSciNetCrossRef
17.
go back to reference Mavares, D., & Torres, R. P (2006). Space-time code selection for transmits antenna diversity systems. In Proceedings of the First Mobile Computing and Wireless Communication International Conference, pp. 83–87. Mavares, D., & Torres, R. P (2006). Space-time code selection for transmits antenna diversity systems. In Proceedings of the First Mobile Computing and Wireless Communication International Conference, pp. 83–87.
18.
go back to reference Liu, L., & Jafarkhani, H. (2006). STCs based on channel-phase feedback. IEEE Transactions on Communications, 54, 2186–2198.CrossRef Liu, L., & Jafarkhani, H. (2006). STCs based on channel-phase feedback. IEEE Transactions on Communications, 54, 2186–2198.CrossRef
19.
go back to reference Huang, Y., Xu, D., & Yang, L. (2006). Adaptive antenna grouping for space-time block coding and spatial multiplexing hybrid system. In Proceedings of the First Mobile Computing and Wireless Communication International Conference (MCWC 2006), pp. 88–92. Huang, Y., Xu, D., & Yang, L. (2006). Adaptive antenna grouping for space-time block coding and spatial multiplexing hybrid system. In Proceedings of the First Mobile Computing and Wireless Communication International Conference (MCWC 2006), pp. 88–92.
21.
go back to reference Wong, W. H., & Larsson, E. G. (2003). Orthogonal space-time block coding with antenna selection and power allocation. Electronics Letters, 39(4), 379–381.CrossRef Wong, W. H., & Larsson, E. G. (2003). Orthogonal space-time block coding with antenna selection and power allocation. Electronics Letters, 39(4), 379–381.CrossRef
22.
go back to reference Tao, M., Li, Q., & Garg, H. K. (2007). Extended space-time block coding with transmit antenna selection over correlated fading channels. IEEE Transactions on Wireless Communications, 6(9), 3137–3141.CrossRef Tao, M., Li, Q., & Garg, H. K. (2007). Extended space-time block coding with transmit antenna selection over correlated fading channels. IEEE Transactions on Wireless Communications, 6(9), 3137–3141.CrossRef
23.
go back to reference Chen, Z., Vucetic, B., & Yuan, J. (2003). STCs with transmit antenna selection. Electronics Letters, 39(11), 854–855.CrossRef Chen, Z., Vucetic, B., & Yuan, J. (2003). STCs with transmit antenna selection. Electronics Letters, 39(11), 854–855.CrossRef
24.
go back to reference Narasimhan, R. (2003). Spatial multiplexing with transmits antenna and constellation selection for correlated MIMO fading channels. IEEE Transactions on Signal Processing, 51(11), 2829–2838.CrossRef Narasimhan, R. (2003). Spatial multiplexing with transmits antenna and constellation selection for correlated MIMO fading channels. IEEE Transactions on Signal Processing, 51(11), 2829–2838.CrossRef
25.
go back to reference MarjanBaghaie, A., Martin, P. A., & Taylor, D. P. (2010). Grouped multilevel STCs. IEEE Communications Letters, 14(3), 232–234.CrossRef MarjanBaghaie, A., Martin, P. A., & Taylor, D. P. (2010). Grouped multilevel STCs. IEEE Communications Letters, 14(3), 232–234.CrossRef
26.
go back to reference Akyildiz, I. F., Lee, W.-Y., Vuran, M. C., & Mohanty, S. (2006). Next generation/dynamic spectrum access/cognitive radio wireless networks: A survey. Computer Networks, 50(13), 2127–2159.CrossRef Akyildiz, I. F., Lee, W.-Y., Vuran, M. C., & Mohanty, S. (2006). Next generation/dynamic spectrum access/cognitive radio wireless networks: A survey. Computer Networks, 50(13), 2127–2159.CrossRef
27.
go back to reference Zhao, Q., & Swami, A. (Aug. 2007). A decision-theoretic framework for opportunistic spectrum access. IEEE Transations Wireless Communications., 14(4), 14–20.CrossRef Zhao, Q., & Swami, A. (Aug. 2007). A decision-theoretic framework for opportunistic spectrum access. IEEE Transations Wireless Communications., 14(4), 14–20.CrossRef
28.
go back to reference Haykin, S. (Feb. 2005). Cognitive radio: Brain-empowered wireless communications. IEEE Journal on Selected Areas in Communications, 23(2), 201–220.CrossRef Haykin, S. (Feb. 2005). Cognitive radio: Brain-empowered wireless communications. IEEE Journal on Selected Areas in Communications, 23(2), 201–220.CrossRef
29.
go back to reference Mitola, J., & Maguire, G. Q. (Aug. 1999). Cognitive radio: Making software radios more personal. IEEE Personal Communications, 6(4), 13–18.CrossRef Mitola, J., & Maguire, G. Q. (Aug. 1999). Cognitive radio: Making software radios more personal. IEEE Personal Communications, 6(4), 13–18.CrossRef
30.
go back to reference Biglieri, E., Goldsmith, A. J., Greenstein, L. J., Mandayam, N. B., & Poor, H. V. (2013). Principles of cognitive radio. New York: Cambridge University Press. Biglieri, E., Goldsmith, A. J., Greenstein, L. J., Mandayam, N. B., & Poor, H. V. (2013). Principles of cognitive radio. New York: Cambridge University Press.
31.
go back to reference Babaei, M., & Aygölü, Ü. (2016). Interference-free spectrum sharing in cognitive radio based on combined CIOD and STBC, In 2016 International Wireless Communications and Mobile Computing Conference (IWCMC), September, pp. 626–631. Babaei, M., & Aygölü, Ü. (2016). Interference-free spectrum sharing in cognitive radio based on combined CIOD and STBC, In 2016 International Wireless Communications and Mobile Computing Conference (IWCMC), September, pp. 626–631.
32.
go back to reference Gupta, A., & Jha, R. K. (2015). A survey of 5G network: Architecture and emerging technologies. IEEE Access, 3, 1206–1232.CrossRef Gupta, A., & Jha, R. K. (2015). A survey of 5G network: Architecture and emerging technologies. IEEE Access, 3, 1206–1232.CrossRef
33.
go back to reference Akyildiz, I. F., Brandon, F. L., & Balakrishnan, R. K. (2011). Cooperative spectrum sensing in cognitive radio networks: A survey. Physical Communication, 4(1), 40–62.CrossRef Akyildiz, I. F., Brandon, F. L., & Balakrishnan, R. K. (2011). Cooperative spectrum sensing in cognitive radio networks: A survey. Physical Communication, 4(1), 40–62.CrossRef
34.
go back to reference Chopra, S. R., Gupta, A., & Jha, R. K. (2019). Performance analysis of grouped multilevel space-time Trellis coding technique using cognitive radio in different deployment models. Wireless Communications and Mobile Computing, Hindawi. https://doi.org/10.1155/2019/5280615. Chopra, S. R., Gupta, A., & Jha, R. K. (2019). Performance analysis of grouped multilevel space-time Trellis coding technique using cognitive radio in different deployment models. Wireless Communications and Mobile Computing, Hindawi. https://​doi.​org/​10.​1155/​2019/​5280615.
Metadata
Title
Error Analysis of Grouped Multilevel Space-Time Trellis Coding with the Combined Application of Massive MIMO and Cognitive Radio
Authors
Shakti Raj Chopra
Akhil Gupta
Publication date
02-01-2021
Publisher
Springer US
Published in
Wireless Personal Communications / Issue 2/2021
Print ISSN: 0929-6212
Electronic ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-020-07878-y

Other articles of this Issue 2/2021

Wireless Personal Communications 2/2021 Go to the issue