Skip to main content
Top
Published in: Cryptography and Communications 2/2011

01-06-2011

Error decodable secret sharing and one-round perfectly secure message transmission for general adversary structures

Authors: Keith M. Martin, Maura B. Paterson, Douglas R. Stinson

Published in: Cryptography and Communications | Issue 2/2011

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

An error decodable secret-sharing scheme is a secret-sharing scheme with the additional property that the secret can be recovered from the set of all shares, even after a coalition of participants corrupts the shares they possess. In this paper, schemes that can tolerate corruption by sets of participants belonging to a monotone coalition structure are considered. This coalition structure may be unrelated to the authorised sets of the secret-sharing scheme. This is generalisation of both a related notion studied in the context of multiparty computation, and the well-known error-correction properties of threshold schemes based on Reed-Solomon codes. Necessary and sufficient conditions for the existence of such schemes are deduced, and methods for reducing the storage requirements of a technique of Kurosawa for constructing error-decodable secret-sharing schemes with efficient decoding algorithms are demonstrated. In addition, the connection between one-round perfectly secure message transmission (PSMT) schemes with general adversary structures and secret-sharing schemes is explored. We prove a theorem that explicitly shows the relation between these structures. In particular, an error decodable secret-sharing scheme yields a one-round PSMT, but the converse does not hold. Furthermore, we are able to show that some well-known results concerning one-round PSMT follow from known results on secret-sharing schemes. These connections are exploited to investigate factors affecting the performance of one-round PSMT schemes such as the number of channels required, the communication overhead, and the efficiency of message recovery.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Footnotes
1
Ideally we would like to be able to decode in time polynomial in n, which requires l itself to be polynomial in n. This is the case for most known dedicated constructions of linear secret-sharing schemes for specific access structures, such as Shamir’s threshold secret-sharing scheme. However, generic constructions for arbitrary access structures tend to result in a value of l that is exponential in n.
 
Literature
1.
go back to reference Bellare, M., Rogaway, P.: Robust computational secret sharing and a unified account of classical secret-sharing goals. In: Ning, P., di Vimercati, S.D.C., Syverson, P.F. (eds.) ACM Conference on Computer and Communications Security, pp. 172–184. ACM (2007) Bellare, M., Rogaway, P.: Robust computational secret sharing and a unified account of classical secret-sharing goals. In: Ning, P., di Vimercati, S.D.C., Syverson, P.F. (eds.) ACM Conference on Computer and Communications Security, pp. 172–184. ACM (2007)
2.
go back to reference Berlekamp, E.R., McEliece, R.J., van Tilborg, H.C.: On the inherent intractability of certain coding problems. IEEE Trans. Inf. Theory 24(3), 384–386 (1978)CrossRefMATH Berlekamp, E.R., McEliece, R.J., van Tilborg, H.C.: On the inherent intractability of certain coding problems. IEEE Trans. Inf. Theory 24(3), 384–386 (1978)CrossRefMATH
3.
go back to reference Blakley, G.R.: Safeguarding cryptographic keys. In: Proc. 1979 National Comp. Conf., vol. 48, pp. 313–317. AFIPS Press (1979) Blakley, G.R.: Safeguarding cryptographic keys. In: Proc. 1979 National Comp. Conf., vol. 48, pp. 313–317. AFIPS Press (1979)
4.
go back to reference Blundo, C., Santis, A.D., Vaccaro, U.: Efficient sharing of many secrets. In: Enjalbert, P., Finkel, A., Wagner, K.W. (eds.) STACS ’93. LNCS, vol. 665, pp. 692–703. Springer (1993) Blundo, C., Santis, A.D., Vaccaro, U.: Efficient sharing of many secrets. In: Enjalbert, P., Finkel, A., Wagner, K.W. (eds.) STACS ’93. LNCS, vol. 665, pp. 692–703. Springer (1993)
5.
go back to reference Chen, H., Cramer, R.: Algebraic geometric secret sharing schemes and secure multi-party computations over small fields. In: Dwork, C. (ed.) CRYPTO ’06. LNCS, vol. 4117, pp. 521–536. Springer (2006) Chen, H., Cramer, R.: Algebraic geometric secret sharing schemes and secure multi-party computations over small fields. In: Dwork, C. (ed.) CRYPTO ’06. LNCS, vol. 4117, pp. 521–536. Springer (2006)
6.
go back to reference Chor, B., Goldwasser, S., Micali, S., Awerbuch, B.: Verifiable secret sharing and achieving simultaneity in the presence of faults (extended abstract). In: FOCS ’85, pp. 383–395. IEEE (1985) Chor, B., Goldwasser, S., Micali, S., Awerbuch, B.: Verifiable secret sharing and achieving simultaneity in the presence of faults (extended abstract). In: FOCS ’85, pp. 383–395. IEEE (1985)
7.
go back to reference Cramer, R., Damgard, I., Maurer, U.: General secure multi-party computation from any linear secret-sharing scheme. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 316–334. Springer (2000) Cramer, R., Damgard, I., Maurer, U.: General secure multi-party computation from any linear secret-sharing scheme. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 316–334. Springer (2000)
8.
go back to reference Cramer, R., Daza, V., Gracia, I., Urroz, J.J., Leander, G., Martí-Farré, J., Padró, C.: On codes, matroids and secure multi-party computation from linear secret sharing schemes. In: Shoup, V. (ed.) CRYPTO ’05. LNCS, vol. 3621, pp. 327–343. Springer (2005) Cramer, R., Daza, V., Gracia, I., Urroz, J.J., Leander, G., Martí-Farré, J., Padró, C.: On codes, matroids and secure multi-party computation from linear secret sharing schemes. In: Shoup, V. (ed.) CRYPTO ’05. LNCS, vol. 3621, pp. 327–343. Springer (2005)
9.
go back to reference Desmedt, Y., Wang, Y., Burmester, M.: A complete characterization of tolerable adversary structures for secure point-to-point transmissions without feedback. In: Deng, X., Du, D.Z. (eds.) ISAAC ’05. LNCS, vol. 3827, pp. 277–287. Springer (2005) Desmedt, Y., Wang, Y., Burmester, M.: A complete characterization of tolerable adversary structures for secure point-to-point transmissions without feedback. In: Deng, X., Du, D.Z. (eds.) ISAAC ’05. LNCS, vol. 3827, pp. 277–287. Springer (2005)
11.
go back to reference Fehr, S., Maurer, U.M.: Linear vss and distributed commitments based on secret sharing and pairwise checks. In: Yung, M. (ed.) CRYPTO ’02. LNCS, vol. 2442, pp. 565–580. Springer (2002) Fehr, S., Maurer, U.M.: Linear vss and distributed commitments based on secret sharing and pairwise checks. In: Yung, M. (ed.) CRYPTO ’02. LNCS, vol. 2442, pp. 565–580. Springer (2002)
12.
go back to reference Fitzi, M., Franklin, M.K., Garay, J.A., Vardhan, S.H.: Towards optimal and efficient perfectly secure message transmission. In: Vadhan, S.P. (ed.) TCC ’07. LNCS, vol. 4392, pp. 311–322. Springer (2007) Fitzi, M., Franklin, M.K., Garay, J.A., Vardhan, S.H.: Towards optimal and efficient perfectly secure message transmission. In: Vadhan, S.P. (ed.) TCC ’07. LNCS, vol. 4392, pp. 311–322. Springer (2007)
13.
go back to reference Fitzi, M., Hirt, M., Maurer, U.M.: General adversaries in unconditional multi-party computation. In: Lam, K.Y., Okamoto, E., Xing, C. (eds.) ASIACRYPT ’99. LNCS, vol. 1716, pp. 232–246. Springer (1999) Fitzi, M., Hirt, M., Maurer, U.M.: General adversaries in unconditional multi-party computation. In: Lam, K.Y., Okamoto, E., Xing, C. (eds.) ASIACRYPT ’99. LNCS, vol. 1716, pp. 232–246. Springer (1999)
14.
go back to reference Hirt, M., Maurer, U.: Player simulation and general adversary structures in perfect multiparty computation. J. Cryptol. 13(1), 31–60 (2000)CrossRefMATHMathSciNet Hirt, M., Maurer, U.: Player simulation and general adversary structures in perfect multiparty computation. J. Cryptol. 13(1), 31–60 (2000)CrossRefMATHMathSciNet
15.
go back to reference Hirt, M., Maurer, U.M.: Complete characterization of adversaries tolerable in secure multi-party computation (extended abstract). In: PODC, pp. 25–34 (1997) Hirt, M., Maurer, U.M.: Complete characterization of adversaries tolerable in secure multi-party computation (extended abstract). In: PODC, pp. 25–34 (1997)
16.
go back to reference Huffman, W.C., Pless, V.: Fundamentals of Error-correcting Codes. Cambridge Univ. Press (2003) Huffman, W.C., Pless, V.: Fundamentals of Error-correcting Codes. Cambridge Univ. Press (2003)
18.
go back to reference Jackson, W.A., Martin, K.M.: Cumulative arrays and geometric secret sharing schemes. In: Seberry, J., Zheng, Y. (eds.) AUSCRYPT ’92. LNCS, vol. 718, pp. 48–55. Springer (1992) Jackson, W.A., Martin, K.M.: Cumulative arrays and geometric secret sharing schemes. In: Seberry, J., Zheng, Y. (eds.) AUSCRYPT ’92. LNCS, vol. 718, pp. 48–55. Springer (1992)
19.
go back to reference Jackson, W.A., Martin, K.M.: A combinatorial interpretation of ramp schemes. Australas. J. Combin. 14, 51–60 (1996)MATHMathSciNet Jackson, W.A., Martin, K.M.: A combinatorial interpretation of ramp schemes. Australas. J. Combin. 14, 51–60 (1996)MATHMathSciNet
21.
go back to reference Kurosawa, K., Obana, S., Ogata, W.: t-cheater identifiable (k, n) threshold secret sharing schemes. In: Coppersmith, D. (ed.) CRYPTO ’95. LNCS, vol. 963, pp. 410–423. Springer (1995) Kurosawa, K., Obana, S., Ogata, W.: t-cheater identifiable (k, n) threshold secret sharing schemes. In: Coppersmith, D. (ed.) CRYPTO ’95. LNCS, vol. 963, pp. 410–423. Springer (1995)
22.
go back to reference Martin, K.M.: Challenging the adversary model in secret sharing schemes. In: Coding and Cryptography II, Proceedings of the Royal Flemish Academy of Belgium for Science and the Arts, pp. 45–63 (2008) Martin, K.M.: Challenging the adversary model in secret sharing schemes. In: Coding and Cryptography II, Proceedings of the Royal Flemish Academy of Belgium for Science and the Arts, pp. 45–63 (2008)
25.
go back to reference Obana, S., Araki, T.: Almost optimum secret sharing schemes secure against cheating for arbitrary secret distribution. In: Lai, X., Chen, K. (eds.) ASIACRYPT ’06. LNCS, vol. 4284, pp. 364–379. Springer (2006) Obana, S., Araki, T.: Almost optimum secret sharing schemes secure against cheating for arbitrary secret distribution. In: Lai, X., Chen, K. (eds.) ASIACRYPT ’06. LNCS, vol. 4284, pp. 364–379. Springer (2006)
26.
go back to reference Ogata, W., Kurosawa, K., Stinson, D.: Optimum secret sharing scheme secure against cheating. SIAM J. Discrete Math. 20, 79–95 (2006)CrossRefMATHMathSciNet Ogata, W., Kurosawa, K., Stinson, D.: Optimum secret sharing scheme secure against cheating. SIAM J. Discrete Math. 20, 79–95 (2006)CrossRefMATHMathSciNet
27.
go back to reference Rees, R.S., Stinson, D.R., Wei, R., van Rees, G.H.J.: An application of covering designs: determining the maximum consistent set of shares in a threshold scheme. Ars Comb. 53 (1999) Rees, R.S., Stinson, D.R., Wei, R., van Rees, G.H.J.: An application of covering designs: determining the maximum consistent set of shares in a threshold scheme. Ars Comb. 53 (1999)
29.
go back to reference Stinson, D.R., Zhang, S.: Algorithms for detecting cheaters in threshold schemes. J. Comb. Math. Comb. Comput. 61, 169–191 (2007)MATHMathSciNet Stinson, D.R., Zhang, S.: Algorithms for detecting cheaters in threshold schemes. J. Comb. Math. Comb. Comput. 61, 169–191 (2007)MATHMathSciNet
30.
go back to reference Tso, R., Miao, Y., Okamoto, E.: A new algorithm for searching a consistent set of shares in a threshold scheme with cheaters. In: Lim, J.I., Lee, D.H. (eds.) ICISC ’03. LNCS, vol. 2971, pp. 377–385. Springer (2004) Tso, R., Miao, Y., Okamoto, E.: A new algorithm for searching a consistent set of shares in a threshold scheme with cheaters. In: Lim, J.I., Lee, D.H. (eds.) ICISC ’03. LNCS, vol. 2971, pp. 377–385. Springer (2004)
31.
go back to reference Ye, Q., Steinfeld, R., Pieprzyk, J., Wang, H.: Efficient fuzzy matching and intersection on private datasets. In: Lee, D., Hong, S. (eds.) ICISC ’09. LNCS, vol. 5984, pp. 211–228. Springer (2009) Ye, Q., Steinfeld, R., Pieprzyk, J., Wang, H.: Efficient fuzzy matching and intersection on private datasets. In: Lee, D., Hong, S. (eds.) ICISC ’09. LNCS, vol. 5984, pp. 211–228. Springer (2009)
32.
go back to reference Zhang, Z., Liu, M., Chee, Y.M., Ling, S., Wang, H.: Strongly multiplicative and 3-multiplicative linear secret sharing schemes. In: Pieprzyk, J. (ed.) ASIACRYPT ’08. LNCS, vol. 5350, pp. 19–36. Springer (2008) Zhang, Z., Liu, M., Chee, Y.M., Ling, S., Wang, H.: Strongly multiplicative and 3-multiplicative linear secret sharing schemes. In: Pieprzyk, J. (ed.) ASIACRYPT ’08. LNCS, vol. 5350, pp. 19–36. Springer (2008)
Metadata
Title
Error decodable secret sharing and one-round perfectly secure message transmission for general adversary structures
Authors
Keith M. Martin
Maura B. Paterson
Douglas R. Stinson
Publication date
01-06-2011
Publisher
Springer US
Published in
Cryptography and Communications / Issue 2/2011
Print ISSN: 1936-2447
Electronic ISSN: 1936-2455
DOI
https://doi.org/10.1007/s12095-010-0039-6

Premium Partner