Skip to main content
Top
Published in: Telecommunication Systems 1/2022

10-11-2021

Estimation based cyclostationary detection for energy harvesting cooperative cognitive radio network

Authors: Banani Talukdar, Deepak Kumar, Shanidul Hoque, Wasim Arif

Published in: Telecommunication Systems | Issue 1/2022

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The two prime dynamics that are steering the future wireless communications are energy efficiency and efficient spectral usage. Energy harvesting (EH) when integrated with cognitive radio (CR) technology guarantees to address the challenges of limited availability of energy and spectrum. In this paper, we propose an estimation based cyclostationary spectrum sensing technique in an energy harvesting cooperative cognitive radio network (EH-CRN). The analytical model for the assessment of the performance is established under various fusion rules with varying numbers of nodes in a centralized cooperative CRN. The performance is investigated with respect to the harvested energy and overall throughput of the network. We model the analytical framework for the detection performance, energy harvesting, and throughput in an EH-CRN scenario. The implication of the various network parameters viz., detection frames, number of CR users operating in cooperation, collision probability, prediction error upon the throughput of the network is studied. A comprehensive comparative analysis is made between the performance of an estimation based cyclostationary detection (ECSD) and estimated noise power based energy detection strategy (ENP ED). The results indicate that the proposed estimation based cyclostationary approach provides a better performance regardless of the low SNR and is immune to noise uncertainty as compared to other techniques.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Fcc, E. (2003). Docket No 03-222 Notice of proposed rule making and order. Fcc, E. (2003). Docket No 03-222 Notice of proposed rule making and order.
2.
go back to reference Liang, Y. C., Zeng, Y., Peh, E. C., & Hoang, A. T. (2008). Sensing-throughput tradeoff for cognitive radio networks. IEEE Transactions on WIRELESS Communications, 7(4), 1326–1337.CrossRef Liang, Y. C., Zeng, Y., Peh, E. C., & Hoang, A. T. (2008). Sensing-throughput tradeoff for cognitive radio networks. IEEE Transactions on WIRELESS Communications, 7(4), 1326–1337.CrossRef
3.
go back to reference Yang, J., & Zhao, H. (2015). Enhanced throughput of cognitive radio networks by imperfect spectrum prediction. IEEE Communications Letters, 19(10), 1738–1741.CrossRef Yang, J., & Zhao, H. (2015). Enhanced throughput of cognitive radio networks by imperfect spectrum prediction. IEEE Communications Letters, 19(10), 1738–1741.CrossRef
4.
go back to reference Xing, X., Jing, T., Cheng, W., Huo, Y., & Cheng, X. (2013). Spectrum prediction in cognitive radio networks. IEEE Wireless Communications, 20(2), 90–96.CrossRef Xing, X., Jing, T., Cheng, W., Huo, Y., & Cheng, X. (2013). Spectrum prediction in cognitive radio networks. IEEE Wireless Communications, 20(2), 90–96.CrossRef
5.
go back to reference Yang, J., & Ulukus, S. (2011). Optimal packet scheduling in an energy harvesting communication system. IEEE Transactions on Communications, 60(1), 220–230.CrossRef Yang, J., & Ulukus, S. (2011). Optimal packet scheduling in an energy harvesting communication system. IEEE Transactions on Communications, 60(1), 220–230.CrossRef
6.
go back to reference Tutuncuoglu, K., & Yener, A. (2012). Optimum transmission policies for battery limited energy harvesting nodes. IEEE Transactions on Wireless Communications, 11(3), 1180–1189.CrossRef Tutuncuoglu, K., & Yener, A. (2012). Optimum transmission policies for battery limited energy harvesting nodes. IEEE Transactions on Wireless Communications, 11(3), 1180–1189.CrossRef
7.
go back to reference El Shafie, A., Ashour, M., Khattab, T., & Mohamed, A. (2015). On spectrum sharing between energy harvesting cognitive radio users and primary users. In 2015 International conference on computing, networking and communications (ICNC) (pp. 214–220). El Shafie, A., Ashour, M., Khattab, T., & Mohamed, A. (2015). On spectrum sharing between energy harvesting cognitive radio users and primary users. In 2015 International conference on computing, networking and communications (ICNC) (pp. 214–220).
8.
go back to reference El Shafie, A., & Khattab, T. (2014). Maximum throughput of a cooperative energy harvesting cognitive radio user. In 2014 IEEE 25th annual international symposium on personal, indoor, and mobile radio communication (PIMRC) (pp. 1067–1072). El Shafie, A., & Khattab, T. (2014). Maximum throughput of a cooperative energy harvesting cognitive radio user. In 2014 IEEE 25th annual international symposium on personal, indoor, and mobile radio communication (PIMRC) (pp. 1067–1072).
9.
go back to reference Bhowmick, A., Yadav, K., Roy, S. D., & Kundu, S. (2017). Throughput of an energy harvesting cognitive radio network based on prediction of primary user. IEEE Transactions on Vehicular Technology, 66(9), 8119–8128.CrossRef Bhowmick, A., Yadav, K., Roy, S. D., & Kundu, S. (2017). Throughput of an energy harvesting cognitive radio network based on prediction of primary user. IEEE Transactions on Vehicular Technology, 66(9), 8119–8128.CrossRef
10.
go back to reference Park, S., & Hong, D. (2014). Achievable throughput of energy harvesting cognitive radio networks. IEEE Transactions on Wireless Communications, 13(2), 1010–1022.CrossRef Park, S., & Hong, D. (2014). Achievable throughput of energy harvesting cognitive radio networks. IEEE Transactions on Wireless Communications, 13(2), 1010–1022.CrossRef
11.
go back to reference Park, S., & Hong, D. (2013). Optimal spectrum access for energy harvesting cognitive radio networks. IEEE Transactions on Wireless Communications, 12(12), 6166–6179.CrossRef Park, S., & Hong, D. (2013). Optimal spectrum access for energy harvesting cognitive radio networks. IEEE Transactions on Wireless Communications, 12(12), 6166–6179.CrossRef
12.
go back to reference Bhowmick, A., Roy, S. D., & Kundu, S. (2016). Throughput of a cognitive radio network with energy-harvesting based on primary user signal. IEEE Wireless Communications Letters, 5(2), 136–139.CrossRef Bhowmick, A., Roy, S. D., & Kundu, S. (2016). Throughput of a cognitive radio network with energy-harvesting based on primary user signal. IEEE Wireless Communications Letters, 5(2), 136–139.CrossRef
13.
go back to reference Lee, S., Zhang, R., & Huang, K. (2013). Opportunistic wireless energy harvesting in cognitive radio networks. IEEE Transactions on Wireless Communications, 12(9), 4788–4799.CrossRef Lee, S., Zhang, R., & Huang, K. (2013). Opportunistic wireless energy harvesting in cognitive radio networks. IEEE Transactions on Wireless Communications, 12(9), 4788–4799.CrossRef
14.
go back to reference Haykin, S. (2005). Cognitive radio: Brain-empowered wireless communications. IEEE Journal on Selected Areas in Communications, 23(2), 201–220.CrossRef Haykin, S. (2005). Cognitive radio: Brain-empowered wireless communications. IEEE Journal on Selected Areas in Communications, 23(2), 201–220.CrossRef
15.
go back to reference Tian, Z., & Giannakis, G.B. (2007). Compressed sensing for wideband cognitive radios. In 2007 IEEE International conference on acoustics, speech and signal processing-ICASSP'07 (Vol. 4, pp. IV–1357). Tian, Z., & Giannakis, G.B. (2007). Compressed sensing for wideband cognitive radios. In 2007 IEEE International conference on acoustics, speech and signal processing-ICASSP'07 (Vol. 4, pp. IV–1357).
16.
go back to reference Ghasemi, A., & Sousa, E. S. (2007). Spectrum sensing in cognitive radio networks: The cooperation-processing tradeoff. Wireless Communications and Mobile Computing, 7(9), 1049–1060.CrossRef Ghasemi, A., & Sousa, E. S. (2007). Spectrum sensing in cognitive radio networks: The cooperation-processing tradeoff. Wireless Communications and Mobile Computing, 7(9), 1049–1060.CrossRef
17.
go back to reference Mishra, S.M., Sahai, A., & Brodersen, R.W. (2006). Cooperative sensing among cognitive radios. In 2006 IEEE International conference on communications (Vol. 4, pp. 1658–1663). IEEE. Mishra, S.M., Sahai, A., & Brodersen, R.W. (2006). Cooperative sensing among cognitive radios. In 2006 IEEE International conference on communications (Vol. 4, pp. 1658–1663). IEEE.
18.
go back to reference Dandawate, A. V., & Giannakis, G. B. (1994). Statistical tests for presence of cyclostationarity. IEEE Transactions on Signal Processing, 42(9), 2355–2369.CrossRef Dandawate, A. V., & Giannakis, G. B. (1994). Statistical tests for presence of cyclostationarity. IEEE Transactions on Signal Processing, 42(9), 2355–2369.CrossRef
19.
go back to reference Öner, M., & Jondral, F. (2007). Air interface identification for software radio systems. AEU-International Journal of Electronics and Communications, 61(2), 104–117.CrossRef Öner, M., & Jondral, F. (2007). Air interface identification for software radio systems. AEU-International Journal of Electronics and Communications, 61(2), 104–117.CrossRef
20.
go back to reference Cabric, D., Tkachenko, A., & Brodersen, R.W. (2006). Experimental study of spectrum sensing based on energy detection and network cooperation. In Proceedings of the first international workshop on Technology and policy for accessing spectrum (pp. 12–es). Cabric, D., Tkachenko, A., & Brodersen, R.W. (2006). Experimental study of spectrum sensing based on energy detection and network cooperation. In Proceedings of the first international workshop on Technology and policy for accessing spectrum (pp. 12–es).
21.
go back to reference Yucek, T., & Arslan, H. (2009). A survey of spectrum sensing algorithms for cognitive radio applications. IEEE Communications Surveys & Tutorials, 11(1), 116–130.CrossRef Yucek, T., & Arslan, H. (2009). A survey of spectrum sensing algorithms for cognitive radio applications. IEEE Communications Surveys & Tutorials, 11(1), 116–130.CrossRef
22.
go back to reference Gardner, W. A. (1994). Cyclostationarity in communications and signal processing. Statistical Signal Processing Inc. Gardner, W. A. (1994). Cyclostationarity in communications and signal processing. Statistical Signal Processing Inc.
23.
go back to reference Tandra, R., & Sahai, A. (2008). SNR walls for signal detection. IEEE Journal of Selected Topics in Signal Processing, 2(1), 4–17.CrossRef Tandra, R., & Sahai, A. (2008). SNR walls for signal detection. IEEE Journal of Selected Topics in Signal Processing, 2(1), 4–17.CrossRef
24.
go back to reference Kumar, D., Talukdar, B., & Arif, W. (2019). Performance analysis of prediction based sensing in energy harvesting cooperative CRN. In 2019 Second international conference on advanced computational and communication paradigms (ICACCP) (pp. 1–6). Kumar, D., Talukdar, B., & Arif, W. (2019). Performance analysis of prediction based sensing in energy harvesting cooperative CRN. In 2019 Second international conference on advanced computational and communication paradigms (ICACCP) (pp. 1–6).
25.
go back to reference Kumar, D., Talukdar, B., & Arif, W. (2019). Impact of Weibull distribution on prediction based sensing in energy harvesting cooperative CRN. In 2019 6th International conference on signal processing and integrated networks (SPIN) (pp. 704–709). Kumar, D., Talukdar, B., & Arif, W. (2019). Impact of Weibull distribution on prediction based sensing in energy harvesting cooperative CRN. In 2019 6th International conference on signal processing and integrated networks (SPIN) (pp. 704–709).
26.
go back to reference Hoque, S., & Arif, W. (2018). Impact of secondary user mobility on spectrum handoff under generalized residual time distributions in cognitive radio networks. AEU-International Journal of Electronics and Communications, 86, 185–194.CrossRef Hoque, S., & Arif, W. (2018). Impact of secondary user mobility on spectrum handoff under generalized residual time distributions in cognitive radio networks. AEU-International Journal of Electronics and Communications, 86, 185–194.CrossRef
27.
go back to reference Awasthi, M., Nigam, M. J., & Kumar, V. (2019). Optimal sensing, fusion and transmission with primary user protection for energy-efficient cooperative spectrum sensing in CRNs. AEU-International Journal of Electronics and Communications, 98, 95–105.CrossRef Awasthi, M., Nigam, M. J., & Kumar, V. (2019). Optimal sensing, fusion and transmission with primary user protection for energy-efficient cooperative spectrum sensing in CRNs. AEU-International Journal of Electronics and Communications, 98, 95–105.CrossRef
28.
go back to reference Nguyen, B. C., Hoang, T. M., & Tran, P. T. (2019). Performance analysis of full-duplex decode-and-forward relay system with energy harvesting over Nakagami-m fading channels. AEU-International Journal of Electronics and Communications, 98, 114–122.CrossRef Nguyen, B. C., Hoang, T. M., & Tran, P. T. (2019). Performance analysis of full-duplex decode-and-forward relay system with energy harvesting over Nakagami-m fading channels. AEU-International Journal of Electronics and Communications, 98, 114–122.CrossRef
29.
go back to reference Hoque, S., & Arif, W. (2017). Performance analysis of cognitive radio networks with generalized call holding time distribution of secondary user. Telecommunication Systems, 66(1), 95–108.CrossRef Hoque, S., & Arif, W. (2017). Performance analysis of cognitive radio networks with generalized call holding time distribution of secondary user. Telecommunication Systems, 66(1), 95–108.CrossRef
30.
go back to reference Yawada, P.S., & Wei, A.J. (2016). Cyclostationary detection based on non-cooperative spectrum sensing in cognitive radio network. In 2016 IEEE international conference on cyber technology in automation, control, and intelligent systems (CYBER) (pp. 184–187). Yawada, P.S., & Wei, A.J. (2016). Cyclostationary detection based on non-cooperative spectrum sensing in cognitive radio network. In 2016 IEEE international conference on cyber technology in automation, control, and intelligent systems (CYBER) (pp. 184–187).
31.
go back to reference Liu, X., Zheng, K., Chi, K., & Zhu, Y. H. (2020). Cooperative spectrum sensing optimization in energy-harvesting cognitive radio networks. IEEE Transactions on Wireless Communications, 19(11), 7663–7676.CrossRef Liu, X., Zheng, K., Chi, K., & Zhu, Y. H. (2020). Cooperative spectrum sensing optimization in energy-harvesting cognitive radio networks. IEEE Transactions on Wireless Communications, 19(11), 7663–7676.CrossRef
32.
go back to reference Develi, I. (2020). Spectrum sensing in cognitive radio networks: Threshold optimization and analysis. EURASIP Journal on Wireless Communications and Networking, 2020(1), 1–19.CrossRef Develi, I. (2020). Spectrum sensing in cognitive radio networks: Threshold optimization and analysis. EURASIP Journal on Wireless Communications and Networking, 2020(1), 1–19.CrossRef
33.
go back to reference Fouda, H.S., Kabeel, A.A.E., Nasr, M.E.S., & Hussein, A.H. (2021). Multi-dimensional small-scale cooperative spectrum sensing approach for cognitive radio receivers. IEEE Access. Fouda, H.S., Kabeel, A.A.E., Nasr, M.E.S., & Hussein, A.H. (2021). Multi-dimensional small-scale cooperative spectrum sensing approach for cognitive radio receivers. IEEE Access.
Metadata
Title
Estimation based cyclostationary detection for energy harvesting cooperative cognitive radio network
Authors
Banani Talukdar
Deepak Kumar
Shanidul Hoque
Wasim Arif
Publication date
10-11-2021
Publisher
Springer US
Published in
Telecommunication Systems / Issue 1/2022
Print ISSN: 1018-4864
Electronic ISSN: 1572-9451
DOI
https://doi.org/10.1007/s11235-021-00846-2

Other articles of this Issue 1/2022

Telecommunication Systems 1/2022 Go to the issue