Skip to main content
Top
Published in: Journal of Engineering Mathematics 1/2015

07-11-2014

Estimation of effective dynamic properties of bristled fiber composite materials based on a self-consistent Eshelby method

Authors: Sergey Lurie, Mulia Minhat, Natalia Tuchkova

Published in: Journal of Engineering Mathematics | Issue 1/2015

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this work, we aim to estimate the effective storage and loss moduli of bristled fiber composite materials, where the surface of the fibers is radially grown or coated with nanostructures such as nanowires, nanorods, or carbon nanotubes (fuzzy fiber), by employing a self-consistent Eshelby method of a three-phase model using a viscoelastic correspondence principle. The effect of the length, density, diameter, and material of these nanofibers on the dynamic behaviors of bristled fiber composite materials is examined.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Gibson RF (2010) A review of recent research on mechanics of multifunctional composite materials and structures. Compos Struct 92:2793–2810CrossRef Gibson RF (2010) A review of recent research on mechanics of multifunctional composite materials and structures. Compos Struct 92:2793–2810CrossRef
2.
go back to reference Vasiliev VV, Tarnopolskii YM (1990) Composite materials: handbook. Mashinastroenie, Moscow, p 512 (in Russian) Vasiliev VV, Tarnopolskii YM (1990) Composite materials: handbook. Mashinastroenie, Moscow, p 512 (in Russian)
3.
go back to reference Lurie SA, Belov PA, Rabinsky LN, Shavaronak CI (2011) Scale effects in the mechanics of continuous body of material with micro and nanostructure. MAI print, Moscow, p 156 (in Russian) Lurie SA, Belov PA, Rabinsky LN, Shavaronak CI (2011) Scale effects in the mechanics of continuous body of material with micro and nanostructure. MAI print, Moscow, p 156 (in Russian)
4.
go back to reference Veedu VP, Cao A, Li X, Ma K, Soldano C, Kar S, Ajayan PM, Ghasemi-Nejhad MN (2006) Multifunctional composites using reinforced laminae with carbon nanotube forests. Nat Mater 5:457–462CrossRefADS Veedu VP, Cao A, Li X, Ma K, Soldano C, Kar S, Ajayan PM, Ghasemi-Nejhad MN (2006) Multifunctional composites using reinforced laminae with carbon nanotube forests. Nat Mater 5:457–462CrossRefADS
5.
go back to reference Falzon BG, Hawkins SC, Huynh CP, Radjef R, Brown C (2013) An investigation of mode I and mode II fracture toughness enhancement using aligned carbon nanotubes forests at the crack interface. Compos Struct 106:65–73CrossRef Falzon BG, Hawkins SC, Huynh CP, Radjef R, Brown C (2013) An investigation of mode I and mode II fracture toughness enhancement using aligned carbon nanotubes forests at the crack interface. Compos Struct 106:65–73CrossRef
6.
go back to reference Sager RJ, Klein PJ, Lagoudas DC, Zhang Q, Liu J, Dai L, Baur JW (2008) Effect of carbon nanotubes on the interfacial shear strength of T650 carbon fiber in an epoxy matrix. Compos Sci Techol 69:898–904CrossRef Sager RJ, Klein PJ, Lagoudas DC, Zhang Q, Liu J, Dai L, Baur JW (2008) Effect of carbon nanotubes on the interfacial shear strength of T650 carbon fiber in an epoxy matrix. Compos Sci Techol 69:898–904CrossRef
7.
go back to reference Sharma SP, Lakkad SC (2010) Compressive strength of carbon nanotubes grown on carbon fiber reinforced epoxy matrix multi-scale hybrid composites. Surf Coat Technol 205:350–355CrossRef Sharma SP, Lakkad SC (2010) Compressive strength of carbon nanotubes grown on carbon fiber reinforced epoxy matrix multi-scale hybrid composites. Surf Coat Technol 205:350–355CrossRef
8.
go back to reference Lu P, Feng YY, Zhang P, Chen HM, Zhao N, Feng W (2011) Increasing interfacial strength in crabon fiber/epoxy composites by controlling the orientation and length of fiber carbon nanotubes grown on the fibers. Carbon 49:4665–4673CrossRef Lu P, Feng YY, Zhang P, Chen HM, Zhao N, Feng W (2011) Increasing interfacial strength in crabon fiber/epoxy composites by controlling the orientation and length of fiber carbon nanotubes grown on the fibers. Carbon 49:4665–4673CrossRef
9.
go back to reference Agnihotri P, Basu S, Kar KK (2011) Effect of carbon nanotube length and density on the properties of carbon nanotubes coated carbon fiber/polyester composites. Carbon 49:3098–3106CrossRef Agnihotri P, Basu S, Kar KK (2011) Effect of carbon nanotube length and density on the properties of carbon nanotubes coated carbon fiber/polyester composites. Carbon 49:3098–3106CrossRef
10.
go back to reference Steiner SA, Li R, Wardle BL (2013) Circumventing the mechanochemical origins of strength loss in the synthesis of hierarchical carbon fibers. ACS Appl Mater Interfaces 5(11):4892–4903CrossRef Steiner SA, Li R, Wardle BL (2013) Circumventing the mechanochemical origins of strength loss in the synthesis of hierarchical carbon fibers. ACS Appl Mater Interfaces 5(11):4892–4903CrossRef
11.
go back to reference Lin Y, Ehlert GJ, Sodano HA (2009) Increase interface strength in carbon fiber composites through a ZnO nanowire interphase. Adv Funct Mater 19(16):2654–2660CrossRef Lin Y, Ehlert GJ, Sodano HA (2009) Increase interface strength in carbon fiber composites through a ZnO nanowire interphase. Adv Funct Mater 19(16):2654–2660CrossRef
12.
go back to reference Galan U, Lin Y, Ehlert GJ, Sodano HA (2011) Effect of ZnO nanowire morphology on the interfacial strength of nanowire coated fibers. Compos Sci Technol 71:946–954CrossRef Galan U, Lin Y, Ehlert GJ, Sodano HA (2011) Effect of ZnO nanowire morphology on the interfacial strength of nanowire coated fibers. Compos Sci Technol 71:946–954CrossRef
13.
go back to reference Alipour Skandani A, Masghouni N, Case SW, Leo DJ, Al-Haik M (2012) Enhanced vibration damping of carbon fibers-ZnO nanorods hybrid composites. Appl Phys Lett 101(073111):1–4 Alipour Skandani A, Masghouni N, Case SW, Leo DJ, Al-Haik M (2012) Enhanced vibration damping of carbon fibers-ZnO nanorods hybrid composites. Appl Phys Lett 101(073111):1–4
14.
go back to reference Goan JC, Prosen SP (1969) Interfacial bonding in graphite fiber-resin composites. Interfaces of composites. ASTM STP 452, American society of testing materials. pp 3–26 Goan JC, Prosen SP (1969) Interfacial bonding in graphite fiber-resin composites. Interfaces of composites. ASTM STP 452, American society of testing materials. pp 3–26
15.
go back to reference Guz IA, Rodger AA, Guz AN, Rushchitsky JJ (2008) Predicting the properties of micro- and nanocomposites: from the microwhiskers to the bristled nanocentipedes. Phil Trans R Soc A 366:1827–1833MATHCrossRefADS Guz IA, Rodger AA, Guz AN, Rushchitsky JJ (2008) Predicting the properties of micro- and nanocomposites: from the microwhiskers to the bristled nanocentipedes. Phil Trans R Soc A 366:1827–1833MATHCrossRefADS
16.
go back to reference Kundawal SI, Ray MC (2011) Micromechanical analysis of fuzzy fiber reinforced composites. Int J Mech Mater Des 7:149–166CrossRef Kundawal SI, Ray MC (2011) Micromechanical analysis of fuzzy fiber reinforced composites. Int J Mech Mater Des 7:149–166CrossRef
17.
go back to reference Chatzigeorgiou G, Siedel GD, Lagoudas D (2012) Effective mechanical of “fuzzy fiber” composites. Compos B 43:2577–2593CrossRef Chatzigeorgiou G, Siedel GD, Lagoudas D (2012) Effective mechanical of “fuzzy fiber” composites. Compos B 43:2577–2593CrossRef
18.
go back to reference Christensen RM (2005) Mechanics of composite materials, 2nd edn. Dover, New York, p 343 Christensen RM (2005) Mechanics of composite materials, 2nd edn. Dover, New York, p 343
19.
go back to reference Christensen RM, Lo KH (1979) Solutions for effective shear properties in three phase sphere and cylinder models. J Mech Phys Solids 27(4):315–330MATHCrossRefADS Christensen RM, Lo KH (1979) Solutions for effective shear properties in three phase sphere and cylinder models. J Mech Phys Solids 27(4):315–330MATHCrossRefADS
20.
go back to reference Christensen RM (1990) A critical evaluation of for a class of micromechanics models. J Mech Phys Solids 38(3):379–404CrossRefADS Christensen RM (1990) A critical evaluation of for a class of micromechanics models. J Mech Phys Solids 38(3):379–404CrossRefADS
21.
go back to reference Eshelby JD (1956) The continuum theory of lattice defects. Solid State Phys 3C:79–144 Eshelby JD (1956) The continuum theory of lattice defects. Solid State Phys 3C:79–144
22.
go back to reference Hashin Z (1970) Complex moduli of viscoelastic composites—I. General theory and application to particulate composites. Int J Solids Struct 6:539–552MATHCrossRef Hashin Z (1970) Complex moduli of viscoelastic composites—I. General theory and application to particulate composites. Int J Solids Struct 6:539–552MATHCrossRef
23.
go back to reference Hashin Z (1970) Complex moduli of viscoelastic composites—II. Fiber reinforced materials. Int J Solids Struct 6:797–807CrossRef Hashin Z (1970) Complex moduli of viscoelastic composites—II. Fiber reinforced materials. Int J Solids Struct 6:797–807CrossRef
24.
go back to reference Lurie S, Minhat M, Tuchkova N, Soliaev J (2014) On remarkable loss amplification mechanism in fiber reinforced laminated composite materials. Appl Compos Mater 21(1):179–196CrossRefADS Lurie S, Minhat M, Tuchkova N, Soliaev J (2014) On remarkable loss amplification mechanism in fiber reinforced laminated composite materials. Appl Compos Mater 21(1):179–196CrossRefADS
25.
go back to reference Guz IA, Rushchitsky JJ, Guz AN (2013) Effect of a special reinforcement on the elastic properties of micro- and nanocomposites with polymer matrix. Aeronaut J 117(1196):1019–1036 Guz IA, Rushchitsky JJ, Guz AN (2013) Effect of a special reinforcement on the elastic properties of micro- and nanocomposites with polymer matrix. Aeronaut J 117(1196):1019–1036
26.
go back to reference Guz IA, Guz AN, Rushchitsky JJ (2009) Modelling properties of micro- and nanocomposites with brush-like reinforcement. Materialwissenschaft und Werkstofftechnik (Mater Sci Eng Technol) 40(3):154–160CrossRef Guz IA, Guz AN, Rushchitsky JJ (2009) Modelling properties of micro- and nanocomposites with brush-like reinforcement. Materialwissenschaft und Werkstofftechnik (Mater Sci Eng Technol) 40(3):154–160CrossRef
27.
go back to reference Hashin Z (1990) Thermoelastic properties and conductivity of carbon/carbon fiber composites. Mech Mater 8:293–308CrossRef Hashin Z (1990) Thermoelastic properties and conductivity of carbon/carbon fiber composites. Mech Mater 8:293–308CrossRef
28.
go back to reference Hashin Z, Rosen BW (1964) The elastic moduli of fiber reinforced materials. J Appl Mech 31:223–232CrossRef Hashin Z, Rosen BW (1964) The elastic moduli of fiber reinforced materials. J Appl Mech 31:223–232CrossRef
29.
go back to reference Hill R (1965) A self-consistent mechanics of composite materials. J Mech Phys Solids 13:213–222CrossRefADS Hill R (1965) A self-consistent mechanics of composite materials. J Mech Phys Solids 13:213–222CrossRefADS
30.
go back to reference Budiansky B (1965) On the elastic moduli of some heterogeneous materials. J Mech Phys Solids 13:223–227CrossRefADS Budiansky B (1965) On the elastic moduli of some heterogeneous materials. J Mech Phys Solids 13:223–227CrossRefADS
31.
go back to reference Gusev AA, Lurie SA (2009) Loss amplification effect in multiphase materials with viscoelastic interfaces. Macromolecules 42(14):5372–5377CrossRefADS Gusev AA, Lurie SA (2009) Loss amplification effect in multiphase materials with viscoelastic interfaces. Macromolecules 42(14):5372–5377CrossRefADS
32.
go back to reference Lurie S, Minhat M (2014) Application of generalized self-consistent method to predict effective elastic properties of bristled fiber composites. Compos B 61:26–40CrossRef Lurie S, Minhat M (2014) Application of generalized self-consistent method to predict effective elastic properties of bristled fiber composites. Compos B 61:26–40CrossRef
33.
go back to reference Tsukrov I, Drach B (2010) Elastic deformations of composite cylinders of cylindrically orthotropic layers. Int J Solids Struct 47:25–53MATHCrossRef Tsukrov I, Drach B (2010) Elastic deformations of composite cylinders of cylindrically orthotropic layers. Int J Solids Struct 47:25–53MATHCrossRef
34.
go back to reference Kumar RS, Talreja R (2003) A continuum damage model for linear viscoelastic composite materials. Mech Mater 35:463–480CrossRef Kumar RS, Talreja R (2003) A continuum damage model for linear viscoelastic composite materials. Mech Mater 35:463–480CrossRef
35.
go back to reference Asthana A, Momeni K, Prasad A, Yap YK, Yassar RS (2011) In-situ observation of size-scale effects on the mechanical properties of ZnO nanowires. Nanotechnology 22:1–10CrossRef Asthana A, Momeni K, Prasad A, Yap YK, Yassar RS (2011) In-situ observation of size-scale effects on the mechanical properties of ZnO nanowires. Nanotechnology 22:1–10CrossRef
36.
go back to reference Vantomne J (1995) A parametric study of material damping in fiber reinforced plastics. Composites 26:147–153CrossRef Vantomne J (1995) A parametric study of material damping in fiber reinforced plastics. Composites 26:147–153CrossRef
37.
go back to reference Chandra R, Singh SP, Gupta K (2003) A study of damping in fiber-reinforced composites. J Sound Vib 262:475–496CrossRefADS Chandra R, Singh SP, Gupta K (2003) A study of damping in fiber-reinforced composites. J Sound Vib 262:475–496CrossRefADS
38.
go back to reference Yuan JJ, Kennedy JM, Edie DD (1996) Modeling the dynamic response of the fiber/matrix interphase in continuous fiber composite materials. Fiber, matrix and interface, ASTM STP 1290. In: Sprag CJ, Drzal LT (eds) American Society of Testing and Materials. pp 67–83 Yuan JJ, Kennedy JM, Edie DD (1996) Modeling the dynamic response of the fiber/matrix interphase in continuous fiber composite materials. Fiber, matrix and interface, ASTM STP 1290. In: Sprag CJ, Drzal LT (eds) American Society of Testing and Materials. pp 67–83
Metadata
Title
Estimation of effective dynamic properties of bristled fiber composite materials based on a self-consistent Eshelby method
Authors
Sergey Lurie
Mulia Minhat
Natalia Tuchkova
Publication date
07-11-2014
Publisher
Springer Netherlands
Published in
Journal of Engineering Mathematics / Issue 1/2015
Print ISSN: 0022-0833
Electronic ISSN: 1573-2703
DOI
https://doi.org/10.1007/s10665-014-9719-0

Other articles of this Issue 1/2015

Journal of Engineering Mathematics 1/2015 Go to the issue

Premium Partners