Skip to main content
Top
Published in: Landscape and Ecological Engineering 1/2008

01-05-2008 | Original Paper

Estimation of leaf area index and canopy openness in broad-leaved forest using an airborne laser scanner in comparison with high-resolution near-infrared digital photography

Authors: Takeshi Sasaki, Junichi Imanishi, Keiko Ioki, Yukihiro Morimoto, Katsunori Kitada

Published in: Landscape and Ecological Engineering | Issue 1/2008

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

We estimated leaf area index (LAI) and canopy openness of broad-leaved forest using discrete return and small-footprint airborne laser scanner (ALS) data. We tested four ALS variables, including two newly proposed ones, using three echo types (first, last, and only) and three classes (ground, vegetation, and upper vegetation), and compared the accuracy by means of correlation and regression analysis with seven conventional vegetation indices derived from simultaneously acquired high-resolution near-infrared digital photographs. Among the ALS variables, the ratio of the “only-and-ground” pulse to “only” pulse (OGF) was the best estimator of both LAI (adjusted R 2 = 0.797) and canopy openness (adjusted R 2 = 0.832), followed by the ratio of the pulses that reached the ground to projected lasers (GF). Among the vegetation indices, the normalized differential vegetation index (NDVI) was the best estimator of both LAI (adjusted R 2 = 0.791) and canopy openness (adjusted R 2 = 0.764). Resampling analysis on ALS data to examine whether the estimation of LAI and canopy openness was possible with lower point densities revealed that GF maintained a high adjusted R 2 until a fairly low density of about 0.226 points/m2, while OGF performed marginally when the point density was reduced to about 1 point/m2, the standard density of high-density products on the market as of February 2008. Consequently, the ALS variables proposed in the present study, GF and OGF, seemed to have great potential to estimate LAI and canopy openness of broad-leaved forest, with accuracy comparable to NDVI, from high-resolution near-infrared imagery.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
go back to reference Carlson TN, Ripley DA (1997) On the relation between NDVI, fractional vegetation cover, and leaf area index. Remote Sens Environ 62:241–251CrossRef Carlson TN, Ripley DA (1997) On the relation between NDVI, fractional vegetation cover, and leaf area index. Remote Sens Environ 62:241–251CrossRef
go back to reference Carreiras JMB, Pereira JMC, Pereira JS (2006) Estimation of tree canopy cover in evergreen oak woodlands using remote sensing. Forest Ecol Manag 224:45–53CrossRef Carreiras JMB, Pereira JMC, Pereira JS (2006) Estimation of tree canopy cover in evergreen oak woodlands using remote sensing. Forest Ecol Manag 224:45–53CrossRef
go back to reference Chen JM, Cihlar J (1996) Retrieving leaf area index of boreal conifer forests using Landsat TM images. Remote Sens Environ 55:153–162CrossRef Chen JM, Cihlar J (1996) Retrieving leaf area index of boreal conifer forests using Landsat TM images. Remote Sens Environ 55:153–162CrossRef
go back to reference Cohen WB, Maiersperger TK, Gower ST, Turner DP (2003) An improved strategy for regression of biophysical variables and Landsat ETM+ data. Remote Sens Environ 84:561–571CrossRef Cohen WB, Maiersperger TK, Gower ST, Turner DP (2003) An improved strategy for regression of biophysical variables and Landsat ETM+ data. Remote Sens Environ 84:561–571CrossRef
go back to reference Colombo R, Bellingeri D, Fasolini D, Marino CM (2003) Retrieval of leaf area index in different vegetation types using high resolution satellite data. Remote Sens Environ 86:120–131CrossRef Colombo R, Bellingeri D, Fasolini D, Marino CM (2003) Retrieval of leaf area index in different vegetation types using high resolution satellite data. Remote Sens Environ 86:120–131CrossRef
go back to reference Frazer GW, Canham CD, Lertzman KP (1999) Gap Light Analyzer (GLA) Imaging software to extract canopy structure and gap light transmission indices from true-colour fisheye photographs, Users Manual and Program Documentation, Version 2.0. Simon Fraser University, Burnaby, British Columbia, CANADA, and Institute of Ecosystem Studies, Millbrook Frazer GW, Canham CD, Lertzman KP (1999) Gap Light Analyzer (GLA) Imaging software to extract canopy structure and gap light transmission indices from true-colour fisheye photographs, Users Manual and Program Documentation, Version 2.0. Simon Fraser University, Burnaby, British Columbia, CANADA, and Institute of Ecosystem Studies, Millbrook
go back to reference Hoshi N, Tatsuhara S, Abe N (2001) Estimation of leaf area index in natural deciduous broad-leaved forests using Landsat TM data. J Jpn For Soc 83:315–321 (in Japanese with English abstract) Hoshi N, Tatsuhara S, Abe N (2001) Estimation of leaf area index in natural deciduous broad-leaved forests using Landsat TM data. J Jpn For Soc 83:315–321 (in Japanese with English abstract)
go back to reference Huete AR (1988) A soil adjusted vegetation index (SAVI). Remote Sens Environ 25:295–309CrossRef Huete AR (1988) A soil adjusted vegetation index (SAVI). Remote Sens Environ 25:295–309CrossRef
go back to reference Jonckheere I, Fleck S, Nackaerts K, Muys B, Coppin P, Weiss M, Baret F (2004) Review of methods for in situ leaf area index determination: Part I. Theories, sensors and hemispherical photography. Agric For Meteorol 121:19–35CrossRef Jonckheere I, Fleck S, Nackaerts K, Muys B, Coppin P, Weiss M, Baret F (2004) Review of methods for in situ leaf area index determination: Part I. Theories, sensors and hemispherical photography. Agric For Meteorol 121:19–35CrossRef
go back to reference Jordan CF (1969) Derivation of leaf area index from quality of light on the forest floor. Ecology 50:663–666CrossRef Jordan CF (1969) Derivation of leaf area index from quality of light on the forest floor. Ecology 50:663–666CrossRef
go back to reference Kusakabe T, Tsuzuki H, Sueda T (2006) Long-range estimation of leaf area index using airborne laser altimetry in Siberian Boreal forest. J Jpn For Soc 88:21–29 (in Japanese with English abstract)CrossRef Kusakabe T, Tsuzuki H, Sueda T (2006) Long-range estimation of leaf area index using airborne laser altimetry in Siberian Boreal forest. J Jpn For Soc 88:21–29 (in Japanese with English abstract)CrossRef
go back to reference Lefsky MA, Hudak AT, Cohen WB, Acker SA (2005) Geographic variability in lidar predictions of forest stand structure in the Pacific Northwest. Remote Sens Environ 95:532–548CrossRef Lefsky MA, Hudak AT, Cohen WB, Acker SA (2005) Geographic variability in lidar predictions of forest stand structure in the Pacific Northwest. Remote Sens Environ 95:532–548CrossRef
go back to reference Maltamo M, Eerikainen K, Pitkanen J, Hyyppa J, Vehmas M (2004) Estimation of timber volume and stem density based on scanning laser altimetry and expected tree size distribution functions. Remote Sens Environ 90:319–330CrossRef Maltamo M, Eerikainen K, Pitkanen J, Hyyppa J, Vehmas M (2004) Estimation of timber volume and stem density based on scanning laser altimetry and expected tree size distribution functions. Remote Sens Environ 90:319–330CrossRef
go back to reference Morsdorf F, Kotz B, Meier E, Itten KI, Allgower B (2006) Estimation of LAI and fractional cover from small footprint airborne laser scanning data based on gap fraction. Remote Sens Environ 104:50–61CrossRef Morsdorf F, Kotz B, Meier E, Itten KI, Allgower B (2006) Estimation of LAI and fractional cover from small footprint airborne laser scanning data based on gap fraction. Remote Sens Environ 104:50–61CrossRef
go back to reference Muraoka H, Koizumi H (2005) Photosynthetic and structural characteristics of canopy and shrub trees in a cool-temperate deciduous broadleaved forest. Agric For Methodol 134:39–59CrossRef Muraoka H, Koizumi H (2005) Photosynthetic and structural characteristics of canopy and shrub trees in a cool-temperate deciduous broadleaved forest. Agric For Methodol 134:39–59CrossRef
go back to reference Naesset (1997) Estimating timber volume of forest stands using airborne laser scanner data. Remote Sens Environ 61:246–253CrossRef Naesset (1997) Estimating timber volume of forest stands using airborne laser scanner data. Remote Sens Environ 61:246–253CrossRef
go back to reference Nakamura A, Morimoto Y, Mizutani Y (2005) Adaptive management approach to increasing the diversity of a 30-year-old planted forest in an urban area of Japan. Landsc Urban Plan 70:291–300CrossRef Nakamura A, Morimoto Y, Mizutani Y (2005) Adaptive management approach to increasing the diversity of a 30-year-old planted forest in an urban area of Japan. Landsc Urban Plan 70:291–300CrossRef
go back to reference Nemani RR, Running SW (1989) Testing a theoretical climate-soil-leaf area hydrologic equilibrium of forests using satellite data and ecosystem simulation. Agric For Methodol 44:245–260CrossRef Nemani RR, Running SW (1989) Testing a theoretical climate-soil-leaf area hydrologic equilibrium of forests using satellite data and ecosystem simulation. Agric For Methodol 44:245–260CrossRef
go back to reference Pearson RL, Miller LD (1972) Remote sensing of standing crop biomass for estimation of the productivity of the short-grass prairie, Pawnee National Grasslands, Colorado. In: Proceeding of the 8th international symposium on remote sens. of environ. ERIM, Ann Arbor, pp 1357–1381 Pearson RL, Miller LD (1972) Remote sensing of standing crop biomass for estimation of the productivity of the short-grass prairie, Pawnee National Grasslands, Colorado. In: Proceeding of the 8th international symposium on remote sens. of environ. ERIM, Ann Arbor, pp 1357–1381
go back to reference Qi J, Chehbouni A, Huete AR, Kerr YH, Sorooshian S (1994) A modified soil adjusted vegetation index (MSAVI). Remote Sens Environ 48:119–126CrossRef Qi J, Chehbouni A, Huete AR, Kerr YH, Sorooshian S (1994) A modified soil adjusted vegetation index (MSAVI). Remote Sens Environ 48:119–126CrossRef
go back to reference Riano D, Valladares F, Condes S, Chuvieco E (2004) Estimation of leaf area index and covered ground from airborne laser scanner (Lidar) in two contrasting forests. Agric For Methodol 124:269–275CrossRef Riano D, Valladares F, Condes S, Chuvieco E (2004) Estimation of leaf area index and covered ground from airborne laser scanner (Lidar) in two contrasting forests. Agric For Methodol 124:269–275CrossRef
go back to reference Rondeaux G, Steven M, Varet F (1996) Optimization of soil-adjusted vegetation indices. Remote Sens Environ 55:95–107CrossRef Rondeaux G, Steven M, Varet F (1996) Optimization of soil-adjusted vegetation indices. Remote Sens Environ 55:95–107CrossRef
go back to reference Roujean JL, Breo FM (1995) Estimating PAR absorbed by vegetation from bidirectional reflectance measurements. Remote Sens Environ 51:375–384CrossRef Roujean JL, Breo FM (1995) Estimating PAR absorbed by vegetation from bidirectional reflectance measurements. Remote Sens Environ 51:375–384CrossRef
go back to reference Rouse JW, Haas RH, Schell JA, Deering DW, Harlan JC (1974) Monitoring the vernal advancement of retrogradation of natural vegetation, NASA/GSFC, Type III, Final Report, Greenbelt, pp 371 Rouse JW, Haas RH, Schell JA, Deering DW, Harlan JC (1974) Monitoring the vernal advancement of retrogradation of natural vegetation, NASA/GSFC, Type III, Final Report, Greenbelt, pp 371
go back to reference Sasaki T, Morimoto Y, Imanishi J (2007) The stand structure and soil properties of the forested area in a large scale reclamation site for 30 years after construction. J Jpn Inst Landsc Arch 70(5):413–418 (in Japanese with English abstract) Sasaki T, Morimoto Y, Imanishi J (2007) The stand structure and soil properties of the forested area in a large scale reclamation site for 30 years after construction. J Jpn Inst Landsc Arch 70(5):413–418 (in Japanese with English abstract)
go back to reference Satake Y, Hara H, Watari S, Tominari T (1989) Wild flowers of Japan: woody plants I and II, 1st edn. Heibonsha, Tokyo Satake Y, Hara H, Watari S, Tominari T (1989) Wild flowers of Japan: woody plants I and II, 1st edn. Heibonsha, Tokyo
go back to reference Setojima M, Akamatsu Y, Funabashi M, Imai Y, Amano M (2002) Measurement of forest area by airborne laser scanner and its applicability. J Jpn Soc Photogram Renote Sens 41(2):15–26 (in Japanese with English abstract) Setojima M, Akamatsu Y, Funabashi M, Imai Y, Amano M (2002) Measurement of forest area by airborne laser scanner and its applicability. J Jpn Soc Photogram Renote Sens 41(2):15–26 (in Japanese with English abstract)
go back to reference Spanner MA, Pierce LL, Running SW, Peterson DL (1990) The seasonality of AVHRR data of temperate coniferous forests: relationship with leaf area index. Remote Sens Environ 33:97–112CrossRef Spanner MA, Pierce LL, Running SW, Peterson DL (1990) The seasonality of AVHRR data of temperate coniferous forests: relationship with leaf area index. Remote Sens Environ 33:97–112CrossRef
go back to reference Weiss M, Baret F, Smith GJ, Jonckheere I, Coppin P (2004) Review of methods for in situ leaf area index determination: part II. Estimation of LAI, errors and sampling. Agric For Meteorol 121:37–53CrossRef Weiss M, Baret F, Smith GJ, Jonckheere I, Coppin P (2004) Review of methods for in situ leaf area index determination: part II. Estimation of LAI, errors and sampling. Agric For Meteorol 121:37–53CrossRef
Metadata
Title
Estimation of leaf area index and canopy openness in broad-leaved forest using an airborne laser scanner in comparison with high-resolution near-infrared digital photography
Authors
Takeshi Sasaki
Junichi Imanishi
Keiko Ioki
Yukihiro Morimoto
Katsunori Kitada
Publication date
01-05-2008
Publisher
Springer Japan
Published in
Landscape and Ecological Engineering / Issue 1/2008
Print ISSN: 1860-1871
Electronic ISSN: 1860-188X
DOI
https://doi.org/10.1007/s11355-008-0041-8

Other articles of this Issue 1/2008

Landscape and Ecological Engineering 1/2008 Go to the issue