Skip to main content
Top

2016 | OriginalPaper | Chapter

Estimation of RCS for a Perfectly Conducting and Plasma Spheres

Authors : Swathi Nambari, G. Sasibhushana Rao, K. S. Ranga Rao

Published in: Microelectronics, Electromagnetics and Telecommunications

Publisher: Springer India

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This paper presents about plasma technology when the plasma is applied on a simple target, like Sphere and its Radar Cross Section (RCS) is computed with respect to the parameters like size, wave frequency and plasma frequency and compared its RCS with a perfectly conducting sphere (Gao Y et al, The calculation of back-scattering radar cross section of plasma spheres. Institute of Electronic Engineering, Hefei, IEEE (2000) [1]). The RCS of a perfectly conducting sphere has been computed using Mie scattering series with a relation given by Kerr DE, Propagation of short radio waves. McGraw-Hill, Newyork (1951) [2]. The analysis given in this is based on spherical polar scattering geometry (SPSG) in which the scattering parameters (a n s ), (b n s ) are defined. The physical interpretation of scattering coefficients aids in visualizing the mechanism of the scattering process. In this paper, not only the RCS of a perfectly conducting Sphere is computed at different frequencies with particular diameter but also the RCS of a perfectly conducting sphere is computed for various diameters at different bands of frequencies. Theoretically computed electron volume density and current density of plasma at a particular plasma frequency for an Argon gas and also RCS comparison is made for a plasma sphere and perfectly conducting sphere at standard dimensions (Skolnik MI, Introduction to Radar Systems. McGraw-Hill, Newyork (1962) [3]) in which RCS is very less for plasma sphere when compared to perfectly conducting sphere. The plasma cover on the targets helps in getting less RCS and also makes the target unseen by the enemy Radar called Active Stealth Technology. RCS treatment in this paper is based on Radar frequencies ranging from 0.1 to 40 GHz.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Y. Gao, J. Shi, J. Wang, The Calculation of Back-Scattering Radar Cross Section of Plasma Spheres (Institute of Electronic Engineering, Hefei, IEEE, 2000) Y. Gao, J. Shi, J. Wang, The Calculation of Back-Scattering Radar Cross Section of Plasma Spheres (Institute of Electronic Engineering, Hefei, IEEE, 2000)
2.
go back to reference D.E. Kerr, Propagation of Short Radio Waves. Radiation Laboratory Series, vol. 13, Chap. 6 (McGraw- Hill, Newyork, 1951) D.E. Kerr, Propagation of Short Radio Waves. Radiation Laboratory Series, vol. 13, Chap. 6 (McGraw- Hill, Newyork, 1951)
3.
go back to reference M.I. Skolnik, Introduction to Radar Systems, 2nd edn. (Newyork, McGraw-Hill, 1962), p. 41 M.I. Skolnik, Introduction to Radar Systems, 2nd edn. (Newyork, McGraw-Hill, 1962), p. 41
4.
go back to reference M.I. Skolnik, Radar Handbook, 2nd edn, Chap. 11, p. 11.1 (McGraw-Hill, New York, 1990) M.I. Skolnik, Radar Handbook, 2nd edn, Chap. 11, p. 11.1 (McGraw-Hill, New York, 1990)
5.
go back to reference S. Kingsley, Understanding Radar Systems, 2nd edn S. Kingsley, Understanding Radar Systems, 2nd edn
6.
go back to reference B.R. Mahafza, Radar System Analysis and Design Using Matlab, 2nd edn, pp. 100–102 (2000) B.R. Mahafza, Radar System Analysis and Design Using Matlab, 2nd edn, pp. 100–102 (2000)
7.
go back to reference N.C. Currie, Techniques of Radar Reflectivity Measurement, p. 27 (Archtech House, 1984) N.C. Currie, Techniques of Radar Reflectivity Measurement, p. 27 (Archtech House, 1984)
8.
go back to reference D.C. Jenn, Radar and Laser Cross Section Engineering (Naval Postgraduate School, California, 2005) D.C. Jenn, Radar and Laser Cross Section Engineering (Naval Postgraduate School, California, 2005)
9.
go back to reference E.F. Knott, Radar Cross Section, 2nd edn. (Archtech House, 1993) E.F. Knott, Radar Cross Section, 2nd edn. (Archtech House, 1993)
10.
go back to reference H.G. Booker, Cold Plasma Wave in Chinese (Science Press, Beijing, 1985) H.G. Booker, Cold Plasma Wave in Chinese (Science Press, Beijing, 1985)
11.
go back to reference L.V. Blake, Calculation of the Radar Cross Section of a Perfectly Conducting Sphere (Naval Research Laboratory(NRL), Washington DC, July, 1972) L.V. Blake, Calculation of the Radar Cross Section of a Perfectly Conducting Sphere (Naval Research Laboratory(NRL), Washington DC, July, 1972)
12.
go back to reference H.C. van de Hulst, Light Scattering by Small Particles (Dover Publication, Inc, 1981) H.C. van de Hulst, Light Scattering by Small Particles (Dover Publication, Inc, 1981)
Metadata
Title
Estimation of RCS for a Perfectly Conducting and Plasma Spheres
Authors
Swathi Nambari
G. Sasibhushana Rao
K. S. Ranga Rao
Copyright Year
2016
Publisher
Springer India
DOI
https://doi.org/10.1007/978-81-322-2728-1_40