Skip to main content
Top

2017 | OriginalPaper | Chapter

3. Estimation of the Dynamic Focused Ultrasound Radiation Force Generated by an Ultrasonic Transducer

Authors : Songmao Chen, Alessandro Sabato, Christopher Niezrecki

Published in: Sensors and Instrumentation, Volume 5

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Conventional excitation techniques such as modal impact hammer and shakers are commonly used in experimental modal testing. However, these excitation approaches require the excitation device to be in direct contact with test articles. It can result in distorted measurements, particularly for small structures, such as a MEMS cantilever and thumb nail size turbine blade. In addition, it is physically difficult or even impossible to apply these contact type excitations to some structures such as low stiffness structures or biological tissues. Moreover, these conventional excitations have limited bandwidth, usually less than 10 kHz, and thus are not applicable to extract information in higher frequency modes. Dynamic focused ultrasound radiation force has been recently used to excite structures with sizes ranging from micro to macro-scale and having a frequency bandwidth from tens of Hertz to up to 100 kHz. Therefore, it can potentially be used as an alternative, non-contact excitation method to these conventional contact excitation techniques for experimental modal analysis. Yet, this force remains to be quantified and calibrated in order to obtain the input-output relationship necessary to compute accurate frequency response functions of test structures. In this work a spherically focused ultrasound transducer (UT) is driven by double sideband suppressed carrier amplitude modulation (DSB-SC AM) signals with a scanning difference frequency and randomly varying carrier frequency. The radiated pressure field generated by the UT is experimentally measured employing a pressure microphone, which acts as a target object for the ultrasonic waves. Then, the recorded values are used to analytically evaluate the dynamic focused ultrasound radiation force. Results show that the measured radiation pressure and estimated force are characterized by a focal spot small enough to be compared to an impact hammer tip appropriate for future modal testing.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Rayleigh, L.: XXXIV. On the pressure of vibrations. London Edinburgh Dublin Philos. Mag. J. Sci. 3(15), 338–346 (1902)CrossRefMATH Rayleigh, L.: XXXIV. On the pressure of vibrations. London Edinburgh Dublin Philos. Mag. J. Sci. 3(15), 338–346 (1902)CrossRefMATH
2.
go back to reference Rayleigh, L.: XLII. On the momentum and pressure of gaseous vibrations, and on the connexion with the virial theorem. London Edinburgh Dublin Philos. Mag. J. Sci. 10(57), 364–374 (1905)CrossRefMATH Rayleigh, L.: XLII. On the momentum and pressure of gaseous vibrations, and on the connexion with the virial theorem. London Edinburgh Dublin Philos. Mag. J. Sci. 10(57), 364–374 (1905)CrossRefMATH
3.
5.
go back to reference Torr, G.: The acoustic radiation force. Am. J. Phys. 52(5), 402–408 (1984)CrossRef Torr, G.: The acoustic radiation force. Am. J. Phys. 52(5), 402–408 (1984)CrossRef
6.
go back to reference Chu, B.T., Apfel, R.E.: Acoustic radiation pressure produced by a beam of sound. J. Acoust. Soc. Am. 72(6), 1673–1687 (1982)CrossRef Chu, B.T., Apfel, R.E.: Acoustic radiation pressure produced by a beam of sound. J. Acoust. Soc. Am. 72(6), 1673–1687 (1982)CrossRef
7.
go back to reference Beyer, R.T.: Radiation pressure—the history of a mislabeled tensor. J. Acoust. Soc. Am. 63(4), 1025–1030 (1978)CrossRef Beyer, R.T.: Radiation pressure—the history of a mislabeled tensor. J. Acoust. Soc. Am. 63(4), 1025–1030 (1978)CrossRef
8.
go back to reference Mitri, F.: Axial time-averaged acoustic radiation force on a cylinder in a nonviscous fluid revisited. Ultrasonics. 50(6), 620–627 (2010)CrossRef Mitri, F.: Axial time-averaged acoustic radiation force on a cylinder in a nonviscous fluid revisited. Ultrasonics. 50(6), 620–627 (2010)CrossRef
9.
go back to reference Wu, J., Du, G.: Acoustic radiation force on a small compressible sphere in a focused beam. J. Acoust. Soc. Am. 87(3), 997–1003 (1990)CrossRef Wu, J., Du, G.: Acoustic radiation force on a small compressible sphere in a focused beam. J. Acoust. Soc. Am. 87(3), 997–1003 (1990)CrossRef
10.
go back to reference Rudenko, O., Sarvazyan, A., Emelianov, S.Y.: Acoustic radiation force and streaming induced by focused nonlinear ultrasound in a dissipative medium. J. Acoust. Soc. Am. 99(5), 2791–2798 (1996)CrossRef Rudenko, O., Sarvazyan, A., Emelianov, S.Y.: Acoustic radiation force and streaming induced by focused nonlinear ultrasound in a dissipative medium. J. Acoust. Soc. Am. 99(5), 2791–2798 (1996)CrossRef
11.
go back to reference Beissner, K.: Radiation force calculations for ultrasonic fields from rectangular weakly focusing transducers. J. Acoust. Soc. Am. 124(4), 1941–1949 (2008)CrossRef Beissner, K.: Radiation force calculations for ultrasonic fields from rectangular weakly focusing transducers. J. Acoust. Soc. Am. 124(4), 1941–1949 (2008)CrossRef
12.
go back to reference King, L.V.: On the acoustic radiation field of the piezo-electric oscillator and the effect of viscosity on transmission. Can. J. Res. 11(2), 135–155 (1934)CrossRef King, L.V.: On the acoustic radiation field of the piezo-electric oscillator and the effect of viscosity on transmission. Can. J. Res. 11(2), 135–155 (1934)CrossRef
13.
go back to reference Yosioka, K., Kawasima, Y.: Acoustic radiation pressure on a compressible sphere. Acta Acust. United Acust. 5(3), 167–173 (1955) Yosioka, K., Kawasima, Y.: Acoustic radiation pressure on a compressible sphere. Acta Acust. United Acust. 5(3), 167–173 (1955)
14.
go back to reference Hasegawa, T., Yosioka, K.: Acoustic-radiation force on a solid elastic sphere. J. Acoust. Soc. Am. 46(5B), 1139–1143 (1969)CrossRefMATH Hasegawa, T., Yosioka, K.: Acoustic-radiation force on a solid elastic sphere. J. Acoust. Soc. Am. 46(5B), 1139–1143 (1969)CrossRefMATH
15.
go back to reference Hasegawa, T.: Comparison of two solutions for acoustic radiation pressure on a sphere. J. Acoust. Soc. Am. 61(6), 1445–1448 (1977)CrossRef Hasegawa, T.: Comparison of two solutions for acoustic radiation pressure on a sphere. J. Acoust. Soc. Am. 61(6), 1445–1448 (1977)CrossRef
16.
go back to reference Hasegawa, T., Saka, K., Inoue, N., et al.: Acoustic radiation force experienced by a solid cylinder in a plane progressive sound field. J. Acoust. Soc. Am. 83(5), 1770–1775 (1988)CrossRef Hasegawa, T., Saka, K., Inoue, N., et al.: Acoustic radiation force experienced by a solid cylinder in a plane progressive sound field. J. Acoust. Soc. Am. 83(5), 1770–1775 (1988)CrossRef
17.
go back to reference Hasegawa, T., Hino, Y., Annou, A., et al.: Acoustic radiation pressure acting on spherical and cylindrical shells. J. Acoust. Soc. Am. 93(1), 154–161 (1993)CrossRef Hasegawa, T., Hino, Y., Annou, A., et al.: Acoustic radiation pressure acting on spherical and cylindrical shells. J. Acoust. Soc. Am. 93(1), 154–161 (1993)CrossRef
18.
19.
go back to reference Settnes, M., Bruus, H.: Forces acting on a small particle in an acoustical field in a viscous fluid. Phys. Rev. E. 85(1), 016327 (2012)CrossRef Settnes, M., Bruus, H.: Forces acting on a small particle in an acoustical field in a viscous fluid. Phys. Rev. E. 85(1), 016327 (2012)CrossRef
20.
go back to reference Nemoto, M., Mizutani, K., Ezure, T., et al.: Measurement of sound fields using Mach–Zehnder interferometer. Jpn. J. Appl. Phys. 43(9R), 6444 (2004)CrossRef Nemoto, M., Mizutani, K., Ezure, T., et al.: Measurement of sound fields using Mach–Zehnder interferometer. Jpn. J. Appl. Phys. 43(9R), 6444 (2004)CrossRef
21.
go back to reference Yao, G., Wang, L.V.: Full-field mapping of ultrasonic field by light-source-synchronized projection. J. Acoust. Soc. Am. 106(4), L36–L40 (1999)CrossRef Yao, G., Wang, L.V.: Full-field mapping of ultrasonic field by light-source-synchronized projection. J. Acoust. Soc. Am. 106(4), L36–L40 (1999)CrossRef
22.
go back to reference Aizawa, K., Poozesh, P., Niezrecki, C., et al.: An acoustic-array based structural health monitoring technique for wind turbine blades, in SPIE/NDE, San Diego, 2015 Aizawa, K., Poozesh, P., Niezrecki, C., et al.: An acoustic-array based structural health monitoring technique for wind turbine blades, in SPIE/NDE, San Diego, 2015
23.
go back to reference Kersemans, M., Smet, P.F., Lammens, N., et al.: Fast reconstruction of a bounded ultrasonic beam using acoustically induced piezo-luminescence. Appl. Phys. Lett. 107(23), 234102 (2015)CrossRef Kersemans, M., Smet, P.F., Lammens, N., et al.: Fast reconstruction of a bounded ultrasonic beam using acoustically induced piezo-luminescence. Appl. Phys. Lett. 107(23), 234102 (2015)CrossRef
24.
go back to reference Chen, S., Niezrecki, C., Avitabile, P.: Experimental mapping of the acoustic field generated by ultrasonic transducers. In The 34th International Modal Analysis Conference, Orlando, 2016 Chen, S., Niezrecki, C., Avitabile, P.: Experimental mapping of the acoustic field generated by ultrasonic transducers. In The 34th International Modal Analysis Conference, Orlando, 2016
25.
go back to reference Chen, S., Niezrecki, C., Avitabile, P., et al.: Numerical simulation and dual experimental mapping of acoustic field generated by ultrasonic transducers. Proc. Inter-Noise Noise-Con. 525(2), 849–856 (2016) Chen, S., Niezrecki, C., Avitabile, P., et al.: Numerical simulation and dual experimental mapping of acoustic field generated by ultrasonic transducers. Proc. Inter-Noise Noise-Con. 525(2), 849–856 (2016)
26.
go back to reference Chen, S., Sabato, A., Niezrecki, C., et al.: Modelling and experimental mapping of the ultrasound pressure field generated from focused ultrasonic transducers using fiber optic acoustic sensors. In 172nd Meeting of the Acoustical Society of America, Honolulu, 2016 Chen, S., Sabato, A., Niezrecki, C., et al.: Modelling and experimental mapping of the ultrasound pressure field generated from focused ultrasonic transducers using fiber optic acoustic sensors. In 172nd Meeting of the Acoustical Society of America, Honolulu, 2016
27.
go back to reference Huber, T. M., Algren, M., Raisbeck, C.: Spatial distribution of acoustic radiation force for non-contact modal excitation. In The 34th International Modal Analysis Conference, Orlando, 2016 Huber, T. M., Algren, M., Raisbeck, C.: Spatial distribution of acoustic radiation force for non-contact modal excitation. In The 34th International Modal Analysis Conference, Orlando, 2016
28.
go back to reference Chen, S., Silva, G.T., Kinnick, R.R., et al.: Measurement of dynamic and static radiation force on a sphere. Phys. Rev. E. 71(5), 056618 (2005)CrossRef Chen, S., Silva, G.T., Kinnick, R.R., et al.: Measurement of dynamic and static radiation force on a sphere. Phys. Rev. E. 71(5), 056618 (2005)CrossRef
29.
go back to reference Fatemi, M., Greenleaf, J.F.: Ultrasound-stimulated vibro-acoustic spectrography. Science. 280(5360), 82–85 (1998)CrossRef Fatemi, M., Greenleaf, J.F.: Ultrasound-stimulated vibro-acoustic spectrography. Science. 280(5360), 82–85 (1998)CrossRef
30.
go back to reference Fatemi, M., Greenleaf, J.F.: Vibro-acoustography: an imaging modality based on ultrasound-stimulated acoustic emission. Proc. Natl. Acad. Sci. 96(12), 6603–6608 (1999)CrossRef Fatemi, M., Greenleaf, J.F.: Vibro-acoustography: an imaging modality based on ultrasound-stimulated acoustic emission. Proc. Natl. Acad. Sci. 96(12), 6603–6608 (1999)CrossRef
31.
go back to reference Fatemi, M., Greenleaf, J.F.: Probing the dynamics of tissue at low frequencies with the radiation force of ultrasound. Phys. Med. Biol. 45(6), 1449 (2000)CrossRef Fatemi, M., Greenleaf, J.F.: Probing the dynamics of tissue at low frequencies with the radiation force of ultrasound. Phys. Med. Biol. 45(6), 1449 (2000)CrossRef
32.
go back to reference Chen, S., Fatemi, M., Kinnick, R., et al.: Comparison of stress field forming methods for vibro-acoustography. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 51(3), 313–321 (2004)CrossRef Chen, S., Fatemi, M., Kinnick, R., et al.: Comparison of stress field forming methods for vibro-acoustography. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 51(3), 313–321 (2004)CrossRef
Metadata
Title
Estimation of the Dynamic Focused Ultrasound Radiation Force Generated by an Ultrasonic Transducer
Authors
Songmao Chen
Alessandro Sabato
Christopher Niezrecki
Copyright Year
2017
DOI
https://doi.org/10.1007/978-3-319-54987-3_3

Premium Partners