Skip to main content

2017 | OriginalPaper | Buchkapitel

3. Estimation of the Dynamic Focused Ultrasound Radiation Force Generated by an Ultrasonic Transducer

verfasst von : Songmao Chen, Alessandro Sabato, Christopher Niezrecki

Erschienen in: Sensors and Instrumentation, Volume 5

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Conventional excitation techniques such as modal impact hammer and shakers are commonly used in experimental modal testing. However, these excitation approaches require the excitation device to be in direct contact with test articles. It can result in distorted measurements, particularly for small structures, such as a MEMS cantilever and thumb nail size turbine blade. In addition, it is physically difficult or even impossible to apply these contact type excitations to some structures such as low stiffness structures or biological tissues. Moreover, these conventional excitations have limited bandwidth, usually less than 10 kHz, and thus are not applicable to extract information in higher frequency modes. Dynamic focused ultrasound radiation force has been recently used to excite structures with sizes ranging from micro to macro-scale and having a frequency bandwidth from tens of Hertz to up to 100 kHz. Therefore, it can potentially be used as an alternative, non-contact excitation method to these conventional contact excitation techniques for experimental modal analysis. Yet, this force remains to be quantified and calibrated in order to obtain the input-output relationship necessary to compute accurate frequency response functions of test structures. In this work a spherically focused ultrasound transducer (UT) is driven by double sideband suppressed carrier amplitude modulation (DSB-SC AM) signals with a scanning difference frequency and randomly varying carrier frequency. The radiated pressure field generated by the UT is experimentally measured employing a pressure microphone, which acts as a target object for the ultrasonic waves. Then, the recorded values are used to analytically evaluate the dynamic focused ultrasound radiation force. Results show that the measured radiation pressure and estimated force are characterized by a focal spot small enough to be compared to an impact hammer tip appropriate for future modal testing.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Rayleigh, L.: XXXIV. On the pressure of vibrations. London Edinburgh Dublin Philos. Mag. J. Sci. 3(15), 338–346 (1902)CrossRefMATH Rayleigh, L.: XXXIV. On the pressure of vibrations. London Edinburgh Dublin Philos. Mag. J. Sci. 3(15), 338–346 (1902)CrossRefMATH
2.
Zurück zum Zitat Rayleigh, L.: XLII. On the momentum and pressure of gaseous vibrations, and on the connexion with the virial theorem. London Edinburgh Dublin Philos. Mag. J. Sci. 10(57), 364–374 (1905)CrossRefMATH Rayleigh, L.: XLII. On the momentum and pressure of gaseous vibrations, and on the connexion with the virial theorem. London Edinburgh Dublin Philos. Mag. J. Sci. 10(57), 364–374 (1905)CrossRefMATH
3.
Zurück zum Zitat Westervelt, P.J.: The theory of steady forces caused by sound waves. J. Acoust. Soc. Am. 23(3), 312–315 (1951)MathSciNetCrossRef Westervelt, P.J.: The theory of steady forces caused by sound waves. J. Acoust. Soc. Am. 23(3), 312–315 (1951)MathSciNetCrossRef
5.
Zurück zum Zitat Torr, G.: The acoustic radiation force. Am. J. Phys. 52(5), 402–408 (1984)CrossRef Torr, G.: The acoustic radiation force. Am. J. Phys. 52(5), 402–408 (1984)CrossRef
6.
Zurück zum Zitat Chu, B.T., Apfel, R.E.: Acoustic radiation pressure produced by a beam of sound. J. Acoust. Soc. Am. 72(6), 1673–1687 (1982)CrossRef Chu, B.T., Apfel, R.E.: Acoustic radiation pressure produced by a beam of sound. J. Acoust. Soc. Am. 72(6), 1673–1687 (1982)CrossRef
7.
Zurück zum Zitat Beyer, R.T.: Radiation pressure—the history of a mislabeled tensor. J. Acoust. Soc. Am. 63(4), 1025–1030 (1978)CrossRef Beyer, R.T.: Radiation pressure—the history of a mislabeled tensor. J. Acoust. Soc. Am. 63(4), 1025–1030 (1978)CrossRef
8.
Zurück zum Zitat Mitri, F.: Axial time-averaged acoustic radiation force on a cylinder in a nonviscous fluid revisited. Ultrasonics. 50(6), 620–627 (2010)CrossRef Mitri, F.: Axial time-averaged acoustic radiation force on a cylinder in a nonviscous fluid revisited. Ultrasonics. 50(6), 620–627 (2010)CrossRef
9.
Zurück zum Zitat Wu, J., Du, G.: Acoustic radiation force on a small compressible sphere in a focused beam. J. Acoust. Soc. Am. 87(3), 997–1003 (1990)CrossRef Wu, J., Du, G.: Acoustic radiation force on a small compressible sphere in a focused beam. J. Acoust. Soc. Am. 87(3), 997–1003 (1990)CrossRef
10.
Zurück zum Zitat Rudenko, O., Sarvazyan, A., Emelianov, S.Y.: Acoustic radiation force and streaming induced by focused nonlinear ultrasound in a dissipative medium. J. Acoust. Soc. Am. 99(5), 2791–2798 (1996)CrossRef Rudenko, O., Sarvazyan, A., Emelianov, S.Y.: Acoustic radiation force and streaming induced by focused nonlinear ultrasound in a dissipative medium. J. Acoust. Soc. Am. 99(5), 2791–2798 (1996)CrossRef
11.
Zurück zum Zitat Beissner, K.: Radiation force calculations for ultrasonic fields from rectangular weakly focusing transducers. J. Acoust. Soc. Am. 124(4), 1941–1949 (2008)CrossRef Beissner, K.: Radiation force calculations for ultrasonic fields from rectangular weakly focusing transducers. J. Acoust. Soc. Am. 124(4), 1941–1949 (2008)CrossRef
12.
Zurück zum Zitat King, L.V.: On the acoustic radiation field of the piezo-electric oscillator and the effect of viscosity on transmission. Can. J. Res. 11(2), 135–155 (1934)CrossRef King, L.V.: On the acoustic radiation field of the piezo-electric oscillator and the effect of viscosity on transmission. Can. J. Res. 11(2), 135–155 (1934)CrossRef
13.
Zurück zum Zitat Yosioka, K., Kawasima, Y.: Acoustic radiation pressure on a compressible sphere. Acta Acust. United Acust. 5(3), 167–173 (1955) Yosioka, K., Kawasima, Y.: Acoustic radiation pressure on a compressible sphere. Acta Acust. United Acust. 5(3), 167–173 (1955)
14.
Zurück zum Zitat Hasegawa, T., Yosioka, K.: Acoustic-radiation force on a solid elastic sphere. J. Acoust. Soc. Am. 46(5B), 1139–1143 (1969)CrossRefMATH Hasegawa, T., Yosioka, K.: Acoustic-radiation force on a solid elastic sphere. J. Acoust. Soc. Am. 46(5B), 1139–1143 (1969)CrossRefMATH
15.
Zurück zum Zitat Hasegawa, T.: Comparison of two solutions for acoustic radiation pressure on a sphere. J. Acoust. Soc. Am. 61(6), 1445–1448 (1977)CrossRef Hasegawa, T.: Comparison of two solutions for acoustic radiation pressure on a sphere. J. Acoust. Soc. Am. 61(6), 1445–1448 (1977)CrossRef
16.
Zurück zum Zitat Hasegawa, T., Saka, K., Inoue, N., et al.: Acoustic radiation force experienced by a solid cylinder in a plane progressive sound field. J. Acoust. Soc. Am. 83(5), 1770–1775 (1988)CrossRef Hasegawa, T., Saka, K., Inoue, N., et al.: Acoustic radiation force experienced by a solid cylinder in a plane progressive sound field. J. Acoust. Soc. Am. 83(5), 1770–1775 (1988)CrossRef
17.
Zurück zum Zitat Hasegawa, T., Hino, Y., Annou, A., et al.: Acoustic radiation pressure acting on spherical and cylindrical shells. J. Acoust. Soc. Am. 93(1), 154–161 (1993)CrossRef Hasegawa, T., Hino, Y., Annou, A., et al.: Acoustic radiation pressure acting on spherical and cylindrical shells. J. Acoust. Soc. Am. 93(1), 154–161 (1993)CrossRef
18.
19.
Zurück zum Zitat Settnes, M., Bruus, H.: Forces acting on a small particle in an acoustical field in a viscous fluid. Phys. Rev. E. 85(1), 016327 (2012)CrossRef Settnes, M., Bruus, H.: Forces acting on a small particle in an acoustical field in a viscous fluid. Phys. Rev. E. 85(1), 016327 (2012)CrossRef
20.
Zurück zum Zitat Nemoto, M., Mizutani, K., Ezure, T., et al.: Measurement of sound fields using Mach–Zehnder interferometer. Jpn. J. Appl. Phys. 43(9R), 6444 (2004)CrossRef Nemoto, M., Mizutani, K., Ezure, T., et al.: Measurement of sound fields using Mach–Zehnder interferometer. Jpn. J. Appl. Phys. 43(9R), 6444 (2004)CrossRef
21.
Zurück zum Zitat Yao, G., Wang, L.V.: Full-field mapping of ultrasonic field by light-source-synchronized projection. J. Acoust. Soc. Am. 106(4), L36–L40 (1999)CrossRef Yao, G., Wang, L.V.: Full-field mapping of ultrasonic field by light-source-synchronized projection. J. Acoust. Soc. Am. 106(4), L36–L40 (1999)CrossRef
22.
Zurück zum Zitat Aizawa, K., Poozesh, P., Niezrecki, C., et al.: An acoustic-array based structural health monitoring technique for wind turbine blades, in SPIE/NDE, San Diego, 2015 Aizawa, K., Poozesh, P., Niezrecki, C., et al.: An acoustic-array based structural health monitoring technique for wind turbine blades, in SPIE/NDE, San Diego, 2015
23.
Zurück zum Zitat Kersemans, M., Smet, P.F., Lammens, N., et al.: Fast reconstruction of a bounded ultrasonic beam using acoustically induced piezo-luminescence. Appl. Phys. Lett. 107(23), 234102 (2015)CrossRef Kersemans, M., Smet, P.F., Lammens, N., et al.: Fast reconstruction of a bounded ultrasonic beam using acoustically induced piezo-luminescence. Appl. Phys. Lett. 107(23), 234102 (2015)CrossRef
24.
Zurück zum Zitat Chen, S., Niezrecki, C., Avitabile, P.: Experimental mapping of the acoustic field generated by ultrasonic transducers. In The 34th International Modal Analysis Conference, Orlando, 2016 Chen, S., Niezrecki, C., Avitabile, P.: Experimental mapping of the acoustic field generated by ultrasonic transducers. In The 34th International Modal Analysis Conference, Orlando, 2016
25.
Zurück zum Zitat Chen, S., Niezrecki, C., Avitabile, P., et al.: Numerical simulation and dual experimental mapping of acoustic field generated by ultrasonic transducers. Proc. Inter-Noise Noise-Con. 525(2), 849–856 (2016) Chen, S., Niezrecki, C., Avitabile, P., et al.: Numerical simulation and dual experimental mapping of acoustic field generated by ultrasonic transducers. Proc. Inter-Noise Noise-Con. 525(2), 849–856 (2016)
26.
Zurück zum Zitat Chen, S., Sabato, A., Niezrecki, C., et al.: Modelling and experimental mapping of the ultrasound pressure field generated from focused ultrasonic transducers using fiber optic acoustic sensors. In 172nd Meeting of the Acoustical Society of America, Honolulu, 2016 Chen, S., Sabato, A., Niezrecki, C., et al.: Modelling and experimental mapping of the ultrasound pressure field generated from focused ultrasonic transducers using fiber optic acoustic sensors. In 172nd Meeting of the Acoustical Society of America, Honolulu, 2016
27.
Zurück zum Zitat Huber, T. M., Algren, M., Raisbeck, C.: Spatial distribution of acoustic radiation force for non-contact modal excitation. In The 34th International Modal Analysis Conference, Orlando, 2016 Huber, T. M., Algren, M., Raisbeck, C.: Spatial distribution of acoustic radiation force for non-contact modal excitation. In The 34th International Modal Analysis Conference, Orlando, 2016
28.
Zurück zum Zitat Chen, S., Silva, G.T., Kinnick, R.R., et al.: Measurement of dynamic and static radiation force on a sphere. Phys. Rev. E. 71(5), 056618 (2005)CrossRef Chen, S., Silva, G.T., Kinnick, R.R., et al.: Measurement of dynamic and static radiation force on a sphere. Phys. Rev. E. 71(5), 056618 (2005)CrossRef
29.
Zurück zum Zitat Fatemi, M., Greenleaf, J.F.: Ultrasound-stimulated vibro-acoustic spectrography. Science. 280(5360), 82–85 (1998)CrossRef Fatemi, M., Greenleaf, J.F.: Ultrasound-stimulated vibro-acoustic spectrography. Science. 280(5360), 82–85 (1998)CrossRef
30.
Zurück zum Zitat Fatemi, M., Greenleaf, J.F.: Vibro-acoustography: an imaging modality based on ultrasound-stimulated acoustic emission. Proc. Natl. Acad. Sci. 96(12), 6603–6608 (1999)CrossRef Fatemi, M., Greenleaf, J.F.: Vibro-acoustography: an imaging modality based on ultrasound-stimulated acoustic emission. Proc. Natl. Acad. Sci. 96(12), 6603–6608 (1999)CrossRef
31.
Zurück zum Zitat Fatemi, M., Greenleaf, J.F.: Probing the dynamics of tissue at low frequencies with the radiation force of ultrasound. Phys. Med. Biol. 45(6), 1449 (2000)CrossRef Fatemi, M., Greenleaf, J.F.: Probing the dynamics of tissue at low frequencies with the radiation force of ultrasound. Phys. Med. Biol. 45(6), 1449 (2000)CrossRef
32.
Zurück zum Zitat Chen, S., Fatemi, M., Kinnick, R., et al.: Comparison of stress field forming methods for vibro-acoustography. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 51(3), 313–321 (2004)CrossRef Chen, S., Fatemi, M., Kinnick, R., et al.: Comparison of stress field forming methods for vibro-acoustography. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 51(3), 313–321 (2004)CrossRef
Metadaten
Titel
Estimation of the Dynamic Focused Ultrasound Radiation Force Generated by an Ultrasonic Transducer
verfasst von
Songmao Chen
Alessandro Sabato
Christopher Niezrecki
Copyright-Jahr
2017
DOI
https://doi.org/10.1007/978-3-319-54987-3_3

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.