Skip to main content
Top
Published in: Experiments in Fluids 2/2020

01-02-2020 | Research Article

Evaluation of a full-scale helium-filled soap bubble generator

Authors: Bradley Gibeau, Drew Gingras, Sina Ghaemi

Published in: Experiments in Fluids | Issue 2/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Various aspects of the design and operation of a full-scale helium-filled soap bubble generator are studied. Shadowgraphy, particle image/tracking velocimetry, hotwire anemometry, and Monte Carlo simulations are employed to investigate bubble production regimes, diameters, production rates, time responses, and the flow quality downstream from the full-scale system. Modifications to internal nozzle geometry are found to greatly impact the production regimes that the nozzles operate within. Specifically, improving the axisymmetry of the air flow within a nozzle leads to desirable bubble formation over a larger range of input combinations and the ability to operate at larger input rates in general. The input of bubble film solution (BFS) is also found to be important for ensuring proper operation, as both small and large inputs lead to undesirable production. A previously defined theoretical relationship (Faleiros et al., Exp Fluids 60:40, 2019) between input parameters and the mean bubble time response is confirmed but found to vary depending on nozzle operation, as spilled BFS and leaked helium during bubble formation cause deviation from theoretical operation. Monte Carlo simulations reveal that the spatial filtering of particle image velocimetry (PIV) reduces the standard deviation of the effective distribution of the bubble time responses by a factor of \({\text{PPIR}}^{ - 1/2}\), where PPIR is the number of particles per interrogation region. This power law is used to derive an equation for estimating the minimum time scale of the flow that can be resolved using the bubbles from a given generator during applications of PIV. Finally, the wind tunnel flow downstream from a full-scale generator is found to be affected by the blockage of the structure, with the freestream deficit increasing by at most 1.2% of the mean and the freestream turbulence intensity increasing by at most 0.3% for freestream velocities of 6 m/s or greater.

Graphic abstract

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Bosbach J, Kühn M, Wagner C (2009) Large scale particle image velocimetry with helium filled soap bubbles. Exp Fluids 46:539–547CrossRef Bosbach J, Kühn M, Wagner C (2009) Large scale particle image velocimetry with helium filled soap bubbles. Exp Fluids 46:539–547CrossRef
go back to reference Caridi GCA, Ragni D, Sciacchitano A, Scarano F (2016) HFSB-seeding for large-scale tomographic PIV in wind tunnels. Exp Fluids 57:190CrossRef Caridi GCA, Ragni D, Sciacchitano A, Scarano F (2016) HFSB-seeding for large-scale tomographic PIV in wind tunnels. Exp Fluids 57:190CrossRef
go back to reference Caridi GCA, Sciacchitano A, Scarano F (2017) Helium-filled soap bubbles for vortex core velocimetry. Exp Fluids 58:130CrossRef Caridi GCA, Sciacchitano A, Scarano F (2017) Helium-filled soap bubbles for vortex core velocimetry. Exp Fluids 58:130CrossRef
go back to reference Elsinga GE, Scarano F, Wieneke B, van Oudheusden BW (2006) Tomographic particle image velocimetry. Exp Fluids 41:933–947CrossRef Elsinga GE, Scarano F, Wieneke B, van Oudheusden BW (2006) Tomographic particle image velocimetry. Exp Fluids 41:933–947CrossRef
go back to reference Faleiros DE, Tuinstra M, Sciacchitano A, Scarano F (2018) Helium-filled soap bubbles tracing fidelity in wall-bounded turbulence. Exp Fluids 59:56CrossRef Faleiros DE, Tuinstra M, Sciacchitano A, Scarano F (2018) Helium-filled soap bubbles tracing fidelity in wall-bounded turbulence. Exp Fluids 59:56CrossRef
go back to reference Faleiros DE, Tuinstra M, Sciacchitano A, Scarano F (2019) Generation and control of helium-filled soap bubbles for PIV. Exp Fluids 60:40CrossRef Faleiros DE, Tuinstra M, Sciacchitano A, Scarano F (2019) Generation and control of helium-filled soap bubbles for PIV. Exp Fluids 60:40CrossRef
go back to reference Gibeau B, Ghaemi S (2018) A modular, 3D-printed helium-filled soap bubble generator for large-scale volumetric flow measurements. Exp Fluids 59:178CrossRef Gibeau B, Ghaemi S (2018) A modular, 3D-printed helium-filled soap bubble generator for large-scale volumetric flow measurements. Exp Fluids 59:178CrossRef
go back to reference Hale RW, Tan P, Stowell RC, Ordway DE (1971) Development of an integrated system for flow visualization in air using neutrally-buoyant bubbles. In: SAI-RR 7107. Sage Action Inc, Ithaca Hale RW, Tan P, Stowell RC, Ordway DE (1971) Development of an integrated system for flow visualization in air using neutrally-buoyant bubbles. In: SAI-RR 7107. Sage Action Inc, Ithaca
go back to reference Huhn F, Schanz D, Gesemann S, Dierksheide U, van de Meerendonk R, Schröder A (2017) Large-scale volumetric flow measurement in a pure thermal plume by dense tracking of helium-filled soap bubbles. Exp Fluids 58:116CrossRef Huhn F, Schanz D, Gesemann S, Dierksheide U, van de Meerendonk R, Schröder A (2017) Large-scale volumetric flow measurement in a pure thermal plume by dense tracking of helium-filled soap bubbles. Exp Fluids 58:116CrossRef
go back to reference Jux C, Sciacchitano A, Schneiders JFG, Scarano F (2018) Robotic volumetric PIV of a full-scale cyclist. Exp Fluids 59:74CrossRef Jux C, Sciacchitano A, Schneiders JFG, Scarano F (2018) Robotic volumetric PIV of a full-scale cyclist. Exp Fluids 59:74CrossRef
go back to reference Keane RD, Adrian RJ (1992) Theory of cross-correlation analysis of PIV images. Appl Sci Res 49:191–215CrossRef Keane RD, Adrian RJ (1992) Theory of cross-correlation analysis of PIV images. Appl Sci Res 49:191–215CrossRef
go back to reference Kerho MF, Bragg MB (1994) Neutrally buoyant bubbles used as flow tracers in air. Exp Fluids 16:393–400CrossRef Kerho MF, Bragg MB (1994) Neutrally buoyant bubbles used as flow tracers in air. Exp Fluids 16:393–400CrossRef
go back to reference Kühn M, Ehrenfried K, Bosbach J, Wagner C (2011) Large-scale tomographic particle image velocimetry using helium-filled soap bubbles. Exp Fluids 50:929–948CrossRef Kühn M, Ehrenfried K, Bosbach J, Wagner C (2011) Large-scale tomographic particle image velocimetry using helium-filled soap bubbles. Exp Fluids 50:929–948CrossRef
go back to reference Meinhart CD, Wereley ST, Santiago JG (2000) A PIV algorithm for estimating time-averaged velocity fields. J Fluids Eng 122:285–289CrossRef Meinhart CD, Wereley ST, Santiago JG (2000) A PIV algorithm for estimating time-averaged velocity fields. J Fluids Eng 122:285–289CrossRef
go back to reference Müller D, Müller B, Renz U (2001) Three-dimensional particle-streak tracking (PST) velocity measurements of a heat exchanger inlet flow. Exp Fluids 30:645–656CrossRef Müller D, Müller B, Renz U (2001) Three-dimensional particle-streak tracking (PST) velocity measurements of a heat exchanger inlet flow. Exp Fluids 30:645–656CrossRef
go back to reference Raffel M, Willert CE, Scarano F, Kähler C, Wereley ST, Kompenhans J (2018) Particle image velocimetry: a practical guide. Springer, BerlinCrossRef Raffel M, Willert CE, Scarano F, Kähler C, Wereley ST, Kompenhans J (2018) Particle image velocimetry: a practical guide. Springer, BerlinCrossRef
go back to reference Scarano F (2013) Tomographic PIV: principles and practice. Meas Sci Technol 24:012001CrossRef Scarano F (2013) Tomographic PIV: principles and practice. Meas Sci Technol 24:012001CrossRef
go back to reference Scarano F, Ghaemi S, Caridi GCA, Bosbach J, Dierksheide U, Sciacchitano A (2015) On the use of helium-filled soap bubbles for large-scale tomographic PIV in wind tunnel experiments. Exp Fluids 56:42CrossRef Scarano F, Ghaemi S, Caridi GCA, Bosbach J, Dierksheide U, Sciacchitano A (2015) On the use of helium-filled soap bubbles for large-scale tomographic PIV in wind tunnel experiments. Exp Fluids 56:42CrossRef
go back to reference Terra W, Sciacchitano A, Scarano F (2017) Aerodynamic drag of a transitioning sphere by large-scale tomographic-PIV. Exp Fluids 58:83CrossRef Terra W, Sciacchitano A, Scarano F (2017) Aerodynamic drag of a transitioning sphere by large-scale tomographic-PIV. Exp Fluids 58:83CrossRef
go back to reference Tropea C, Yarin AL, Foss J (2007) Handbook of experimental fluid mechanics. Springer, Berlin Tropea C, Yarin AL, Foss J (2007) Handbook of experimental fluid mechanics. Springer, Berlin
Metadata
Title
Evaluation of a full-scale helium-filled soap bubble generator
Authors
Bradley Gibeau
Drew Gingras
Sina Ghaemi
Publication date
01-02-2020
Publisher
Springer Berlin Heidelberg
Published in
Experiments in Fluids / Issue 2/2020
Print ISSN: 0723-4864
Electronic ISSN: 1432-1114
DOI
https://doi.org/10.1007/s00348-019-2853-8

Other articles of this Issue 2/2020

Experiments in Fluids 2/2020 Go to the issue

Premium Partners