Skip to main content
Top

2021 | OriginalPaper | Chapter

Evaluation of Partial Safety Factors for the Structural Assessment of Existings Masonry Buildings

Authors : Pietro Croce, Maria L. Beconcini, Paolo Formichi, Filippo Landi, Benedetta Puccini, Vincenzo Zotti

Published in: 18th International Probabilistic Workshop

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The assessment of existing structures and infrastructures is a primary task in modern engineering, both for its key economic significance and for the extent and the significance of the built environment, nonetheless operational rules and standards for existing structures are often missing or insufficient, especially for masonry constructions. Existing masonry buildings, even in limited geographical regions, are characterized by many masonry types, differing in basic material, mortar, block shape, block texture, workmanship, degree of decay and so on. For these reasons, relevant mechanical parameters of masonry are often very uncertain; their rough estimation thus leads to inaccurate conclusions about the reliability of the investigated structure. In this work, a methodology to derive a refined probabilistic description of masonry parameters is first outlined starting from the analysis of a database of in-situ tests results collected by the authors. In particular, material classes, representing low, medium and high-quality masonry, are identified for a given masonry typology by means of the definition of a Gaussian Mixture Model. The probability density functions so obtained are the fundamental basis for the implementation of probabilistic analysis methods. In particular, the study will focus on the evaluation of masonry classes for compressive strength of stone masonry, considering a relevant database of semi-destructive, double flat jacks, in-situ test results. The statistical properties of the identified masonry classes, which can be used for the direct probabilistic assessment of structural performance of masonry walls under vertical loads, are finally considered for the evaluation of suitable partial safety factors, γM, to be used in the engineering practice.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Croce, P., & Holicky, M. (2015). Operational methods for the assessment and management of aging infrastructure. TEP: Pisa, Italy. Croce, P., & Holicky, M. (2015). Operational methods for the assessment and management of aging infrastructure. TEP: Pisa, Italy.
2.
go back to reference Domański, T., & Matysek, P. (2018). The reliability of masonry structures—Evaluation methods for historical buildings. Technical Transactions, 9, 91–108. Domański, T., & Matysek, P. (2018). The reliability of masonry structures—Evaluation methods for historical buildings. Technical Transactions, 9, 91–108.
3.
go back to reference Sykora, M., et al. (2013). Probabilistic model for compressive strength of historic masonry. In Safety, reliability and risk analysis beyond the horizon (ESREL 2013). Sykora, M., et al. (2013). Probabilistic model for compressive strength of historic masonry. In Safety, reliability and risk analysis beyond the horizon (ESREL 2013).
4.
go back to reference Marsili, F., et al. (2017). A Bayesian network for the definition of probability models for masonry mechanical parameters. In 14th IPW (pp. 253–268). Springer. Marsili, F., et al. (2017). A Bayesian network for the definition of probability models for masonry mechanical parameters. In 14th IPW (pp. 253–268). Springer.
5.
go back to reference Witzany, J., Čejka, T., Sykora, M., & Holický, M. (2015). Strength assessment of historic brick masonry. Journal of Civil Engineering and Management. Witzany, J., Čejka, T., Sykora, M., & Holický, M. (2015). Strength assessment of historic brick masonry. Journal of Civil Engineering and Management.
6.
go back to reference EN 1996-1-1:2005. (2005). Eurocode 6—Design of masonry structures. Brussels: CEN. EN 1996-1-1:2005. (2005). Eurocode 6—Design of masonry structures. Brussels: CEN.
7.
go back to reference ASTM, American Society for Testing and Materials. (1991). Standard test method for in-situ measurement of masonry deformability properties using flat jack method. C 1197-91. ASTM, American Society for Testing and Materials. (1991). Standard test method for in-situ measurement of masonry deformability properties using flat jack method. C 1197-91.
8.
go back to reference Croce, P., et al. (2018). Shear modulus of masonry walls: A critical review. Procedia Structure Integrity, 11, 339–346.CrossRef Croce, P., et al. (2018). Shear modulus of masonry walls: A critical review. Procedia Structure Integrity, 11, 339–346.CrossRef
9.
go back to reference Croce, P., et al. (2020). In situ tests procedures for the evaluation of masonry mechanical parameters. In 4th International Conference on Protection of Historical Constructions, PROHITECH 2020. Athens, Greece (Accepted for publication). Croce, P., et al. (2020). In situ tests procedures for the evaluation of masonry mechanical parameters. In 4th International Conference on Protection of Historical Constructions, PROHITECH 2020. Athens, Greece (Accepted for publication).
10.
go back to reference EN 1990:2002. (2002). Eurocode—Basis of structural design. Brussels: CEN. EN 1990:2002. (2002). Eurocode—Basis of structural design. Brussels: CEN.
11.
go back to reference Henzel, J., & Karl, S. (1987). Determination of strength of mortar in the joints of masonry by compression tests on small specimens. Darmstadt Concrete, 2, 123–136. Henzel, J., & Karl, S. (1987). Determination of strength of mortar in the joints of masonry by compression tests on small specimens. Darmstadt Concrete, 2, 123–136.
12.
go back to reference Gucci, N., & Barsotti, R. (1995). A non-destructive technique for the determination of mortar load capacity in situ. Materials and Structures, 28, 276–283.CrossRef Gucci, N., & Barsotti, R. (1995). A non-destructive technique for the determination of mortar load capacity in situ. Materials and Structures, 28, 276–283.CrossRef
13.
go back to reference Croce, P., et al. (2021). Bayesian methodology for probabilistic description of mechanical parameters of masonry walls. ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering, 7(2), 04021008. Croce, P., et al. (2021). Bayesian methodology for probabilistic description of mechanical parameters of masonry walls. ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering, 7(2), 04021008.
14.
go back to reference Council, I. P. W. (2019). Guidelines for application of Italian building code. Roma, Italy: Istituto Poligrafico e Zecca dello Stato (In Italian). Council, I. P. W. (2019). Guidelines for application of Italian building code. Roma, Italy: Istituto Poligrafico e Zecca dello Stato (In Italian).
15.
go back to reference Borri, A., et al. (2015). A method for the analysis and classification of historic masonry. Bulletin of Earthquake Engineering, 13(9), 2647–2665.CrossRef Borri, A., et al. (2015). A method for the analysis and classification of historic masonry. Bulletin of Earthquake Engineering, 13(9), 2647–2665.CrossRef
16.
go back to reference Croce, P., Marsili, F., Klawonn, F., Formichi, P., & Landi, F. (2018). (2018) Evaluation of statistical parameters of concrete strength from secondary experimental test data. Construction and Building Materials, 163, 343–359.CrossRef Croce, P., Marsili, F., Klawonn, F., Formichi, P., & Landi, F. (2018). (2018) Evaluation of statistical parameters of concrete strength from secondary experimental test data. Construction and Building Materials, 163, 343–359.CrossRef
17.
go back to reference Croce, P., et al. (2020). Statistical parameters of steel rebars of reinforced concrete existing structures. In Proceedings of the 30th European Safety and Reliability Conference and the 15th Probabilistic Safety Assessment and Management Conference, 4751–4757, Research Publishing: Singapore. Croce, P., et al. (2020). Statistical parameters of steel rebars of reinforced concrete existing structures. In Proceedings of the 30th European Safety and Reliability Conference and the 15th Probabilistic Safety Assessment and Management Conference, 4751–4757, Research Publishing: Singapore.
18.
go back to reference Press, W. H., Tevkolsky, S. A., Vetterling, W. T., & Flannery, B. P. (2007). Numerical recipes, the art of scientific computing (3rd ed.). NY: Cambridge University Press.MATH Press, W. H., Tevkolsky, S. A., Vetterling, W. T., & Flannery, B. P. (2007). Numerical recipes, the art of scientific computing (3rd ed.). NY: Cambridge University Press.MATH
19.
20.
go back to reference Luechinger, P., et al. (2015). New European technical rules for the assessment and retrofitting of existing structures (Joint Research Center (JRC) 94918 Report). Luechinger, P., et al. (2015). New European technical rules for the assessment and retrofitting of existing structures (Joint Research Center (JRC) 94918 Report).
21.
go back to reference Fédération internationale du béton (fib) Bulletin 80. (2016). Partial factor methods for existing concrete structures. Germany: DCC, Siegmar Kästl e.K. Fédération internationale du béton (fib) Bulletin 80. (2016). Partial factor methods for existing concrete structures. Germany: DCC, Siegmar Kästl e.K.
22.
go back to reference Vrouwenvelder, T., & Scholten, N. (2010). Assessment criteria for existing structures. Structural Engineering International, 20(1), 62–65.CrossRef Vrouwenvelder, T., & Scholten, N. (2010). Assessment criteria for existing structures. Structural Engineering International, 20(1), 62–65.CrossRef
23.
go back to reference Sykora, M., & Holicky, M. (2012). Target reliability levels for the assessment of existing structures—Case study. In Proceedings of IALCCE 2012, Vienna, Leiden: CRC Press/Balkema. Sykora, M., & Holicky, M. (2012). Target reliability levels for the assessment of existing structures—Case study. In Proceedings of IALCCE 2012, Vienna, Leiden: CRC Press/Balkema.
Metadata
Title
Evaluation of Partial Safety Factors for the Structural Assessment of Existings Masonry Buildings
Authors
Pietro Croce
Maria L. Beconcini
Paolo Formichi
Filippo Landi
Benedetta Puccini
Vincenzo Zotti
Copyright Year
2021
DOI
https://doi.org/10.1007/978-3-030-73616-3_25