Skip to main content
Top

2021 | OriginalPaper | Chapter

FORM/SORM, SS and MCMC: A Mathematical Analysis of Methods for Calculating Failure Probabilities

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

A basic problem in structural reliability is the calculation of failure probabilities in high dimensional spaces. FORM/SORM concepts are based on the Laplace method for the pdf of the failure domain at its modes. With increasing dimensions the quality of SORM decreases considerably. The straightforward solution would have been to improve the SORM approximations. However, instead of this, a new approach, subset simulation (SS) was championed by many researchers. By the proponents of SS it is maintained that SS does not suffer from the deficiencies of SORM and can solve high-dimensional reliability problems for very small probabilities easily. However by the author in numerous examples the shortcomings of SS were outlined and it was finally shown that SS is in fact a disguised Monte Carlo copy of asymptotic SORM. The points computed by SS are converging towards the beta points as seen for example in the diagrams in many SS papers. One way to improve FORM/SORM one runs, starting near the modes i.e. beta points, MCMC’s which move through the failure domain \(F=\{\mathbf {x} ; g(\mathbf {x})< 0\}\) with \(g(\mathbf {x})\) the LSF. With MCMC one can calculate integrals over F with the pdf \(\phi (\mathbf {x})\), but not the normalizing constant P(F). However, a little artifice helps. Comparing the failure domain with another having a known probability content; not P(F) has to be estimated, but the quotient of these two probabilities. A good choice for this is \(F_L=\{x ; g_L(\mathbf {x})< 0\}\) given by the linearized LSF \(g_L(\mathbf {x})\), so \(P(F_L)= \Phi (-|\mathbf {x}^*|)\) with \(\mathbf {x}^*\) the beta point. Running two MCMC’s, one on F and one on \(F_L\)  by comparing them it is possible to obtain an estimate for the failure probability P(F). Another way is to use a modified line sampling method. For each design point for a random set of points on the tangential plane the distance of the plane to the limit state surface on the ray normal to the tangential space is determined and the corresponding normal line integral. Improving FORM/SORM by MCMC adds the advantages of analytic methods to the flexibility of the Monte Carlo approach.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Au, S. K., & Beck, J. L. (2001). Estimation of small failure probabilities in high dimensions by subset simulation. Probabilistic Engineering Mechanics, 16, 263–277.CrossRef Au, S. K., & Beck, J. L. (2001). Estimation of small failure probabilities in high dimensions by subset simulation. Probabilistic Engineering Mechanics, 16, 263–277.CrossRef
2.
go back to reference Au, S.-K., & Wang, Y. (2014). Engineering risk assessment with subset simulation. New York: Wiley.CrossRef Au, S.-K., & Wang, Y. (2014). Engineering risk assessment with subset simulation. New York: Wiley.CrossRef
3.
go back to reference Bennett, C. H. (1976). Efficient estimation of free energy differences from Monte Carlo data. Journal of Computational Physics, 22, 245–268.MathSciNetCrossRef Bennett, C. H. (1976). Efficient estimation of free energy differences from Monte Carlo data. Journal of Computational Physics, 22, 245–268.MathSciNetCrossRef
4.
go back to reference Betancourt, M. (2017). A conceptual introduction to Hamiltonian Monte Carlo. In: arXiv e-prints, S. 1701.02434. Betancourt, M. (2017). A conceptual introduction to Hamiltonian Monte Carlo. In: arXiv e-prints, S. 1701.02434.
5.
go back to reference Botev, Z., & Kroese, D. (2012). Efficient Monte Carlo simulation via the generalized splitting method. Statistics and Computing, 22, 1–16.MathSciNetCrossRef Botev, Z., & Kroese, D. (2012). Efficient Monte Carlo simulation via the generalized splitting method. Statistics and Computing, 22, 1–16.MathSciNetCrossRef
6.
go back to reference Breitung, K. (1984). Asymptotic approximations for multinormal integrals. Journal of the Engineering Mechanics Division ASCE, 110, Nr. 3, S. 357–366. Breitung, K. (1984). Asymptotic approximations for multinormal integrals. Journal of the Engineering Mechanics Division ASCE, 110, Nr. 3, S. 357–366.
8.
go back to reference Breitung, K. (2018). On subsets and onions: Lost in outer space. In Proceedings of the Joint ICVRAM ISUMA UNCERTAINTIES Conference 2018. Available on researchgate.net. Breitung, K. (2018). On subsets and onions: Lost in outer space. In Proceedings of the Joint ICVRAM ISUMA UNCERTAINTIES Conference 2018. Available on researchgate.net.
9.
go back to reference Breitung, K. (2019). SORM, subset simulation and simulated annealing. In IPW2019, 17th International Probabilistic Workshop, 11–13 September, Edinburgh, UK, S. 57–61. Breitung, K. (2019). SORM, subset simulation and simulated annealing. In IPW2019, 17th International Probabilistic Workshop, 11–13 September, Edinburgh, UK, S. 57–61.
10.
go back to reference Breitung, K. (2019). The geometry of limit state function graphs and subset simulation. Reliability Engineering and System Safety, 182, 98–106.CrossRef Breitung, K. (2019). The geometry of limit state function graphs and subset simulation. Reliability Engineering and System Safety, 182, 98–106.CrossRef
11.
go back to reference Breitung, K. (2020). Improvement of FORM/SORM estimates by Markov Chain Monte Carlo. In E. Zio, (Hrsg.): Proceedings of ESREL 2020 to appear. Breitung, K. (2020). Improvement of FORM/SORM estimates by Markov Chain Monte Carlo. In E. Zio, (Hrsg.): Proceedings of ESREL 2020 to appear.
12.
go back to reference Breitung, K., & Hohenbichler, M. (1989). Asymptotic approximations for multivariate integrals with an application to multinormal probabilities. Journal of Multivariate Analysis, 30, 80–97.MathSciNetCrossRef Breitung, K., & Hohenbichler, M. (1989). Asymptotic approximations for multivariate integrals with an application to multinormal probabilities. Journal of Multivariate Analysis, 30, 80–97.MathSciNetCrossRef
13.
go back to reference Cui, F., & Ghosn, M. (2019). Implementation of machine learning techniques into the Subset Simulation method. Structural Safety, S. 12–25. Cui, F., & Ghosn, M. (2019). Implementation of machine learning techniques into the Subset Simulation method. Structural Safety, S. 12–25.
14.
go back to reference Katafygiotis, L., & Zuev, K. (2007). Geometric insight into the challenges of solving high-dimensional reliability problems. In: Probabilistic Engineering Mechanics, 23, Nr. 2, S. 208–218. Katafygiotis, L., & Zuev, K. (2007). Geometric insight into the challenges of solving high-dimensional reliability problems. In: Probabilistic Engineering Mechanics, 23, Nr. 2, S. 208–218.
15.
go back to reference Lemieux, C. (2009). Monte Carlo and Quasi-Monte Carlo sampling. Dordrecht : Springer (Springer Series in Statistics). Lemieux, C. (2009). Monte Carlo and Quasi-Monte Carlo sampling. Dordrecht : Springer (Springer Series in Statistics).
16.
go back to reference Meng, X.-L., & Wong, W. (1996). Simulating ratios of normalizing constants via a simple identity: A theoretical exploration. Statistica Sinica, 6, 831–860.MathSciNetMATH Meng, X.-L., & Wong, W. (1996). Simulating ratios of normalizing constants via a simple identity: A theoretical exploration. Statistica Sinica, 6, 831–860.MathSciNetMATH
17.
go back to reference Monahan, J. (2011). Numerical methods in statistics. Cambridge: Cambridge University Press. Monahan, J. (2011). Numerical methods in statistics. Cambridge: Cambridge University Press.
20.
go back to reference Piaget, J. (1971). Structuralism. London, UK: Routledge & Kegan Paul PLC, 1971. Translated from the French. Piaget, J. (1971). Structuralism. London, UK: Routledge & Kegan Paul PLC, 1971. Translated from the French.
21.
go back to reference Pompe, E., Holmes, C., & Łatuszyński, K. (2018). A framework for adaptive MCMC targeting multimodal distributions. In: arXiv e-prints, Dec, S. arXiv:1812.02609. Pompe, E., Holmes, C., & Łatuszyński, K. (2018). A framework for adaptive MCMC targeting multimodal distributions. In: arXiv e-prints, Dec, S. arXiv:​1812.​02609.
22.
go back to reference Ramsey, F., & Schafer, D. (2012). The statistical sleuth: A course in methods of data analysis. Boston: Cengage Learning.MATH Ramsey, F., & Schafer, D. (2012). The statistical sleuth: A course in methods of data analysis. Boston: Cengage Learning.MATH
23.
go back to reference Rickart, C. (1995). Structuralism and structures: A mathematical perspective. Singapore: World Scientific.CrossRef Rickart, C. (1995). Structuralism and structures: A mathematical perspective. Singapore: World Scientific.CrossRef
24.
go back to reference Tarantola, A. (2005). Inverse problem theory. Philadelphia, PA: SIAM.MATH Tarantola, A. (2005). Inverse problem theory. Philadelphia, PA: SIAM.MATH
25.
go back to reference Thorpe, J. (1979). Elementary topics in differential geometry. New York: Springer.CrossRef Thorpe, J. (1979). Elementary topics in differential geometry. New York: Springer.CrossRef
26.
go back to reference Uribe, F. (2018). Subset simulation. Engineering Risk Analysis Group Technische Universitat Munchen. Uribe, F. (2018). Subset simulation. Engineering Risk Analysis Group Technische Universitat Munchen.
27.
go back to reference Valdebenito, M. A., Pradlwater, H., & Schuëller, G. : The role of the design point for calculating failure probabilities in view of dimensionality and structural nonlinearities. Structural Safety, 32, Nr. 2, S. 101–111. Valdebenito, M. A., Pradlwater, H., & Schuëller, G. : The role of the design point for calculating failure probabilities in view of dimensionality and structural nonlinearities. Structural Safety, 32, Nr. 2, S. 101–111.
28.
go back to reference Zio, E. (2013). The Monte Carlo simulation method for system reliability and risk analysis. London, UK: Springer.CrossRef Zio, E. (2013). The Monte Carlo simulation method for system reliability and risk analysis. London, UK: Springer.CrossRef
Metadata
Title
FORM/SORM, SS and MCMC: A Mathematical Analysis of Methods for Calculating Failure Probabilities
Author
Karl Breitung
Copyright Year
2021
DOI
https://doi.org/10.1007/978-3-030-73616-3_26