Skip to main content
Top
Published in: Clean Technologies and Environmental Policy 1/2011

01-02-2011 | Original Paper

Evaluation of potential integration of entrapped mixed microbial cell and membrane bioreactor processes for biological wastewater treatment/reuse

Authors: Jia Zhu, C. F. Lin, J. C. M. Kao, P. Y. Yang

Published in: Clean Technologies and Environmental Policy | Issue 1/2011

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The challenge of biological wastewater treatment process is the design and operation of effective retention of mixed microbial cells within the reactor. Entrapped mixed microbial cell (EMMC) technology is designed to entrap the mixed microbial cells in polymeric carriers; membrane bioreactor (MBR) process utilizes membrane sheets/fibers to effectively retain the biomass in the reactor. These two biotechnologies are considered potential alternatives for conventional biological treatment/reuse because of their capability of retaining high concentration of biomass in the reactor, or in other words increasing the solid retention time (SRT). The simultaneous removal of organics and nitrogen were investigated using a modified EMMC system design. The modified EMMC system demonstrated higher organic and nitrogen removal performance due to high SRT. Compared to single-stage MBR process operated at similar conditions, the modified EMMC system was able to achieve slightly lower organic removal, comparable nitrification, and higher total nitrogen removal. One limitation in applying an EMMC only treatment process regime for potential reuse of treated wastewater is that such an operation requires the removal of pathogens and large particles if disinfection and solid/liquid separation were not followed. The major challenge of MBR process to overcome is membrane fouling, and the high energy consumption associated with fouling control. The intrinsic features of EMMC process including high SRT, low, and stabilized effluent suspended biomass concentration may significantly reduce the chance and extent of membrane fouling; while the membrane filtration can further polish the effluent quality from EMMC process. Therefore, integrating MBR and EMMC is strongly recommended because it may be a “break-through” for solving the membrane fouling problem and in improving effluent quality for potential reuse.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Cao KP (1998) Simultaneous removal of carbon and nitrogen by using a single bioreactor for land limited application. Master thesis, University of Hawaii at Manoa Cao KP (1998) Simultaneous removal of carbon and nitrogen by using a single bioreactor for land limited application. Master thesis, University of Hawaii at Manoa
go back to reference Chang I-S, Kim S-N (2005) Wastewater treatment using membrane filtration-effect of biosolids concentration on cake resistance. Process Biochem 40:1307–1314CrossRef Chang I-S, Kim S-N (2005) Wastewater treatment using membrane filtration-effect of biosolids concentration on cake resistance. Process Biochem 40:1307–1314CrossRef
go back to reference Cho ES, Zhu J, Yang PY (2007) Intermittent aerated EMMC-Biobarrel (entrapped mixed microbial cell with bio-barrel) process for concurrent organic and nitrogen removal. J Environ Manage 84:257–265CrossRef Cho ES, Zhu J, Yang PY (2007) Intermittent aerated EMMC-Biobarrel (entrapped mixed microbial cell with bio-barrel) process for concurrent organic and nitrogen removal. J Environ Manage 84:257–265CrossRef
go back to reference Cicek N, Franco JP, Suidan MT, Urbain V (1998) Using a membrane bioreactor to reclaim wastewater. J AWWA 90(11):105–113 Cicek N, Franco JP, Suidan MT, Urbain V (1998) Using a membrane bioreactor to reclaim wastewater. J AWWA 90(11):105–113
go back to reference Cieck N, Franco JP, Suidan VU, Manem J (1999) Characterization and comparison of a membrane bioreactor and a conventional activated-sludge system in the treatment of wastewater containing high-molecular-weight compounds. Water Environ Res 71:64–70CrossRef Cieck N, Franco JP, Suidan VU, Manem J (1999) Characterization and comparison of a membrane bioreactor and a conventional activated-sludge system in the treatment of wastewater containing high-molecular-weight compounds. Water Environ Res 71:64–70CrossRef
go back to reference Fan X, Urbain J, Qian Y, Manem J (1996) Nitrification and mass balance with a membrane bioreactor for municipal wastewater treatment. Water Sci Tech 34(1–2):129–136 Fan X, Urbain J, Qian Y, Manem J (1996) Nitrification and mass balance with a membrane bioreactor for municipal wastewater treatment. Water Sci Tech 34(1–2):129–136
go back to reference Ginzburg B, Peeters J, Pawloski J (2008) On-line fouling control for energy reduction in membrane bioreactors. Proceedings of the water environment federation, membrane technology, pp 514–524 Ginzburg B, Peeters J, Pawloski J (2008) On-line fouling control for energy reduction in membrane bioreactors. Proceedings of the water environment federation, membrane technology, pp 514–524
go back to reference Kim JY, Chang IS, Park HH, Kim CY, Kim JB, Oh JB (2007) New configuration of a membrane bioreactor for effective control of membrane fouling and nutrients removal in wastewater treatment. J Desalin 230:153–161CrossRef Kim JY, Chang IS, Park HH, Kim CY, Kim JB, Oh JB (2007) New configuration of a membrane bioreactor for effective control of membrane fouling and nutrients removal in wastewater treatment. J Desalin 230:153–161CrossRef
go back to reference Le-Clech P, Chen V, Fane TAG (2006) Fouling in membrane bioreactors used in wastewater treatment. J Membr Sci 284(1–2):17–53CrossRef Le-Clech P, Chen V, Fane TAG (2006) Fouling in membrane bioreactors used in wastewater treatment. J Membr Sci 284(1–2):17–53CrossRef
go back to reference Meng FG, Shi BQ, Yang FL, Zhang HM (2007) New insights into membrane fouling in submerged membrane bioreactor based on rheology and hydrodynamics concepts. J Membr Sci 302:87–94CrossRef Meng FG, Shi BQ, Yang FL, Zhang HM (2007) New insights into membrane fouling in submerged membrane bioreactor based on rheology and hydrodynamics concepts. J Membr Sci 302:87–94CrossRef
go back to reference Metcalf and Eddy, Inc (1991) Wastewater engineering: treatment, disposal and reuse, 3rd edn. McGraw-Hill, New York Metcalf and Eddy, Inc (1991) Wastewater engineering: treatment, disposal and reuse, 3rd edn. McGraw-Hill, New York
go back to reference Nuengjamong C (2004) Membrane fouling caused by extracellular polymeric substance during microfiltration process, PhD thesis, Asian Institute of Technology, Bangkok, Thailand, p 130 Nuengjamong C (2004) Membrane fouling caused by extracellular polymeric substance during microfiltration process, PhD thesis, Asian Institute of Technology, Bangkok, Thailand, p 130
go back to reference Qian X, Yang PY, Maekawa T (2001) Evaluation of direct removal of nitrate with EMMC technology using ethanol as carbon source. Water Environ Res 73:584–589CrossRef Qian X, Yang PY, Maekawa T (2001) Evaluation of direct removal of nitrate with EMMC technology using ethanol as carbon source. Water Environ Res 73:584–589CrossRef
go back to reference Qin JJ, Kekre KA, Tao GH, Oo MH, Wai MN, Lee T C, Biswannath B, Seah H (2006) New option of MBR-RO process for production of NE Water from domestic sewage. J Membr Sci 272(1–2): 70–77CrossRef Qin JJ, Kekre KA, Tao GH, Oo MH, Wai MN, Lee T C, Biswannath B, Seah H (2006) New option of MBR-RO process for production of NE Water from domestic sewage. J Membr Sci 272(1–2): 70–77CrossRef
go back to reference Rittiman BE, McCarty PL (2001) Environmental biotechnology: principles and applications. McGraw-Hill, Boston Rittiman BE, McCarty PL (2001) Environmental biotechnology: principles and applications. McGraw-Hill, Boston
go back to reference Song C, Cho ES, Yang PY (2006) Removal of organic and nitrogen and molecular weight distribution of residual organic from EMMC (entrapped mixed microbial cells) and activated sludge processes. Water Environ Res 78:2501–2507CrossRef Song C, Cho ES, Yang PY (2006) Removal of organic and nitrogen and molecular weight distribution of residual organic from EMMC (entrapped mixed microbial cells) and activated sludge processes. Water Environ Res 78:2501–2507CrossRef
go back to reference Sundstorm DW, Klei HE (1979) Wastewater treatment. Prentice-Hall, Inc. Englewood Cliffs, NJ Sundstorm DW, Klei HE (1979) Wastewater treatment. Prentice-Hall, Inc. Englewood Cliffs, NJ
go back to reference Visvanathan C, Aim RB, Parameswaran K (2000) Membrane separation bioreactor for wastewater treatment. Crit Rev Environ Sci Technol 30:1–48CrossRef Visvanathan C, Aim RB, Parameswaran K (2000) Membrane separation bioreactor for wastewater treatment. Crit Rev Environ Sci Technol 30:1–48CrossRef
go back to reference Yang PY, Myint TT (2003) Integrating EMMC technology for treatment of wastewater containing DMSO for reuse in semiconductor industries. Clean Technol Environ Policy 6:43–50CrossRef Yang PY, Myint TT (2003) Integrating EMMC technology for treatment of wastewater containing DMSO for reuse in semiconductor industries. Clean Technol Environ Policy 6:43–50CrossRef
go back to reference Yang PY, Cai TD, Wang WL (1988) Immobilized mixed microbial cells for wastewater treatment. Biol Waste 13:295–312CrossRef Yang PY, Cai TD, Wang WL (1988) Immobilized mixed microbial cells for wastewater treatment. Biol Waste 13:295–312CrossRef
go back to reference Yang PY, Ma T, See TS, Nitisoravut N (1994) Applying entrapped mixed microbial cell techniques for biological wastewater treatment. Water Sci Tech 29(10–11):487–495 Yang PY, Ma T, See TS, Nitisoravut N (1994) Applying entrapped mixed microbial cell techniques for biological wastewater treatment. Water Sci Tech 29(10–11):487–495
go back to reference Yang PY, Nitisoravut S, Wu JS (1995) Nitrate removal using a mixed-culture entrapped microbial immobilization process under high salt conditions. Water Res 29:1525–1532CrossRef Yang PY, Nitisoravut S, Wu JS (1995) Nitrate removal using a mixed-culture entrapped microbial immobilization process under high salt conditions. Water Res 29:1525–1532CrossRef
go back to reference Yang PY, Zhang ZQ, Jeong BG (1997) Simultaneous removal of carbon and tropical application. Water Res 31:2617–2625CrossRef Yang PY, Zhang ZQ, Jeong BG (1997) Simultaneous removal of carbon and tropical application. Water Res 31:2617–2625CrossRef
go back to reference Yang PY, Cao K, Kim SJ (2002a) Entrapped mixed microbial cell process for combined secondary and tertiary wastewater treatment. Water Environ Res 74:226–234CrossRef Yang PY, Cao K, Kim SJ (2002a) Entrapped mixed microbial cell process for combined secondary and tertiary wastewater treatment. Water Environ Res 74:226–234CrossRef
go back to reference Yang PY, Shimabukuro M, Kim SJ (2002b) A pilot scale bioreactor using EMMC for carbon and nitrogen removal. Clean Technol Environ Policy 3:407–412CrossRef Yang PY, Shimabukuro M, Kim SJ (2002b) A pilot scale bioreactor using EMMC for carbon and nitrogen removal. Clean Technol Environ Policy 3:407–412CrossRef
go back to reference Yang PY, Su R, Kim SJ (2003) EMMC process for combined removal of organics, nitrogen, and odor producing substance. J Environ Manage 69:381–389CrossRef Yang PY, Su R, Kim SJ (2003) EMMC process for combined removal of organics, nitrogen, and odor producing substance. J Environ Manage 69:381–389CrossRef
go back to reference Yang W, Cicek N, Ilg J (2005) State-of-the-art of membrane bioreactors: worldwide research and commercial applications in North America. J Membr Sci 270(1–2):201–211 Yang W, Cicek N, Ilg J (2005) State-of-the-art of membrane bioreactors: worldwide research and commercial applications in North America. J Membr Sci 270(1–2):201–211
go back to reference Yoon TI, Lee HS, Kim CG (2004) Comparison of pilot scale performances between membrane bioreactor and hybrid conventional wastewater treatment systems. J Membr Sci 242:5–12CrossRef Yoon TI, Lee HS, Kim CG (2004) Comparison of pilot scale performances between membrane bioreactor and hybrid conventional wastewater treatment systems. J Membr Sci 242:5–12CrossRef
go back to reference Zhang ZQ (1995) Entrapped-mixed-microbial-cell process for removal of carbon and nitrogen in one single reactor. Master thesis, University of Hawaii at Manoa Zhang ZQ (1995) Entrapped-mixed-microbial-cell process for removal of carbon and nitrogen in one single reactor. Master thesis, University of Hawaii at Manoa
go back to reference Zhu J (2006) Application of EMMC-biobarrel technology for domestic wastewater treatment and reuse. Master thesis, University of Hawaii at Manoa Zhu J (2006) Application of EMMC-biobarrel technology for domestic wastewater treatment and reuse. Master thesis, University of Hawaii at Manoa
Metadata
Title
Evaluation of potential integration of entrapped mixed microbial cell and membrane bioreactor processes for biological wastewater treatment/reuse
Authors
Jia Zhu
C. F. Lin
J. C. M. Kao
P. Y. Yang
Publication date
01-02-2011
Publisher
Springer-Verlag
Published in
Clean Technologies and Environmental Policy / Issue 1/2011
Print ISSN: 1618-954X
Electronic ISSN: 1618-9558
DOI
https://doi.org/10.1007/s10098-009-0274-8

Other articles of this Issue 1/2011

Clean Technologies and Environmental Policy 1/2011 Go to the issue