Skip to main content
Top
Published in: Experiments in Fluids 4/2014

01-04-2014 | Research Article

Evaluation of unsteady pressure fields and forces in rotating airfoils from time-resolved PIV

Authors: A. Villegas, F. J. Diez

Published in: Experiments in Fluids | Issue 4/2014

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The instantaneous pressure fields and aerodynamic loads are obtained for rotating airfoils from time-resolved particle image velocimetry (TR-PIV) measurements. These allowed evaluating the contribution from the local acceleration (unsteady acceleration) to the instantaneous forces. Traditionally, this term has been neglected for wind turbines with quasi-steady flows, but results show that it is a dominant term in the wake where high temporal variations in the flow field are present due to vortex shedding. Briefly, time-resolved particle image velocimetry TR-PIV measurements are used to calculate flow velocity fields and corresponding spatial and temporal derivatives. These derivatives are then used in the Poisson equation to solve for the pressure field and later used in the integral momentum equation to solve for the instantaneous forces. The robustness of the measurements is analyzed by calculating the PIV uncertainty and the independence of the calculated forces. The experimental mean aerodynamic forces are compared with theoretical predictions from the blade element momentum theory showing good agreement. The instantaneous pressure field showed dependence with time in the wake due to vortex shedding. The contribution to the instantaneous forces from each term in the integral momentum equation is evaluated. The analysis shows that the larger contributions to the normal force coefficient are from the unsteady and the pressure terms, and the larger contribution to the tangential force coefficient is from the convective term.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
go back to reference Abdallah S (1987) Numerical solutions for the pressure Poisson equation with Neumann boundary conditions using a non-staggered grid. I. J Comput Phys 70(1):182–192CrossRefMATH Abdallah S (1987) Numerical solutions for the pressure Poisson equation with Neumann boundary conditions using a non-staggered grid. I. J Comput Phys 70(1):182–192CrossRefMATH
go back to reference Adrian RJ (2005) Twenty years of particle image velocimetry. Exp Fluids 39(2):159–169CrossRef Adrian RJ (2005) Twenty years of particle image velocimetry. Exp Fluids 39(2):159–169CrossRef
go back to reference Baur T, Köngeter J (1999) PIV with high temporal resolution for the determination of local pressure reductions from coherent turbulence phenomena. In: 3rd international workshop on particle image velocimetry, Santa Barbara, CA, USA Baur T, Köngeter J (1999) PIV with high temporal resolution for the determination of local pressure reductions from coherent turbulence phenomena. In: 3rd international workshop on particle image velocimetry, Santa Barbara, CA, USA
go back to reference Bazilevs Y, Hsu MC, Akkerman I et al (2011a) 3D simulation of wind turbine rotors at full scale. Part I: geometry modeling and aerodynamics. Int J Numer Meth Fluids 65(1–3):207–235CrossRefMATH Bazilevs Y, Hsu MC, Akkerman I et al (2011a) 3D simulation of wind turbine rotors at full scale. Part I: geometry modeling and aerodynamics. Int J Numer Meth Fluids 65(1–3):207–235CrossRefMATH
go back to reference Bazilevs Y, Hsu MC, Kiendl J et al (2011b) 3D simulation of wind turbine rotors at full scale. Part II: fluid–structure interaction modeling with composite blades. Int J Numer Meth Fluids 65(1–3):236–253CrossRefMATH Bazilevs Y, Hsu MC, Kiendl J et al (2011b) 3D simulation of wind turbine rotors at full scale. Part II: fluid–structure interaction modeling with composite blades. Int J Numer Meth Fluids 65(1–3):236–253CrossRefMATH
go back to reference Betz A (1919) Schraubenpropeller mit geringstem Energieverlust. Gottinger Nachrichten, Delft Betz A (1919) Schraubenpropeller mit geringstem Energieverlust. Gottinger Nachrichten, Delft
go back to reference Bourgoyne DA, Ceccio SL, Dowling DR (2005) Vortex shedding from a hydrofoil at high Reynolds number. J Fluid Mech 531:293–324CrossRef Bourgoyne DA, Ceccio SL, Dowling DR (2005) Vortex shedding from a hydrofoil at high Reynolds number. J Fluid Mech 531:293–324CrossRef
go back to reference Boutilier MSH, Yarusevych S (2012) Separated shear layer transition over an airfoil at a low Reynolds number. Phys Fluids 24(8):084105CrossRef Boutilier MSH, Yarusevych S (2012) Separated shear layer transition over an airfoil at a low Reynolds number. Phys Fluids 24(8):084105CrossRef
go back to reference Burton T, Jenkins N, Sharpe D et al (2011) Wind energy handbook. Wiley, New York Burton T, Jenkins N, Sharpe D et al (2011) Wind energy handbook. Wiley, New York
go back to reference Charonko JJ et al (2010) Assessment of pressure field calculations from particle image velocimetry measurements. Meas Sci Technol 21:105401CrossRef Charonko JJ et al (2010) Assessment of pressure field calculations from particle image velocimetry measurements. Meas Sci Technol 21:105401CrossRef
go back to reference De Kat R, van Oudheusden BW (2010) Instantaneous planar pressure from PIV: analytic and experimental test-cases. In Proceedings of the 15th international symposium on applications of laser techniques to fluid mechanics, Lisbon, Portugal De Kat R, van Oudheusden BW (2010) Instantaneous planar pressure from PIV: analytic and experimental test-cases. In Proceedings of the 15th international symposium on applications of laser techniques to fluid mechanics, Lisbon, Portugal
go back to reference De Kat R, van Oudheusden BW (2011) Instantaneous planar pressure determination from PIV in turbulent flow. Exp Fluids 52(5):1089–1106CrossRef De Kat R, van Oudheusden BW (2011) Instantaneous planar pressure determination from PIV in turbulent flow. Exp Fluids 52(5):1089–1106CrossRef
go back to reference Fujisawa N, Tanahashi S, Srinivas K (2005) Evaluation of pressure field and fluid forces on a circular cylinder with and without rotational oscillation using velocity data from PIV measurement. Meas Sci Technol 16:989CrossRef Fujisawa N, Tanahashi S, Srinivas K (2005) Evaluation of pressure field and fluid forces on a circular cylinder with and without rotational oscillation using velocity data from PIV measurement. Meas Sci Technol 16:989CrossRef
go back to reference Gurka R et al (1999) Computation of pressure distribution using PIV velocity data. In: Workshop on particle image velocimetry Gurka R et al (1999) Computation of pressure distribution using PIV velocity data. In: Workshop on particle image velocimetry
go back to reference Hand MM et al (2001) Unsteady aerodynamics experiment phase VI: wind tunnel test configurations and available data campaigns. NREL/TP-500-29955, National Renewable Energy Lab., Golden Hand MM et al (2001) Unsteady aerodynamics experiment phase VI: wind tunnel test configurations and available data campaigns. NREL/TP-500-29955, National Renewable Energy Lab., Golden
go back to reference Hansen MOL et al (2006) State of the art in wind turbine aerodynamics and aeroelasticity. Prog Aerosp Sci 42(4):285–330CrossRef Hansen MOL et al (2006) State of the art in wind turbine aerodynamics and aeroelasticity. Prog Aerosp Sci 42(4):285–330CrossRef
go back to reference Jardin T, David L, Farcy A (2009) Characterization of vortical structures and loads based on time-resolved PIV for asymmetric hovering flapping flight. Exp Fluids 46(5):847–857CrossRef Jardin T, David L, Farcy A (2009) Characterization of vortical structures and loads based on time-resolved PIV for asymmetric hovering flapping flight. Exp Fluids 46(5):847–857CrossRef
go back to reference Kurtulus DF, Scarano F, David L (2006) Unsteady aerodynamic forces estimation on a square cylinder by TR-PIV. Exp Fluids 42(2):185–196CrossRef Kurtulus DF, Scarano F, David L (2006) Unsteady aerodynamic forces estimation on a square cylinder by TR-PIV. Exp Fluids 42(2):185–196CrossRef
go back to reference Lee T, Su YY (2012) Low Reynolds number airfoil aerodynamic loads determination via line integral of velocity obtained with particle image velocimetry. Exp Fluids 53(5):1177–1190CrossRefMathSciNet Lee T, Su YY (2012) Low Reynolds number airfoil aerodynamic loads determination via line integral of velocity obtained with particle image velocimetry. Exp Fluids 53(5):1177–1190CrossRefMathSciNet
go back to reference Liu X, Katz J (2006) Instantaneous pressure and material acceleration measurements using a four-exposure PIV system. Exp Fluids 41(2):227–240CrossRef Liu X, Katz J (2006) Instantaneous pressure and material acceleration measurements using a four-exposure PIV system. Exp Fluids 41(2):227–240CrossRef
go back to reference Mohebbian A, Rival DE (2012) Assessment of the derivative-moment transformation method for unsteady-load estimation. Exp Fluids 53(2):319–330CrossRef Mohebbian A, Rival DE (2012) Assessment of the derivative-moment transformation method for unsteady-load estimation. Exp Fluids 53(2):319–330CrossRef
go back to reference Noca F, Shiels D, Jeon D (1999) A comparison of methods for evaluating time-dependent fluid dynamic forces on bodies, using only velocity fields and their derivatives. J Fluids Struct 13(5):551–578CrossRef Noca F, Shiels D, Jeon D (1999) A comparison of methods for evaluating time-dependent fluid dynamic forces on bodies, using only velocity fields and their derivatives. J Fluids Struct 13(5):551–578CrossRef
go back to reference Oudheusden BW et al (2007) Evaluation of integral forces and pressure fields from planar velocimetry data for incompressible and compressible flows. Exp Fluids 43(2–3):153–162CrossRef Oudheusden BW et al (2007) Evaluation of integral forces and pressure fields from planar velocimetry data for incompressible and compressible flows. Exp Fluids 43(2–3):153–162CrossRef
go back to reference Ragni D et al (2009) Surface pressure and aerodynamic loads determination of a transonic airfoil based on particle image velocimetry. Meas Sci Technol 20:074005CrossRef Ragni D et al (2009) Surface pressure and aerodynamic loads determination of a transonic airfoil based on particle image velocimetry. Meas Sci Technol 20:074005CrossRef
go back to reference Ragni D, Oudheusden BW, Scarano F (2011) 3D pressure imaging of an aircraft propeller blade-tip flow by phase-locked stereoscopic PIV. Exp Fluids 52(2):463–477CrossRef Ragni D, Oudheusden BW, Scarano F (2011) 3D pressure imaging of an aircraft propeller blade-tip flow by phase-locked stereoscopic PIV. Exp Fluids 52(2):463–477CrossRef
go back to reference Sezer-Uzol N, Long LN (2006) 3-D time-accurate CFD simulations of wind turbine rotor flow fields. AIAA paper, vol 394, p 2006 Sezer-Uzol N, Long LN (2006) 3-D time-accurate CFD simulations of wind turbine rotor flow fields. AIAA paper, vol 394, p 2006
go back to reference Shen WZ et al (2005) Tip loss corrections for wind turbine computations. Wind Energy 8(4):457–475CrossRef Shen WZ et al (2005) Tip loss corrections for wind turbine computations. Wind Energy 8(4):457–475CrossRef
go back to reference Simms DA et al (2001) NREL unsteady aerodynamics experiment in the NASA-Ames wind tunnel: a comparison of predictions to measurements. National Renewable Energy Laboratory, GoldenCrossRef Simms DA et al (2001) NREL unsteady aerodynamics experiment in the NASA-Ames wind tunnel: a comparison of predictions to measurements. National Renewable Energy Laboratory, GoldenCrossRef
go back to reference Sotiropoulos F, Abdallah S (1991) The discrete continuity equation in primitive variable solutions of incompressible flow. J Comput Phys 95(1):212–227CrossRefMATH Sotiropoulos F, Abdallah S (1991) The discrete continuity equation in primitive variable solutions of incompressible flow. J Comput Phys 95(1):212–227CrossRefMATH
go back to reference Suzuki T, Ji H, Yamamoto F (2009) Unsteady PTV velocity field past an airfoil solved with DNS: part 1. Algorithm of hybrid simulation and hybrid velocity field at Re ≈ 103. Exp Fluids 47(6):957–976CrossRef Suzuki T, Ji H, Yamamoto F (2009) Unsteady PTV velocity field past an airfoil solved with DNS: part 1. Algorithm of hybrid simulation and hybrid velocity field at Re ≈ 103. Exp Fluids 47(6):957–976CrossRef
go back to reference Tangler JL (2002) The nebulous art of using wind-tunnel airfoil data for predicting rotor performance. ASME 2002 wind energy symposium. American Society of Mechanical Engineers, pp 190–196 Tangler JL (2002) The nebulous art of using wind-tunnel airfoil data for predicting rotor performance. ASME 2002 wind energy symposium. American Society of Mechanical Engineers, pp 190–196
go back to reference Villegas A, Diez FJ (2014) On the quasi-instantaneous aerodynamic load and pressure field measurements on turbines by non-intrusive PIV. Renew Energy 63:181–193CrossRef Villegas A, Diez FJ (2014) On the quasi-instantaneous aerodynamic load and pressure field measurements on turbines by non-intrusive PIV. Renew Energy 63:181–193CrossRef
go back to reference Westerweel J (1997) Fundamentals of digital particle image velocimetry. Meas Sci Technol 8:1379CrossRef Westerweel J (1997) Fundamentals of digital particle image velocimetry. Meas Sci Technol 8:1379CrossRef
go back to reference Yarusevych S, Sullivan PE, Kawall JG (2006) Coherent structures in an airfoil boundary layer and wake at low Reynolds numbers. Phys Fluids 18(4):044101CrossRef Yarusevych S, Sullivan PE, Kawall JG (2006) Coherent structures in an airfoil boundary layer and wake at low Reynolds numbers. Phys Fluids 18(4):044101CrossRef
go back to reference Yarusevych S, Sullivan PE, Kawall JG (2009) On vortex shedding from an airfoil in low-Reynolds-number flows. J Fluid Mech 632:245CrossRefMATH Yarusevych S, Sullivan PE, Kawall JG (2009) On vortex shedding from an airfoil in low-Reynolds-number flows. J Fluid Mech 632:245CrossRefMATH
Metadata
Title
Evaluation of unsteady pressure fields and forces in rotating airfoils from time-resolved PIV
Authors
A. Villegas
F. J. Diez
Publication date
01-04-2014
Publisher
Springer Berlin Heidelberg
Published in
Experiments in Fluids / Issue 4/2014
Print ISSN: 0723-4864
Electronic ISSN: 1432-1114
DOI
https://doi.org/10.1007/s00348-014-1697-5

Other articles of this Issue 4/2014

Experiments in Fluids 4/2014 Go to the issue

Premium Partners