Skip to main content
Top

2013 | OriginalPaper | Chapter

6. Evaluations and Bounds on Elastic Moduli of Heterogeneous Materials

Author : George J. Dvorak

Published in: Micromechanics of Composite Materials

Publisher: Springer Netherlands

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This chapter is concerned with composites and polycrystals, consisting of two or more distinct phases that have known stiffnesses L r defined in the fixed overall coordinate system of a representative volume V. Phase volume fractions C r \( \Sigma_{{r = 1}}^n\,{c_r} = 1, \) are no longer small, hence evaluation of both overall properties and local fields must reflect interactions between individual phase volumes. Spatial distribution of the phases in V is statistically homogeneous, as described in Sect. 3.​2.​2, and perfect bonding is assumed at all interfaces. Of interest are derivations of upper and lower bounds on the overall stiffness \( {L} = {{L}^{\text{T}}} \) and compliance \( {M} = {{L}^{{ - 1}}} \) of the aggregate, and of estimates of phase volume averages of strain and stress fields, caused in the heterogeneous system by application of uniform overall strain \( {{\varepsilon }^0} \) or stress \( {{\sigma }^0} \). Those are sought in terms of known volume fractions, elastic moduli, shape and alignment of the constituent phases, Sects. 6.1 and 6.2.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Accorsi, M. L., & Nemat-Nasser, S. (1986). Bounds on the overall elastic and instantaneous elastoplastic moduli of periodic composites. Mechanics of Materials, 5, 209–220.CrossRef Accorsi, M. L., & Nemat-Nasser, S. (1986). Bounds on the overall elastic and instantaneous elastoplastic moduli of periodic composites. Mechanics of Materials, 5, 209–220.CrossRef
go back to reference Ashby, M. F., Evans, A., Fleck, N. A., Gibson, L. J., Hutchinson, J. W., & Wadley, H. N. G. (2000). Metal foams. A design guide. Boston: Butterworth Heinemann. Ashby, M. F., Evans, A., Fleck, N. A., Gibson, L. J., Hutchinson, J. W., & Wadley, H. N. G. (2000). Metal foams. A design guide. Boston: Butterworth Heinemann.
go back to reference Behrens, E. (1971). Elastic constants of fiber-reinforced composites with transversely isotropic constituents. ASME Journal of Applied Mechanics, 38, 1062–1065.CrossRef Behrens, E. (1971). Elastic constants of fiber-reinforced composites with transversely isotropic constituents. ASME Journal of Applied Mechanics, 38, 1062–1065.CrossRef
go back to reference Benveniste, Y. (2008). Revisiting the generalized self-consistent scheme in composites: Clarification of some aspects and a new formulation. Journal of the Mechanics and Physics of Solids, 56, 2984–3002.MathSciNetCrossRefMATH Benveniste, Y. (2008). Revisiting the generalized self-consistent scheme in composites: Clarification of some aspects and a new formulation. Journal of the Mechanics and Physics of Solids, 56, 2984–3002.MathSciNetCrossRefMATH
go back to reference Christensen, R. M. (1990). A critical evaluation for a class of micromechanics models. Journal of the Mechanics and Physics of Solids, 38, 379–404.CrossRef Christensen, R. M. (1990). A critical evaluation for a class of micromechanics models. Journal of the Mechanics and Physics of Solids, 38, 379–404.CrossRef
go back to reference Christensen, R. M. (1995). The hierarchy of microstructures for low density materials. Zeitschrift für Angewandte Mathematik und Physik, 46(Special Issue), S506–S521.MATH Christensen, R. M. (1995). The hierarchy of microstructures for low density materials. Zeitschrift für Angewandte Mathematik und Physik, 46(Special Issue), S506–S521.MATH
go back to reference Christensen, R. M. (1998). Two theoretical elasticity micromechanics models. Journal of Elasticity, 50, 15–25.CrossRefMATH Christensen, R. M. (1998). Two theoretical elasticity micromechanics models. Journal of Elasticity, 50, 15–25.CrossRefMATH
go back to reference Christensen, R. M. (2003). Mechanics of cellular and other low density materials. International Journal of Solids and Structures, 37, 93–104.CrossRef Christensen, R. M. (2003). Mechanics of cellular and other low density materials. International Journal of Solids and Structures, 37, 93–104.CrossRef
go back to reference Christensen, R. M., & Lo, K. H. (1979). Solutions for effective shear properties in three phase sphere and cylinder models. Journal of the Mechanics and Physics of Solids, 27, 315–330. Erratum ibid. 34, 639 (1986). Christensen, R. M., & Lo, K. H. (1979). Solutions for effective shear properties in three phase sphere and cylinder models. Journal of the Mechanics and Physics of Solids, 27, 315–330. Erratum ibid. 34, 639 (1986).
go back to reference Christensen, R. M., Schantz, H., & Schapiro, J. (1992). On the range of validity of the Mori-Tanaka method. Journal of the Mechanics and Physics of Solids, 40, 69–73.CrossRef Christensen, R. M., Schantz, H., & Schapiro, J. (1992). On the range of validity of the Mori-Tanaka method. Journal of the Mechanics and Physics of Solids, 40, 69–73.CrossRef
go back to reference Eshelby, J. D. (1957). The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proceedings of the Royal Society London A, 241, 376–396.MathSciNetCrossRefMATH Eshelby, J. D. (1957). The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proceedings of the Royal Society London A, 241, 376–396.MathSciNetCrossRefMATH
go back to reference Gibson, L. J., & Ashby, M. F. (1997). Cellular solids, structure and properties (2nd ed.). Cambridge: Cambridge University Press. Gibson, L. J., & Ashby, M. F. (1997). Cellular solids, structure and properties (2nd ed.). Cambridge: Cambridge University Press.
go back to reference Hashin, Z. (1964). Theory of mechanical behavior of heterogeneous media. Applied Mechanics Reviews, 17, 1–9. Hashin, Z. (1964). Theory of mechanical behavior of heterogeneous media. Applied Mechanics Reviews, 17, 1–9.
go back to reference Hashin, Z. (1965). On elastic behavior of fiber reinforced materials of arbitrary transverse phase geometry. Journal of the Mechanics and Physics of Solids, 13, 119–134.CrossRef Hashin, Z. (1965). On elastic behavior of fiber reinforced materials of arbitrary transverse phase geometry. Journal of the Mechanics and Physics of Solids, 13, 119–134.CrossRef
go back to reference Hashin, Z. (1967). Variational principles in elasticity in terms of the elastic polarization tensor. International Journal of Engineering Science, 5, 213–223.CrossRefMATH Hashin, Z. (1967). Variational principles in elasticity in terms of the elastic polarization tensor. International Journal of Engineering Science, 5, 213–223.CrossRefMATH
go back to reference Hashin, Z. (1972). Theory of fiber reinforced materials. NASA CR-1974. Washington, DC: National Aeronautics and Space Administration, 690. Hashin, Z. (1972). Theory of fiber reinforced materials. NASA CR-1974. Washington, DC: National Aeronautics and Space Administration, 690.
go back to reference Hashin, Z. (1979). Analysis of properties of fiber composites with anisotropic constituents. Journal of Applied Mechanics, 46, 543–550.CrossRefMATH Hashin, Z. (1979). Analysis of properties of fiber composites with anisotropic constituents. Journal of Applied Mechanics, 46, 543–550.CrossRefMATH
go back to reference Hashin, Z., & Rosen, B. W. (1964). The elastic moduli of fiber reinforced materials. ASME Journal of Applied Mechanics 31E, 223–232. Errata, 1965, ibid., 32E, 219. Hashin, Z., & Rosen, B. W. (1964). The elastic moduli of fiber reinforced materials. ASME Journal of Applied Mechanics 31E, 223–232. Errata, 1965, ibid., 32E, 219.
go back to reference Hashin, Z., & Shtrikman, S. (1962a). On some variational principles in anisotropic and nonhomogeneous elasticity. Journal of the Mechanics and Physics of Solids, 10, 335–342.MathSciNetCrossRef Hashin, Z., & Shtrikman, S. (1962a). On some variational principles in anisotropic and nonhomogeneous elasticity. Journal of the Mechanics and Physics of Solids, 10, 335–342.MathSciNetCrossRef
go back to reference Hashin, Z., & Shtrikman, S. (1962b). A variational approach to the theory of the elastic behaviour of polycrystals. Journal of the Mechanics and Physics of Solids, 10, 343–352.MathSciNetCrossRef Hashin, Z., & Shtrikman, S. (1962b). A variational approach to the theory of the elastic behaviour of polycrystals. Journal of the Mechanics and Physics of Solids, 10, 343–352.MathSciNetCrossRef
go back to reference Hashin, Z., & Shtrikman, S. (1963). A variational approach to the theory of the elastic behaviour of multiphase materials. Journal of the Mechanics and Physics of Solids, 11, 127–140.MathSciNetCrossRefMATH Hashin, Z., & Shtrikman, S. (1963). A variational approach to the theory of the elastic behaviour of multiphase materials. Journal of the Mechanics and Physics of Solids, 11, 127–140.MathSciNetCrossRefMATH
go back to reference Hervé, E., & Zaoui, A. (1995). Elastic behaviour of multiply coated fibre-reinforced composites. International Journal of Engineering Science, 33, 1419–1433.CrossRefMATH Hervé, E., & Zaoui, A. (1995). Elastic behaviour of multiply coated fibre-reinforced composites. International Journal of Engineering Science, 33, 1419–1433.CrossRefMATH
go back to reference Hill, R. (1963a). Elastic properties of reinforced solids: Some theoretical principles. Journal of the Mechanics and Physics of Solids, 11, 357–372 [1]. Hill, R. (1963a). Elastic properties of reinforced solids: Some theoretical principles. Journal of the Mechanics and Physics of Solids, 11, 357–372 [1].
go back to reference Hill, R. (1963b). New derivations of some elastic extremum principles. In Progress in applied mechanics. W. Prager 60th anniversary colume. London: McMillan & Co., pp. 99–106. Hill, R. (1963b). New derivations of some elastic extremum principles. In Progress in applied mechanics. W. Prager 60th anniversary colume. London: McMillan & Co., pp. 99–106.
go back to reference Hill, R. (1964). Theory of mechanical properties of fibre-strengthened materials: I. Elastic behavior. Journal of the Mechanics and Physics of Solids, 12, 199–212.MathSciNetCrossRef Hill, R. (1964). Theory of mechanical properties of fibre-strengthened materials: I. Elastic behavior. Journal of the Mechanics and Physics of Solids, 12, 199–212.MathSciNetCrossRef
go back to reference Kröner, E. (1958). Berechnung der elastischen Konstanten der Vielkristalls aus den Konstanten der Einkristalls. Zeitschrift für Physik, 151, 504–518.CrossRef Kröner, E. (1958). Berechnung der elastischen Konstanten der Vielkristalls aus den Konstanten der Einkristalls. Zeitschrift für Physik, 151, 504–518.CrossRef
go back to reference Milton, G. W. (1985). The coherent potential approximation is a realizable effective medium scheme. Communications in Mathematical Physics, 99, 463–500.MathSciNetCrossRef Milton, G. W. (1985). The coherent potential approximation is a realizable effective medium scheme. Communications in Mathematical Physics, 99, 463–500.MathSciNetCrossRef
go back to reference Nemat-Nasser, S., & Hori, M. (1995). Universal bounds for overall properties of linear and nonlinear heterogeneous solids. Journal of Engineering Materials and Technology, 117, 412–432.CrossRef Nemat-Nasser, S., & Hori, M. (1995). Universal bounds for overall properties of linear and nonlinear heterogeneous solids. Journal of Engineering Materials and Technology, 117, 412–432.CrossRef
go back to reference Nemat-Nasser, S., & Hori, M. (1999). Micromechanics: Overall properties of hetero-geneous materials (2nd ed.). Amsterdam: Elsevier. Nemat-Nasser, S., & Hori, M. (1999). Micromechanics: Overall properties of hetero-geneous materials (2nd ed.). Amsterdam: Elsevier.
go back to reference Nemat-Nasser, S., Iwakuma, T., & Hejazi, M. (1982). On composites with periodic structure. Mechanics of Materials, 1, 239–267.CrossRef Nemat-Nasser, S., Iwakuma, T., & Hejazi, M. (1982). On composites with periodic structure. Mechanics of Materials, 1, 239–267.CrossRef
go back to reference Paul, B. (1960). Prediction of elastic constants of multiphase materials. Transactions of the Metallurgy Society of AIME, 218, 36–41. Paul, B. (1960). Prediction of elastic constants of multiphase materials. Transactions of the Metallurgy Society of AIME, 218, 36–41.
go back to reference Reuss, A. (1929). Berechnung der Fliessgrenze von Mischkristallen auf Grund der Plastizitätsbedingung für Einkristalle. Zeitschrift für Angewandte Mathematik und Mechanik, 9, 49–58.CrossRefMATH Reuss, A. (1929). Berechnung der Fliessgrenze von Mischkristallen auf Grund der Plastizitätsbedingung für Einkristalle. Zeitschrift für Angewandte Mathematik und Mechanik, 9, 49–58.CrossRefMATH
go back to reference Teply, J. L., & Dvorak, G. J. (1988). Bounds on overall instantaneous properties of elastic-plastic composites. Journal of the Mechanics and Physics of Solids, 36, 29–58.CrossRefMATH Teply, J. L., & Dvorak, G. J. (1988). Bounds on overall instantaneous properties of elastic-plastic composites. Journal of the Mechanics and Physics of Solids, 36, 29–58.CrossRefMATH
go back to reference Torquato, S. (2002). Random heterogeneous materials: Microstructure and macroscopic properties. New York: Springer.CrossRef Torquato, S. (2002). Random heterogeneous materials: Microstructure and macroscopic properties. New York: Springer.CrossRef
go back to reference Voigt, W. (1889). Űber die Berechnung zwischen den beiden Elastizitätsconstanten isotroper Körper. Wiedemanns Annalen der Physik und Chemie, 38, 573–578.CrossRef Voigt, W. (1889). Űber die Berechnung zwischen den beiden Elastizitätsconstanten isotroper Körper. Wiedemanns Annalen der Physik und Chemie, 38, 573–578.CrossRef
go back to reference Walpole, L. J. (1966). On bounds for the overall elastic moduli of inhomogeneous systems I. Journal of the Mechanics and Physics of Solids, 14, 151–162. 1966b II. ibid., 14, 289–301. Walpole, L. J. (1966). On bounds for the overall elastic moduli of inhomogeneous systems I. Journal of the Mechanics and Physics of Solids, 14, 151–162. 1966b II. ibid., 14, 289–301.
go back to reference Walpole, L. J. (1969). On the overall elastic moduli of composite materials. Journal of the Mechanics and Physics of Solids, 17, 235–251.CrossRefMATH Walpole, L. J. (1969). On the overall elastic moduli of composite materials. Journal of the Mechanics and Physics of Solids, 17, 235–251.CrossRefMATH
go back to reference Walpole, L. J. (1980) Evaluation of overall reaction of a composite solid with inclusions of any shape. Continuum models of discrete systems. Waterloo: University of Waterloo Press. Walpole, L. J. (1980) Evaluation of overall reaction of a composite solid with inclusions of any shape. Continuum models of discrete systems. Waterloo: University of Waterloo Press.
go back to reference Walpole, L. J. (1985c). The analysis of the overall elastic properties of composite materials. In B. A. Bilby, K. J. Miller, & J. R. Willis (Eds.), Fundamentals of deformation and fracture: Eshelby memorial symposium (pp. 91–107). Cambridge: Cambridge University Press. Walpole, L. J. (1985c). The analysis of the overall elastic properties of composite materials. In B. A. Bilby, K. J. Miller, & J. R. Willis (Eds.), Fundamentals of deformation and fracture: Eshelby memorial symposium (pp. 91–107). Cambridge: Cambridge University Press.
go back to reference Weng, G. J. (1992). Explicit evaluation of Willis’ bounds with ellipsoidal inclusions. International Journal of Engineering Science, 30, 83–92.MathSciNetCrossRefMATH Weng, G. J. (1992). Explicit evaluation of Willis’ bounds with ellipsoidal inclusions. International Journal of Engineering Science, 30, 83–92.MathSciNetCrossRefMATH
go back to reference Willis, J. R. (1977). Bounds and self-consistent estimates for the overall moduli of anisotropic composites. Journal of the Mechanics and Physics of Solids, 25, 185–202.CrossRefMATH Willis, J. R. (1977). Bounds and self-consistent estimates for the overall moduli of anisotropic composites. Journal of the Mechanics and Physics of Solids, 25, 185–202.CrossRefMATH
go back to reference Wu, T. T. (1966). The effect of inclusion shape on the elastic moduli of a two-phase material. International Journal of Solids and Structures, 2, 1–8.CrossRef Wu, T. T. (1966). The effect of inclusion shape on the elastic moduli of a two-phase material. International Journal of Solids and Structures, 2, 1–8.CrossRef
Metadata
Title
Evaluations and Bounds on Elastic Moduli of Heterogeneous Materials
Author
George J. Dvorak
Copyright Year
2013
Publisher
Springer Netherlands
DOI
https://doi.org/10.1007/978-94-007-4101-0_6

Premium Partners