Skip to main content
Top

2013 | OriginalPaper | Chapter

7. Estimates of Mechanical Properties of Composite Materials

Author : George J. Dvorak

Published in: Micromechanics of Composite Materials

Publisher: Springer Netherlands

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Together with the methods described in the previous chapter, overall moduli and local field averages in the phases can be estimated by one of several approximate methods, which use different models of the microstructure. Among those described here are variants of the average field approximation, or AFA, which rely on strain or stress field averages in solitary ellipsoidal inhomogeneities, embedded in large volumes of different comparison media L 0. Among the most widely used procedures are the self-consistent and Mori-Tanaka methods, and the differential scheme, described in Sects. 7.1, 7.2 and 7.3. Those are followed by several double inclusion or double inhomogeneity models in Sect. 7.4, and by illustrative comparison with finite element evaluations for functionally graded materials in Sect. 7.5.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Babuska, I. (1975). Homogenization and application: Mathematical and computational problems. In B. Hubbard (Ed.), Numerical solution of partial differential equations –III. New York: Academic. Babuska, I. (1975). Homogenization and application: Mathematical and computational problems. In B. Hubbard (Ed.), Numerical solution of partial differential equations –III. New York: Academic.
go back to reference Bensoussan, A., Lions, J. L., & Papanicolaou, G. (1978). Asymptotic analysis for periodic structures. Amsterdam: Nort Holland.MATH Bensoussan, A., Lions, J. L., & Papanicolaou, G. (1978). Asymptotic analysis for periodic structures. Amsterdam: Nort Holland.MATH
go back to reference Benveniste, Y. (1987a). A new approach to the application of Mori-Tanaka theory in composite materials. Mechanics of Materials, 6, 147–157.CrossRef Benveniste, Y. (1987a). A new approach to the application of Mori-Tanaka theory in composite materials. Mechanics of Materials, 6, 147–157.CrossRef
go back to reference Benveniste, Y. (1987b). A differential effective medium theory with a composite sphere embedding. ASME Journal of Applied Mechanics, 54, 466–468.CrossRef Benveniste, Y. (1987b). A differential effective medium theory with a composite sphere embedding. ASME Journal of Applied Mechanics, 54, 466–468.CrossRef
go back to reference Benveniste, Y., & Dvorak, G. J. (1989). On a correspondence between mechanical and thermal effects in two-phase composites. In Micromechanics and inhomogeneity (The Toshio Mura 65th anniversary volume, pp. 65–81). New York: Springer. Benveniste, Y., & Dvorak, G. J. (1989). On a correspondence between mechanical and thermal effects in two-phase composites. In Micromechanics and inhomogeneity (The Toshio Mura 65th anniversary volume, pp. 65–81). New York: Springer.
go back to reference Benveniste, Y., Dvorak, G. J., & Chen, T. (1989). Stress fields in composites with coated inclusions. Mechanics of Materials, 7, 305–317.CrossRef Benveniste, Y., Dvorak, G. J., & Chen, T. (1989). Stress fields in composites with coated inclusions. Mechanics of Materials, 7, 305–317.CrossRef
go back to reference Benveniste, Y., Chen, T., & Dvorak, G. J. (1990). The effective thermal conductivity of composites reinforced by coated cylindrically orthotropic fibers. Journal of Applied Physics, 67, 2878–2884.CrossRef Benveniste, Y., Chen, T., & Dvorak, G. J. (1990). The effective thermal conductivity of composites reinforced by coated cylindrically orthotropic fibers. Journal of Applied Physics, 67, 2878–2884.CrossRef
go back to reference Benveniste, Y., Dvorak, G. J., & Chen, T. (1991a). On the effective properties of composites with coated cylindrically orthotropic fibers. Mechanics of Materials, 12, 289–297.CrossRef Benveniste, Y., Dvorak, G. J., & Chen, T. (1991a). On the effective properties of composites with coated cylindrically orthotropic fibers. Mechanics of Materials, 12, 289–297.CrossRef
go back to reference Benveniste, Y., Dvorak, G. J., & Chen, T. (1991b). On diagonal and elastic symmetry of the approximate effective stiffness tensor of heterogeneous media. Journal of the Mechanics and Physics of Solids, 39, 927–946.MathSciNetCrossRefMATH Benveniste, Y., Dvorak, G. J., & Chen, T. (1991b). On diagonal and elastic symmetry of the approximate effective stiffness tensor of heterogeneous media. Journal of the Mechanics and Physics of Solids, 39, 927–946.MathSciNetCrossRefMATH
go back to reference Berryman, J. G. (1980). Long wavelength propagation in composite elastic media II, Ellipsoidal inclusions. Journal of the Acoustical Society of America, 68, 1820–1831.CrossRefMATH Berryman, J. G. (1980). Long wavelength propagation in composite elastic media II, Ellipsoidal inclusions. Journal of the Acoustical Society of America, 68, 1820–1831.CrossRefMATH
go back to reference Boucher, S. (1974). On the effective moduli of isotropic two-phase elastic composites. Journal of Composite Materials, 8, 82–89.CrossRef Boucher, S. (1974). On the effective moduli of isotropic two-phase elastic composites. Journal of Composite Materials, 8, 82–89.CrossRef
go back to reference Bruggeman, D. A. G. (1935). Berechnung verschiedener physikalisher Konstanten von heterogenen Substanzen I. Annalen der Physik, 24, 636–663.CrossRef Bruggeman, D. A. G. (1935). Berechnung verschiedener physikalisher Konstanten von heterogenen Substanzen I. Annalen der Physik, 24, 636–663.CrossRef
go back to reference Budiansky, B. (1965). On the elastic moduli of some heterogeneous materials. Journal of the Mechanics and Physics of Solids, 13, 223–227.CrossRef Budiansky, B. (1965). On the elastic moduli of some heterogeneous materials. Journal of the Mechanics and Physics of Solids, 13, 223–227.CrossRef
go back to reference Budiansky, B., & O’Connell, R. J. (1976). Elastic moduli of a cracked solid. International Journal of Solids and Structures, 12, 81–97.CrossRefMATH Budiansky, B., & O’Connell, R. J. (1976). Elastic moduli of a cracked solid. International Journal of Solids and Structures, 12, 81–97.CrossRefMATH
go back to reference Chen, T., Dvorak, G. J., & Benveniste, Y. (1990). Stress fields in composites reinforced by coated cylindrically orthotropic fibers. Mechanics of Materials, 9, 17–32.CrossRef Chen, T., Dvorak, G. J., & Benveniste, Y. (1990). Stress fields in composites reinforced by coated cylindrically orthotropic fibers. Mechanics of Materials, 9, 17–32.CrossRef
go back to reference Chen, T., Dvorak, G. J., & Benveniste, Y. (1992). Mori-Tanaka estimates of the overall elastic moduli of certain composite materials. ASME Journal of Applied Mechanics, 59, 539–546.CrossRefMATH Chen, T., Dvorak, G. J., & Benveniste, Y. (1992). Mori-Tanaka estimates of the overall elastic moduli of certain composite materials. ASME Journal of Applied Mechanics, 59, 539–546.CrossRefMATH
go back to reference Christensen, R. M. (1990). A critical evaluation for a class of micromechanics models. Journal of the Mechanics and Physics of Solids, 38, 379–404.CrossRef Christensen, R. M. (1990). A critical evaluation for a class of micromechanics models. Journal of the Mechanics and Physics of Solids, 38, 379–404.CrossRef
go back to reference Christensen, R. M., & Lo, K. H. (1979). Solutions for effective shear properties in three phase sphere and cylinder models. Journal of the Mechanics and Physics of Solids, 27, 315–330. Erratum ibid. 34, 639 (1986). Christensen, R. M., & Lo, K. H. (1979). Solutions for effective shear properties in three phase sphere and cylinder models. Journal of the Mechanics and Physics of Solids, 27, 315–330. Erratum ibid. 34, 639 (1986).
go back to reference Christensen, R. M., & Waals, F. M. (1972). Effective stiffness of randomly oriented fiber composites. Journal of Composite Materials, 6, 518–532. Christensen, R. M., & Waals, F. M. (1972). Effective stiffness of randomly oriented fiber composites. Journal of Composite Materials, 6, 518–532.
go back to reference Christensen, R. M., Schantz, H., & Schapiro, J. (1992). On the range of validity of the Mori-Tanaka method. Journal of the Mechanics and Physics of Solids, 40, 69–73.CrossRef Christensen, R. M., Schantz, H., & Schapiro, J. (1992). On the range of validity of the Mori-Tanaka method. Journal of the Mechanics and Physics of Solids, 40, 69–73.CrossRef
go back to reference Cleary, M. P., Chen, I. W., & Lee, S. M. (1980). Self-consistent techniques for heterogeneous solids. ASCE Journal of Engineering Mechanics, 106, 861–867. Cleary, M. P., Chen, I. W., & Lee, S. M. (1980). Self-consistent techniques for heterogeneous solids. ASCE Journal of Engineering Mechanics, 106, 861–867.
go back to reference Daniel, I. M., & Ishai, O. (2006). Engineering mechanics of composite materials (2nd ed.). New York: Oxford University Press. Daniel, I. M., & Ishai, O. (2006). Engineering mechanics of composite materials (2nd ed.). New York: Oxford University Press.
go back to reference Drugan, W. J., & Willis, J. R. (1996). A micromechanics-based nonlocal constituive equation and estimates of representative volume element size for elastic composites. Journal of the Mechanics and Physics of Solids, 44, 497–524.MathSciNetCrossRefMATH Drugan, W. J., & Willis, J. R. (1996). A micromechanics-based nonlocal constituive equation and estimates of representative volume element size for elastic composites. Journal of the Mechanics and Physics of Solids, 44, 497–524.MathSciNetCrossRefMATH
go back to reference Dunn, M., & Ledbetter, H. (2000). Micromechanically based acoustic characterization of the fiber orientation distribution of morphologically textured short fiber composites: Prediction of thermomechanical and physical properties. Materials Science and Engineering A, 285, 56–61.CrossRef Dunn, M., & Ledbetter, H. (2000). Micromechanically based acoustic characterization of the fiber orientation distribution of morphologically textured short fiber composites: Prediction of thermomechanical and physical properties. Materials Science and Engineering A, 285, 56–61.CrossRef
go back to reference Einstein, A. (1905). Eine neue Berechnung der Moleküldimensionen. Annales de Physique, 19, 289–306. Einstein, A. (1905). Eine neue Berechnung der Moleküldimensionen. Annales de Physique, 19, 289–306.
go back to reference Ferrari, M., & Johnson, G. C. (1989). Effective elasticities of short-fiber composites with arbitrary orientation distribution. Mechanics of Materials, 8, 67–73.CrossRef Ferrari, M., & Johnson, G. C. (1989). Effective elasticities of short-fiber composites with arbitrary orientation distribution. Mechanics of Materials, 8, 67–73.CrossRef
go back to reference Finot, M., & Suresh, S. (1996). Small and large deformation of thick and thin-film multi-layers: Effects of layer geometry, plasticity and compositional gradients. Journal of the Mechanics and Physics of Solids, 44, 683–722.CrossRef Finot, M., & Suresh, S. (1996). Small and large deformation of thick and thin-film multi-layers: Effects of layer geometry, plasticity and compositional gradients. Journal of the Mechanics and Physics of Solids, 44, 683–722.CrossRef
go back to reference Fukui, Y., Takashima, K., & Ponton, C. B. (1994). Measurement of Young’s modulus and internal friction of an in situ Al-Al/Ni functionally gradient material. Journal of Materials Science, 29, 2281–2288.CrossRef Fukui, Y., Takashima, K., & Ponton, C. B. (1994). Measurement of Young’s modulus and internal friction of an in situ Al-Al/Ni functionally gradient material. Journal of Materials Science, 29, 2281–2288.CrossRef
go back to reference Giannakopoulos, A. E., Suresh, S., Finot, M., & Olsson, M. (1995). Elastoplastic analysis of thermal cycling: Layered materials with compositional gradients. Acta Metallurgica et Materialia, 43, 1335–1354.CrossRef Giannakopoulos, A. E., Suresh, S., Finot, M., & Olsson, M. (1995). Elastoplastic analysis of thermal cycling: Layered materials with compositional gradients. Acta Metallurgica et Materialia, 43, 1335–1354.CrossRef
go back to reference Gusev, A. A. (1997). Representative volume element size for elastic composites: A numerical study. Journal of the Mechanics and Physics of Solids, 45, 1449–1459.CrossRefMATH Gusev, A. A. (1997). Representative volume element size for elastic composites: A numerical study. Journal of the Mechanics and Physics of Solids, 45, 1449–1459.CrossRefMATH
go back to reference Hashin, Z. (1972). Theory of fiber reinforced materials. NASA CR-1974. Washington, DC: National Aeronautics and Space Administration, 690. Hashin, Z. (1972). Theory of fiber reinforced materials. NASA CR-1974. Washington, DC: National Aeronautics and Space Administration, 690.
go back to reference Hashin, Z. (1988). The differential scheme and its application to cracked materials. Journal of the Mechanics and Physics of Solids, 36, 719–734.MathSciNetCrossRefMATH Hashin, Z. (1988). The differential scheme and its application to cracked materials. Journal of the Mechanics and Physics of Solids, 36, 719–734.MathSciNetCrossRefMATH
go back to reference Hashin, Z., & Rosen, B. W. (1964). The elastic moduli of fiber reinforced materials. ASME Journal of Applied Mechanics 31E, 223–232. Errata, 1965, ibid., 32E, 219. Hashin, Z., & Rosen, B. W. (1964). The elastic moduli of fiber reinforced materials. ASME Journal of Applied Mechanics 31E, 223–232. Errata, 1965, ibid., 32E, 219.
go back to reference Hashin, Z., & Shtrikman, S. (1962a). On some variational principles in anisotropic and nonhomogeneous elasticity. Journal of the Mechanics and Physics of Solids, 10, 335–342.MathSciNetCrossRef Hashin, Z., & Shtrikman, S. (1962a). On some variational principles in anisotropic and nonhomogeneous elasticity. Journal of the Mechanics and Physics of Solids, 10, 335–342.MathSciNetCrossRef
go back to reference Hashin, Z., & Shtrikman, S. (1962b). A variational approach to the theory of the elastic behaviour of polycrystals. Journal of the Mechanics and Physics of Solids, 10, 343–352.MathSciNetCrossRef Hashin, Z., & Shtrikman, S. (1962b). A variational approach to the theory of the elastic behaviour of polycrystals. Journal of the Mechanics and Physics of Solids, 10, 343–352.MathSciNetCrossRef
go back to reference Hatta, H., & Taya, M. (1986). Equivalent inclusion method for steady state heat conduction in composites. International Journal of Engineering Science, 24, 1159–1172.CrossRefMATH Hatta, H., & Taya, M. (1986). Equivalent inclusion method for steady state heat conduction in composites. International Journal of Engineering Science, 24, 1159–1172.CrossRefMATH
go back to reference Herakovich, C. T. (1998). Mechanics of fibrous composites. New York: Wiley. Herakovich, C. T. (1998). Mechanics of fibrous composites. New York: Wiley.
go back to reference Hershey, A. V. (1954). The elasticity of an isotropic aggregate of anisotropic cubic crystals. ASME Journal of Applied Mechanics, 21, 236–240.MATH Hershey, A. V. (1954). The elasticity of an isotropic aggregate of anisotropic cubic crystals. ASME Journal of Applied Mechanics, 21, 236–240.MATH
go back to reference Hill, R. (1963a). Elastic properties of reinforced solids: Some theoretical principles. Journal of the Mechanics and Physics of Solids, 11, 357–372 [1]. Hill, R. (1963a). Elastic properties of reinforced solids: Some theoretical principles. Journal of the Mechanics and Physics of Solids, 11, 357–372 [1].
go back to reference Hill, R. (1964). Theory of mechanical properties of fibre-strengthened materials: I. Elastic behavior. Journal of the Mechanics and Physics of Solids, 12, 199–212.MathSciNetCrossRef Hill, R. (1964). Theory of mechanical properties of fibre-strengthened materials: I. Elastic behavior. Journal of the Mechanics and Physics of Solids, 12, 199–212.MathSciNetCrossRef
go back to reference Hill, R. (1965a). Continuum micromechanics of elastic-plastic polycrystals. Journal of the Mechanics and Physics of Solids, 13, 89–101.CrossRefMATH Hill, R. (1965a). Continuum micromechanics of elastic-plastic polycrystals. Journal of the Mechanics and Physics of Solids, 13, 89–101.CrossRefMATH
go back to reference Hill, R. (1965b). Theory of mechanical properties of fibre-strengthened materials – III. Self-consistent model. Journal of the Mechanics and Physics of Solids, 13, 189–198.CrossRef Hill, R. (1965b). Theory of mechanical properties of fibre-strengthened materials – III. Self-consistent model. Journal of the Mechanics and Physics of Solids, 13, 189–198.CrossRef
go back to reference Hill, R. (1965c). A self-consistent mechanics of composite materials. Journal of the Mechanics and Physics of Solids, 13, 213–222.CrossRef Hill, R. (1965c). A self-consistent mechanics of composite materials. Journal of the Mechanics and Physics of Solids, 13, 213–222.CrossRef
go back to reference Hirano, T., & Wakashima, K. (1995). Mathematical modeling and design. MRS Bulletin, 40-42. Hirano, T., & Wakashima, K. (1995). Mathematical modeling and design. MRS Bulletin, 40-42.
go back to reference Hirano, T., Teraki, J., & Yamada, T. (1990). On the design of functionally gradient materials. In: M. Yamanouchi, M. Koizumi, T. Hirai, & I. Shiota (Eds.), Proceedings of the 1st International Symposium on Functionally Gradient Materials, pp. 5-10. Hirano, T., Teraki, J., & Yamada, T. (1990). On the design of functionally gradient materials. In: M. Yamanouchi, M. Koizumi, T. Hirai, & I. Shiota (Eds.), Proceedings of the 1st International Symposium on Functionally Gradient Materials, pp. 5-10.
go back to reference Hori, M., & Nemat-Nasser, S. (1993). Double-inclusion model and overall moduli of multi-phase composites. Mechanics of Materials, 14, 189–206.CrossRef Hori, M., & Nemat-Nasser, S. (1993). Double-inclusion model and overall moduli of multi-phase composites. Mechanics of Materials, 14, 189–206.CrossRef
go back to reference Hu, G. K., & Weng, G. J. (2000). The connections between the double inclusion model and the Ponte Castaneda-Willis, Mori Tanaka, and Kuster-Toksoz models. Mechanics of Materials, 32, 495–503.CrossRef Hu, G. K., & Weng, G. J. (2000). The connections between the double inclusion model and the Ponte Castaneda-Willis, Mori Tanaka, and Kuster-Toksoz models. Mechanics of Materials, 32, 495–503.CrossRef
go back to reference Kerner, E. H. (1956). The elastic and thermo-elastic properties of composite media. Proceedings of the Royal Society London, B69, 808–813.CrossRef Kerner, E. H. (1956). The elastic and thermo-elastic properties of composite media. Proceedings of the Royal Society London, B69, 808–813.CrossRef
go back to reference Kröner, E. (1958). Berechnung der elastischen Konstanten der Vielkristalls aus den Konstanten der Einkristalls. Zeitschrift für Physik, 151, 504–518.CrossRef Kröner, E. (1958). Berechnung der elastischen Konstanten der Vielkristalls aus den Konstanten der Einkristalls. Zeitschrift für Physik, 151, 504–518.CrossRef
go back to reference Kröner, E., Datta, B. K., & Kessel, D. (1966). On the bounds of the shear modulus of macroscopically isotropic aggregates of cubic crystals. Journal of the Mechanics and Physics of Solids, 14, 21–24.CrossRef Kröner, E., Datta, B. K., & Kessel, D. (1966). On the bounds of the shear modulus of macroscopically isotropic aggregates of cubic crystals. Journal of the Mechanics and Physics of Solids, 14, 21–24.CrossRef
go back to reference Laws, N. (1973). On thermostatics of composite materials. Journal of the Mechanics and Physics of Solids, 21, 9–17.CrossRef Laws, N. (1973). On thermostatics of composite materials. Journal of the Mechanics and Physics of Solids, 21, 9–17.CrossRef
go back to reference Laws, N. (1974). The overall thermoelastic moduli of transversely isotropic composites according to the self-consistent method. International Journal of Engineering Science, 12, 79–87.CrossRefMATH Laws, N. (1974). The overall thermoelastic moduli of transversely isotropic composites according to the self-consistent method. International Journal of Engineering Science, 12, 79–87.CrossRefMATH
go back to reference Laws, N. (1980). The elastic response of composite materials. Physics of Modern Materials, I. International Atomic Energy Agency, Vienna, IAEA-SMR 46/107, pp. 465–520. Laws, N. (1980). The elastic response of composite materials. Physics of Modern Materials, I. International Atomic Energy Agency, Vienna, IAEA-SMR 46/107, pp. 465–520.
go back to reference Laws, N., & Dvorak, G. J. (1987). The effect of fiber breaks and penny shaped cracks on the stiffness and energy release in unidirectional composites. International Journal of Solids and Structures, 23, 1269–1283.CrossRef Laws, N., & Dvorak, G. J. (1987). The effect of fiber breaks and penny shaped cracks on the stiffness and energy release in unidirectional composites. International Journal of Solids and Structures, 23, 1269–1283.CrossRef
go back to reference Laws, N., & McLaughlin, R. (1978). Self-consistent estimates for viscoelastic creep compliances of composite materials. Proceedings of the Royal Society of London, A359, 251–273.MathSciNet Laws, N., & McLaughlin, R. (1978). Self-consistent estimates for viscoelastic creep compliances of composite materials. Proceedings of the Royal Society of London, A359, 251–273.MathSciNet
go back to reference Laws, N., & McLaughlin, R. (1979). The effect of fiber length on the overall moduli of composite materials. Journal of the Mechanics and Physics of Solids, 27, 1–13.CrossRefMATH Laws, N., & McLaughlin, R. (1979). The effect of fiber length on the overall moduli of composite materials. Journal of the Mechanics and Physics of Solids, 27, 1–13.CrossRefMATH
go back to reference Laws, N., Dvorak, G. J., & Hejazi, M. (1983). Stiffness changes in composites caused by crack systems. Mechanics of Materials, 2, 123–137.CrossRef Laws, N., Dvorak, G. J., & Hejazi, M. (1983). Stiffness changes in composites caused by crack systems. Mechanics of Materials, 2, 123–137.CrossRef
go back to reference Lee, Y. -D., & Erdogan, F. (1994/1995). Residual thermal stresses in FGM and laminated thermal barrier coatings. International Journal of Fracture, 69, 145-165. Lee, Y. -D., & Erdogan, F. (1994/1995). Residual thermal stresses in FGM and laminated thermal barrier coatings. International Journal of Fracture, 69, 145-165.
go back to reference Markworth, A. J., & Saunders, J. H. (1995). A model of structure optimization for a functionally graded material. Materials Letters, 22, 103–107.CrossRef Markworth, A. J., & Saunders, J. H. (1995). A model of structure optimization for a functionally graded material. Materials Letters, 22, 103–107.CrossRef
go back to reference Markworth, A. J., Parks, W. P., & Ramesh, K. S. (1995). Review: Modelling studies applied to functionally graded materials. Journal of Materials Science, 30, 2183–2193.CrossRef Markworth, A. J., Parks, W. P., & Ramesh, K. S. (1995). Review: Modelling studies applied to functionally graded materials. Journal of Materials Science, 30, 2183–2193.CrossRef
go back to reference McLaughlin, R. (1977). A study of the differential scheme for composite materials. International Journal of Engineering Science, 15, 237–244.CrossRefMATH McLaughlin, R. (1977). A study of the differential scheme for composite materials. International Journal of Engineering Science, 15, 237–244.CrossRefMATH
go back to reference Mori, T., & Tanaka, K. (1973). Average stress in matrix and average elastic energy of materials with misfitting inclusions. Acta Metallurgica, 21, 571–574.CrossRef Mori, T., & Tanaka, K. (1973). Average stress in matrix and average elastic energy of materials with misfitting inclusions. Acta Metallurgica, 21, 571–574.CrossRef
go back to reference Nemat-Nasser, S., & Hori, M. (1999). Micromechanics: Overall properties of hetero-geneous materials (2nd ed.). Amsterdam: Elsevier. Nemat-Nasser, S., & Hori, M. (1999). Micromechanics: Overall properties of hetero-geneous materials (2nd ed.). Amsterdam: Elsevier.
go back to reference Norris, A. N. (1985). A differential scheme for effective moduli of composites. Mechanics of Materials, 4, 1–16.CrossRef Norris, A. N. (1985). A differential scheme for effective moduli of composites. Mechanics of Materials, 4, 1–16.CrossRef
go back to reference Norris, A. N. (1989). An examination of the Mori-Tanaka effective medium approximation for multiphase composites. ASME Journal of Applied Mechanics, 56, 83–88.CrossRefMATH Norris, A. N. (1989). An examination of the Mori-Tanaka effective medium approximation for multiphase composites. ASME Journal of Applied Mechanics, 56, 83–88.CrossRefMATH
go back to reference Norris, A. N., Callegari, A. J., & Sheng, P. (1985). A generalized differential effective medium theory. Journal of the Mechanics and Physics of Solids, 33(6), 525–543.CrossRefMATH Norris, A. N., Callegari, A. J., & Sheng, P. (1985). A generalized differential effective medium theory. Journal of the Mechanics and Physics of Solids, 33(6), 525–543.CrossRefMATH
go back to reference Oskay, C., & Fish, J. (2007). Eigendeformation-based reduced order homogenization for failure analysis of heterogeneous materials. Computer Methods in Applied Mechanics and Engineering, 196, 1216–1243.MathSciNetCrossRefMATH Oskay, C., & Fish, J. (2007). Eigendeformation-based reduced order homogenization for failure analysis of heterogeneous materials. Computer Methods in Applied Mechanics and Engineering, 196, 1216–1243.MathSciNetCrossRefMATH
go back to reference Ozisik, M. N. (1968). Boundary value problems of heat conduction. Scranton: International Textbook Co. Ozisik, M. N. (1968). Boundary value problems of heat conduction. Scranton: International Textbook Co.
go back to reference Ponte Castaneda, P., & Willis, J. R. (1995). The effect of spatial distribution on the effective behavior of composite materials and cracked media. Journal of the Mechanics and Physics of Solids, 43, 1919–1951.MathSciNetCrossRefMATH Ponte Castaneda, P., & Willis, J. R. (1995). The effect of spatial distribution on the effective behavior of composite materials and cracked media. Journal of the Mechanics and Physics of Solids, 43, 1919–1951.MathSciNetCrossRefMATH
go back to reference Postma, G. W. (1955). Wave propagation in a stratified medium. Geophysics, 20, 780–806.CrossRef Postma, G. W. (1955). Wave propagation in a stratified medium. Geophysics, 20, 780–806.CrossRef
go back to reference Reiter, T., & Dvorak, G. J. (1998). Micromechanical models for graded composite materials: II Thermomechanical loading. Journal of the Mechanics of Physics of Solids, 46, 1655–1673.CrossRefMATH Reiter, T., & Dvorak, G. J. (1998). Micromechanical models for graded composite materials: II Thermomechanical loading. Journal of the Mechanics of Physics of Solids, 46, 1655–1673.CrossRefMATH
go back to reference Reiter, T., Dvorak, G. J., & Tvergaard, V. (1997). Micromechanical models for graded composite materials. Journal of the Mechanics and Physics of Solids, 45, 1281–1302.CrossRef Reiter, T., Dvorak, G. J., & Tvergaard, V. (1997). Micromechanical models for graded composite materials. Journal of the Mechanics and Physics of Solids, 45, 1281–1302.CrossRef
go back to reference Roscoe, R. (1952). The viscosity of suspensions of rigid spheres. British Journal of Applied Physics, 3, 267–269.CrossRef Roscoe, R. (1952). The viscosity of suspensions of rigid spheres. British Journal of Applied Physics, 3, 267–269.CrossRef
go back to reference Russel, W. B. (1973). On the effective moduli of composite materials: Effect of fiber length and geometry at dilute concentrations. Zeitschrift für Angewandte Mathematik und Physik, 24, 581.CrossRef Russel, W. B. (1973). On the effective moduli of composite materials: Effect of fiber length and geometry at dilute concentrations. Zeitschrift für Angewandte Mathematik und Physik, 24, 581.CrossRef
go back to reference Sanchez-Palencia, E. (1980). Homogenization techniques and vibration theory. Lecture Notes in Physics No. 127. Berlin: Springer. Sanchez-Palencia, E. (1980). Homogenization techniques and vibration theory. Lecture Notes in Physics No. 127. Berlin: Springer.
go back to reference Sasaki, M., & Hirai, T. (1991). Fabrication and properties of functionally gradient materials. Journal of the Ceramic Society of Japan, 99, 1002–1013.CrossRef Sasaki, M., & Hirai, T. (1991). Fabrication and properties of functionally gradient materials. Journal of the Ceramic Society of Japan, 99, 1002–1013.CrossRef
go back to reference Sayers, C. M. (1992). Elastic anisotropy of short-fibre reinforced composites. Journal of the Mechanics and Physics of Solids, 29, 2933–2944.MATH Sayers, C. M. (1992). Elastic anisotropy of short-fibre reinforced composites. Journal of the Mechanics and Physics of Solids, 29, 2933–2944.MATH
go back to reference Suquet, P. (1987). Elements of homogenization for inelastic solid mechanics. In E. Sanchez-Palencia & A. Zaoui (Eds.), Homogenization techniques for composite media. New York: Springer. Suquet, P. (1987). Elements of homogenization for inelastic solid mechanics. In E. Sanchez-Palencia & A. Zaoui (Eds.), Homogenization techniques for composite media. New York: Springer.
go back to reference Tanaka, K., & Mori, M. (1972). Note on volume integrals of the elastic field around an ellipsoidal inclusion. Journal of Elasticity, 2, 199–200.CrossRef Tanaka, K., & Mori, M. (1972). Note on volume integrals of the elastic field around an ellipsoidal inclusion. Journal of Elasticity, 2, 199–200.CrossRef
go back to reference Tanaka, K., Tanaka, Y., Enomoto, K., Poterasu, V. F., & Sugano, Y. (1993a). Design of thermoelastic materials using direct sensitivity and optimization methods: Reduction of thermal stresses in functionally gradient materials. Computer Methods in Applied Mechanics and Engineering, 106, 271–284.CrossRefMATH Tanaka, K., Tanaka, Y., Enomoto, K., Poterasu, V. F., & Sugano, Y. (1993a). Design of thermoelastic materials using direct sensitivity and optimization methods: Reduction of thermal stresses in functionally gradient materials. Computer Methods in Applied Mechanics and Engineering, 106, 271–284.CrossRefMATH
go back to reference Tanaka, K., Tanaka, Y., Watanabe, H., Poterasu, V. F., & Sugano, Y. (1993b). An improved solution to thermoelastic material design infunctionally gradient materials: Scheme to reduce thermal stresses. Computer Methods in Applied Mechanics and Engineering, 109, 377–389.CrossRefMATH Tanaka, K., Tanaka, Y., Watanabe, H., Poterasu, V. F., & Sugano, Y. (1993b). An improved solution to thermoelastic material design infunctionally gradient materials: Scheme to reduce thermal stresses. Computer Methods in Applied Mechanics and Engineering, 109, 377–389.CrossRefMATH
go back to reference Walpole, L. J. (1969). On the overall elastic moduli of composite materials. Journal of the Mechanics and Physics of Solids, 17, 235–251.CrossRefMATH Walpole, L. J. (1969). On the overall elastic moduli of composite materials. Journal of the Mechanics and Physics of Solids, 17, 235–251.CrossRefMATH
go back to reference Walpole, L. J. (1981). Elastic behavior of composite materials: Theoretical foundations. In Advances in applied mechanics. New York: Academic, 21, 169–242. Walpole, L. J. (1981). Elastic behavior of composite materials: Theoretical foundations. In Advances in applied mechanics. New York: Academic, 21, 169–242.
go back to reference Walpole, L. J. (1984). Fourth-rank tensors of the thirty-two crystal classes; multiplication tables. Proceedings of the Royal Society London A, 391, 149–179.MathSciNetCrossRefMATH Walpole, L. J. (1984). Fourth-rank tensors of the thirty-two crystal classes; multiplication tables. Proceedings of the Royal Society London A, 391, 149–179.MathSciNetCrossRefMATH
go back to reference Walpole, L. J. (1985c). The analysis of the overall elastic properties of composite materials. In B. A. Bilby, K. J. Miller, & J. R. Willis (Eds.), Fundamentals of deformation and fracture: Eshelby memorial symposium (pp. 91–107). Cambridge: Cambridge University Press. Walpole, L. J. (1985c). The analysis of the overall elastic properties of composite materials. In B. A. Bilby, K. J. Miller, & J. R. Willis (Eds.), Fundamentals of deformation and fracture: Eshelby memorial symposium (pp. 91–107). Cambridge: Cambridge University Press.
go back to reference Walsh, J. B. (1965). The effect of cracks on the compressibility of rock. Journal of Geophysical Research, 70, 381.CrossRefMATH Walsh, J. B. (1965). The effect of cracks on the compressibility of rock. Journal of Geophysical Research, 70, 381.CrossRefMATH
go back to reference Weng, G. J. (1984). Some elastic properties of reinforced solids, with special reference to isotropic ones containing spherical inclusions. International Journal of Engineering Science, 22, 845–856.CrossRefMATH Weng, G. J. (1984). Some elastic properties of reinforced solids, with special reference to isotropic ones containing spherical inclusions. International Journal of Engineering Science, 22, 845–856.CrossRefMATH
go back to reference Weng, G. J. (1990). The theoretical connection between Mori-Tanaka’s theory and the Hashin-Shtrikman-Walpole bounds. International Journal of Engineering Science, 28, 1111–1120.MathSciNetCrossRefMATH Weng, G. J. (1990). The theoretical connection between Mori-Tanaka’s theory and the Hashin-Shtrikman-Walpole bounds. International Journal of Engineering Science, 28, 1111–1120.MathSciNetCrossRefMATH
go back to reference Weng, G. J. (1992). Explicit evaluation of Willis’ bounds with ellipsoidal inclusions. International Journal of Engineering Science, 30, 83–92.MathSciNetCrossRefMATH Weng, G. J. (1992). Explicit evaluation of Willis’ bounds with ellipsoidal inclusions. International Journal of Engineering Science, 30, 83–92.MathSciNetCrossRefMATH
go back to reference Williamson, R. L., Rabin, B. H., & Drake, J. T. (1993). Finite element analysis of thermal residual stresses at graded ceramic-metal interfaces. Part 1. Model description and geometrical effects. Journal of Applied Physics, 74, 1311–1320.CrossRef Williamson, R. L., Rabin, B. H., & Drake, J. T. (1993). Finite element analysis of thermal residual stresses at graded ceramic-metal interfaces. Part 1. Model description and geometrical effects. Journal of Applied Physics, 74, 1311–1320.CrossRef
go back to reference Willis, J. R. (1980). A polarization approach to the scattering of elastic waves – I. Scattering by a single inclusion. II. Multiple scattering from inclusions. Journal of the Mechanics and Physics of Solids, 28, 287–327.MathSciNetCrossRefMATH Willis, J. R. (1980). A polarization approach to the scattering of elastic waves – I. Scattering by a single inclusion. II. Multiple scattering from inclusions. Journal of the Mechanics and Physics of Solids, 28, 287–327.MathSciNetCrossRefMATH
go back to reference Willis, J. R. (1981). Variational and related method for the overall properties of composites. In Advances in applied mechanics, 21, 1–78. Academic Press. Willis, J. R. (1981). Variational and related method for the overall properties of composites. In Advances in applied mechanics, 21, 1–78. Academic Press.
go back to reference Withers, P. J. (1989). The determination of the elastic field of an ellipsoidal inclusion in a transversely isotropic medium, and its relevance to composite materials. Philosophical Magazine, 59, 759–781.CrossRef Withers, P. J. (1989). The determination of the elastic field of an ellipsoidal inclusion in a transversely isotropic medium, and its relevance to composite materials. Philosophical Magazine, 59, 759–781.CrossRef
go back to reference Wu, T. T. (1966). The effect of inclusion shape on the elastic moduli of a two-phase material. International Journal of Solids and Structures, 2, 1–8.CrossRef Wu, T. T. (1966). The effect of inclusion shape on the elastic moduli of a two-phase material. International Journal of Solids and Structures, 2, 1–8.CrossRef
go back to reference Zhao, Y. H., Tandon, G. P., & Weng, G. J. (1989). Elastic moduli for a class of porous materials. Acta Mechanica, 76, 105–130.CrossRefMATH Zhao, Y. H., Tandon, G. P., & Weng, G. J. (1989). Elastic moduli for a class of porous materials. Acta Mechanica, 76, 105–130.CrossRefMATH
go back to reference Zohdi, T. I., & Wriggers, P. (2005). An introduction to computational micromechanics. Berlin: Springer.CrossRef Zohdi, T. I., & Wriggers, P. (2005). An introduction to computational micromechanics. Berlin: Springer.CrossRef
go back to reference Zohdi, T. I., Oden, J. T., & Rodin, G. J. (1996). Hierarchical modeling of heterogeneous bodies. Computer Merthods in Applied Mechanics and Engineering, 138, 273–298.MathSciNetCrossRefMATH Zohdi, T. I., Oden, J. T., & Rodin, G. J. (1996). Hierarchical modeling of heterogeneous bodies. Computer Merthods in Applied Mechanics and Engineering, 138, 273–298.MathSciNetCrossRefMATH
go back to reference Walker, K. P. (1993) Fourier integral representation of the Green function for anisotropic elastic half-space. Proc. Roy. Soc. London, A433, 367–389.CrossRef Walker, K. P. (1993) Fourier integral representation of the Green function for anisotropic elastic half-space. Proc. Roy. Soc. London, A433, 367–389.CrossRef
go back to reference Ghosh, S., Lee, K., Raghavan, P. (2001). A multi-level computational model for multi-scale damage analysis in composite and porous materials Intl. J. Solids. Struct., 38, 2335–2385.CrossRefMATH Ghosh, S., Lee, K., Raghavan, P. (2001). A multi-level computational model for multi-scale damage analysis in composite and porous materials Intl. J. Solids. Struct., 38, 2335–2385.CrossRefMATH
Metadata
Title
Estimates of Mechanical Properties of Composite Materials
Author
George J. Dvorak
Copyright Year
2013
Publisher
Springer Netherlands
DOI
https://doi.org/10.1007/978-94-007-4101-0_7

Premium Partners