Skip to main content
Top

2013 | OriginalPaper | Chapter

8. Transformation Fields

Author : George J. Dvorak

Published in: Micromechanics of Composite Materials

Publisher: Springer Netherlands

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Together with the stresses caused by mechanical loads, composite materials must withstand stresses caused by distribution of transformation strains or eigenstrains in individual phases or subvolumes of each phase. As pointed out in Sect. 3.6.1, the former term applies here to all physically based deformations not caused by mechanical loads, including actual phase transformations. Frequent sources of transformation strains are changes in temperature and/or moisture content, piezoelectric and magneto-electro-elastic and pyroelectric effects, (Benveniste 1992, 1993; Benveniste and Milton 2003), as well as diffusive and displacive transformations involved in kinetics of structural change in crystals and polycrystals (Ashby and Jones 1986), or martensitic phase transformations in steels, and shape memory alloys (Entchev and Lagudas 2002; Levitas and Javanbakh 2011). Inelastic deformations associated with plasticity, viscoelasticity and viscoplasticity will join this list in Chap.​ 12, but those will be analyzed in an entirely different setting.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Ashby, M. F., & Jones, D. R. H. (1986). Engineering materials 2. An introduction to microstructures, processing and design. Oxford: Pergamon Press. Ashby, M. F., & Jones, D. R. H. (1986). Engineering materials 2. An introduction to microstructures, processing and design. Oxford: Pergamon Press.
go back to reference Bahei-El-Din, Y. A., & Dvorak, G. J. (1997). Isothermal fatigue of sigma/timetal 21S laminates: II. Modeling and numerical analysis. Mechanics of Composite Materials and Structures, 4, 131–158.CrossRef Bahei-El-Din, Y. A., & Dvorak, G. J. (1997). Isothermal fatigue of sigma/timetal 21S laminates: II. Modeling and numerical analysis. Mechanics of Composite Materials and Structures, 4, 131–158.CrossRef
go back to reference Benveniste, Y. (1996). Thermal expansion of polycrystalline aggregates consisting of elongated crystals and containing cylindrical pores or inclusions. Journal of the Mechanics and Physics of Solids, 44, 137–153.MathSciNetCrossRefMATH Benveniste, Y. (1996). Thermal expansion of polycrystalline aggregates consisting of elongated crystals and containing cylindrical pores or inclusions. Journal of the Mechanics and Physics of Solids, 44, 137–153.MathSciNetCrossRefMATH
go back to reference Benveniste, Y., & Dvorak, G. J. (1989). On a correspondence between mechanical and thermal effects in two-phase composites. In Micromechanics and inhomogeneity (The Toshio Mura 65th anniversary volume, pp. 65–81). New York: Springer. Benveniste, Y., & Dvorak, G. J. (1989). On a correspondence between mechanical and thermal effects in two-phase composites. In Micromechanics and inhomogeneity (The Toshio Mura 65th anniversary volume, pp. 65–81). New York: Springer.
go back to reference Benveniste, Y., & Dvorak, G. J. (1992a). Uniform fields and universal relations in piezoelectric composites. Journal of the Mechanics and Physics of Solids, 40, 1295–1312.MathSciNetCrossRefMATH Benveniste, Y., & Dvorak, G. J. (1992a). Uniform fields and universal relations in piezoelectric composites. Journal of the Mechanics and Physics of Solids, 40, 1295–1312.MathSciNetCrossRefMATH
go back to reference Benveniste, Y., & Dvorak, G. J. (1992b). Some remarks on a class of uniform fields in fibrous composites. Journal of Applied Mechanics, 59, 1030–1032.CrossRefMATH Benveniste, Y., & Dvorak, G. J. (1992b). Some remarks on a class of uniform fields in fibrous composites. Journal of Applied Mechanics, 59, 1030–1032.CrossRefMATH
go back to reference Benveniste, Y., Dvorak, G. J., & Chen, T. (1989). Stress fields in composites with coated inclusions. Mechanics of Materials, 7, 305–317.CrossRef Benveniste, Y., Dvorak, G. J., & Chen, T. (1989). Stress fields in composites with coated inclusions. Mechanics of Materials, 7, 305–317.CrossRef
go back to reference Benveniste, Y., Dvorak, G. J., & Chen, T. (1991a). On the effective properties of composites with coated cylindrically orthotropic fibers. Mechanics of Materials, 12, 289–297.CrossRef Benveniste, Y., Dvorak, G. J., & Chen, T. (1991a). On the effective properties of composites with coated cylindrically orthotropic fibers. Mechanics of Materials, 12, 289–297.CrossRef
go back to reference Benveniste, Y., Dvorak, G. J., & Chen, T. (1991b). On diagonal and elastic symmetry of the approximate effective stiffness tensor of heterogeneous media. Journal of the Mechanics and Physics of Solids, 39, 927–946.MathSciNetCrossRefMATH Benveniste, Y., Dvorak, G. J., & Chen, T. (1991b). On diagonal and elastic symmetry of the approximate effective stiffness tensor of heterogeneous media. Journal of the Mechanics and Physics of Solids, 39, 927–946.MathSciNetCrossRefMATH
go back to reference Boley, B. A., & Wiener, J. H. (1960). Theory of thermal stresses. New York: Wiley.MATH Boley, B. A., & Wiener, J. H. (1960). Theory of thermal stresses. New York: Wiley.MATH
go back to reference Chen, T., Dvorak, G. J., & Benveniste, Y. (1990). Stress fields in composites reinforced by coated cylindrically orthotropic fibers. Mechanics of Materials, 9, 17–32.CrossRef Chen, T., Dvorak, G. J., & Benveniste, Y. (1990). Stress fields in composites reinforced by coated cylindrically orthotropic fibers. Mechanics of Materials, 9, 17–32.CrossRef
go back to reference Craft, W. J., & Christensen, R. M. (1981). Coefficient of thermal expansion for composites with randomly oriented fibers. Journal of Composite Materials, 15, 2–20.CrossRef Craft, W. J., & Christensen, R. M. (1981). Coefficient of thermal expansion for composites with randomly oriented fibers. Journal of Composite Materials, 15, 2–20.CrossRef
go back to reference Cribb, J. L. (1968). Shrinkage and thermal expansion of a two-phase material. Nature, 220, 576–577.CrossRef Cribb, J. L. (1968). Shrinkage and thermal expansion of a two-phase material. Nature, 220, 576–577.CrossRef
go back to reference Dvorak, G. J. (1983). Metal matrix composites: Plasticity and fatigue. In Z. Hashin & C. T. Herakovich (Eds.), Mechanics of composite materials: Recent advances (pp. 73–91). New York: Pergamon Press.CrossRef Dvorak, G. J. (1983). Metal matrix composites: Plasticity and fatigue. In Z. Hashin & C. T. Herakovich (Eds.), Mechanics of composite materials: Recent advances (pp. 73–91). New York: Pergamon Press.CrossRef
go back to reference Dvorak, G. J. (1986). Thermal expansion of elastic-plastic composite materials. ASME Journal of Applied Mechanics, 53, 737–743.CrossRefMATH Dvorak, G. J. (1986). Thermal expansion of elastic-plastic composite materials. ASME Journal of Applied Mechanics, 53, 737–743.CrossRefMATH
go back to reference Dvorak, G. J., & Benveniste, Y. (1992). On transformation strains and uniform fields in heterogeneous media. Proceedings of the Royal Society London A, 437, 291–310.MathSciNetCrossRefMATH Dvorak, G. J., & Benveniste, Y. (1992). On transformation strains and uniform fields in heterogeneous media. Proceedings of the Royal Society London A, 437, 291–310.MathSciNetCrossRefMATH
go back to reference Dvorak, G. J., & Chen, T. (1989). Thermal expansion of three-phase composite materials. ASME Journal of Applied Mechanics, 56, 418–422.CrossRefMATH Dvorak, G. J., & Chen, T. (1989). Thermal expansion of three-phase composite materials. ASME Journal of Applied Mechanics, 56, 418–422.CrossRefMATH
go back to reference Entchev, P. B., & Lagudas, D. C. (2002). Modeling porous shape memory alloys using micromechanical averaging techniques. Mechanics of Materials, 34, 1–24.CrossRef Entchev, P. B., & Lagudas, D. C. (2002). Modeling porous shape memory alloys using micromechanical averaging techniques. Mechanics of Materials, 34, 1–24.CrossRef
go back to reference Eshelby, J. D. (1957). The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proceedings of the Royal Society London A, 241, 376–396.MathSciNetCrossRefMATH Eshelby, J. D. (1957). The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proceedings of the Royal Society London A, 241, 376–396.MathSciNetCrossRefMATH
go back to reference Hashin, Z. (1984). Thermal expansion of polycrystalline aggregates: I. Exact analysis. Journal of the Mechanics and Physics of Solids, 32, 149–157.CrossRefMATH Hashin, Z. (1984). Thermal expansion of polycrystalline aggregates: I. Exact analysis. Journal of the Mechanics and Physics of Solids, 32, 149–157.CrossRefMATH
go back to reference Hashin, Z., & Rosen, B. W. (1964). The elastic moduli of fiber reinforced materials. ASME Journal of Applied Mechanics 31E, 223–232. Errata, 1965, ibid., 32E, 219. Hashin, Z., & Rosen, B. W. (1964). The elastic moduli of fiber reinforced materials. ASME Journal of Applied Mechanics 31E, 223–232. Errata, 1965, ibid., 32E, 219.
go back to reference Hatta, H., & Taya, M. (1986). Equivalent inclusion method for steady state heat conduction in composites. International Journal of Engineering Science, 24, 1159–1172.CrossRefMATH Hatta, H., & Taya, M. (1986). Equivalent inclusion method for steady state heat conduction in composites. International Journal of Engineering Science, 24, 1159–1172.CrossRefMATH
go back to reference Hervé, E., & Zaoui, A. (1995). Elastic behaviour of multiply coated fibre-reinforced composites. International Journal of Engineering Science, 33, 1419–1433.CrossRefMATH Hervé, E., & Zaoui, A. (1995). Elastic behaviour of multiply coated fibre-reinforced composites. International Journal of Engineering Science, 33, 1419–1433.CrossRefMATH
go back to reference Hill, R. (1964). Theory of mechanical properties of fibre-strengthened materials: I. Elastic behavior. Journal of the Mechanics and Physics of Solids, 12, 199–212.MathSciNetCrossRef Hill, R. (1964). Theory of mechanical properties of fibre-strengthened materials: I. Elastic behavior. Journal of the Mechanics and Physics of Solids, 12, 199–212.MathSciNetCrossRef
go back to reference Laws, N. (1973). On thermostatics of composite materials. Journal of the Mechanics and Physics of Solids, 21, 9–17.CrossRef Laws, N. (1973). On thermostatics of composite materials. Journal of the Mechanics and Physics of Solids, 21, 9–17.CrossRef
go back to reference Laws, N. (1974). The overall thermoelastic moduli of transversely isotropic composites according to the self-consistent method. International Journal of Engineering Science, 12, 79–87.CrossRefMATH Laws, N. (1974). The overall thermoelastic moduli of transversely isotropic composites according to the self-consistent method. International Journal of Engineering Science, 12, 79–87.CrossRefMATH
go back to reference Levin, V. M. (1967). On the coefficients of thermal expansion of heterogeneous materials (in Russian). Mekhanika Tverdogo Tela, 2, 88–94. Levin, V. M. (1967). On the coefficients of thermal expansion of heterogeneous materials (in Russian). Mekhanika Tverdogo Tela, 2, 88–94.
go back to reference Levitas, V. I., & Javanbakh, M. (2011). Phase-field approach to martensitic phase transformations: Effect of martensite-martensite interface energy. International Journal of Materials Research (formerly Z. Metallkd.) 102, 652–665. Levitas, V. I., & Javanbakh, M. (2011). Phase-field approach to martensitic phase transformations: Effect of martensite-martensite interface energy. International Journal of Materials Research (formerly Z. Metallkd.) 102, 652–665.
go back to reference Mikata, Y., & Taya, M. (1986). Thermal stresses in a coated short fiber composite. Journal of Applied Mechanics, 53, 681–689.CrossRef Mikata, Y., & Taya, M. (1986). Thermal stresses in a coated short fiber composite. Journal of Applied Mechanics, 53, 681–689.CrossRef
go back to reference Mori, T., & Tanaka, K. (1973). Average stress in matrix and average elastic energy of materials with misfitting inclusions. Acta Metallurgica, 21, 571–574.CrossRef Mori, T., & Tanaka, K. (1973). Average stress in matrix and average elastic energy of materials with misfitting inclusions. Acta Metallurgica, 21, 571–574.CrossRef
go back to reference Nye, J. F. (1957, 1985). Physical properties of crystals. Their representation by tensors and matrices. Oxford: Oxford University Press. Nye, J. F. (1957, 1985). Physical properties of crystals. Their representation by tensors and matrices. Oxford: Oxford University Press.
go back to reference Rosen, B. W., & Hashin, Z. (1970). Effective thermal expansion coefficients and specific heats of composite materials. International Journal of Engineering Science, 8, 157–173.CrossRef Rosen, B. W., & Hashin, Z. (1970). Effective thermal expansion coefficients and specific heats of composite materials. International Journal of Engineering Science, 8, 157–173.CrossRef
go back to reference Schapery, R. A. (1968). Thermal expansion coefficients of composite materials based on energy pinciples. Journal of Composite Materials, 2, 380–404.CrossRef Schapery, R. A. (1968). Thermal expansion coefficients of composite materials based on energy pinciples. Journal of Composite Materials, 2, 380–404.CrossRef
go back to reference Schulgasser, K. (1987). Thermal expansion of polycrystalline aggregates with texture. Journal of the Mechanics and Physics of Solids, 35, 35–42.CrossRef Schulgasser, K. (1987). Thermal expansion of polycrystalline aggregates with texture. Journal of the Mechanics and Physics of Solids, 35, 35–42.CrossRef
go back to reference Sneddon, N. I. (1974). The linear theory of thermoelasticity. Berlin/Heidelberg/New York: Springer.MATH Sneddon, N. I. (1974). The linear theory of thermoelasticity. Berlin/Heidelberg/New York: Springer.MATH
go back to reference Suvorov, A. P., & Dvorak, G. J. (2002). Rate form of the Eshelby and Hill tensors. International Journal of Solids and Structures, 39, 5659–5678.CrossRefMATH Suvorov, A. P., & Dvorak, G. J. (2002). Rate form of the Eshelby and Hill tensors. International Journal of Solids and Structures, 39, 5659–5678.CrossRefMATH
go back to reference Takao, Y., & Taya, M. (1985). Thermal expansion coefficients and thermal stresses in a n aligned short fiber composite with application to a short carbon fiber/aluminum. Journal of Applied Mechanics, 52, 806–810.CrossRef Takao, Y., & Taya, M. (1985). Thermal expansion coefficients and thermal stresses in a n aligned short fiber composite with application to a short carbon fiber/aluminum. Journal of Applied Mechanics, 52, 806–810.CrossRef
go back to reference Walker, K. P., Jordan, E. H., & Freed, A. D. (1990). Equivalence of Green’s function and the Fourier series representation of composites with periodic structure. In G. J. Weng, M. Taya, & H. Abé (Eds.), Micromechanics and inhomogeneity, The T. Mura 65-th aniversary volume (pp. 535–558). New York: Springer.CrossRef Walker, K. P., Jordan, E. H., & Freed, A. D. (1990). Equivalence of Green’s function and the Fourier series representation of composites with periodic structure. In G. J. Weng, M. Taya, & H. Abé (Eds.), Micromechanics and inhomogeneity, The T. Mura 65-th aniversary volume (pp. 535–558). New York: Springer.CrossRef
go back to reference Willis, J. R. (1978). In J. W. Provan (Ed.), Continuum models of discrete systems (pp. 185–215). Waterloo: University of Waterloo Press. Willis, J. R. (1978). In J. W. Provan (Ed.), Continuum models of discrete systems (pp. 185–215). Waterloo: University of Waterloo Press.
go back to reference Willis, J. R. (1981). Variational and related method for the overall properties of composites. In Advances in applied mechanics, 21, 1–78. Academic Press. Willis, J. R. (1981). Variational and related method for the overall properties of composites. In Advances in applied mechanics, 21, 1–78. Academic Press.
go back to reference Benveniste, Y. (1993) Exact results in the micromechanics of fibrous piezoelectric composites exhibiting pyroelectricity. Proc. Roy. Soc. London, A441, 1–22. Benveniste, Y. (1993) Exact results in the micromechanics of fibrous piezoelectric composites exhibiting pyroelectricity. Proc. Roy. Soc. London, A441, 1–22.
go back to reference Benveniste, Y. & Milton G. W. (2003) New exact results for the effective electric, elastic, piezoelectric and other properties of composite ellipsoid assemblages. J. Mech. Phys. Solids, 51, 1773–1813.MathSciNetCrossRefMATH Benveniste, Y. & Milton G. W. (2003) New exact results for the effective electric, elastic, piezoelectric and other properties of composite ellipsoid assemblages. J. Mech. Phys. Solids, 51, 1773–1813.MathSciNetCrossRefMATH
go back to reference Kunin, I. A. (1982) Elastic Media with Microstructure I. One-Dimensional Models. Springer-Verlag. Berlin. Kunin, I. A. (1982) Elastic Media with Microstructure I. One-Dimensional Models. Springer-Verlag. Berlin.
go back to reference Kunin, I. A. (1983) Elastic Media with Microstructure II. Three-Dimensional Models. Springer-Verlag. Berlin. Kunin, I. A. (1983) Elastic Media with Microstructure II. Three-Dimensional Models. Springer-Verlag. Berlin.
go back to reference Sigmund O. and Torquato, S, (1999) Design of smart composite materials using topology optimization. Smart Mater. Struct. 8, 365–379. Sigmund O. and Torquato, S, (1999) Design of smart composite materials using topology optimization. Smart Mater. Struct. 8, 365–379.
go back to reference Buryachenko, V. (2007). Micromechanics of heterogeneous materials. New York: Springer Science.CrossRefMATH Buryachenko, V. (2007). Micromechanics of heterogeneous materials. New York: Springer Science.CrossRefMATH
go back to reference Bendsoe, M. P. and Kikuchi, N. (1988) Generating optimal topologies in optimal design using a homogenization method. Comput. Methods Appl. Mech. Eng. 71, 197–224. Bendsoe, M. P. and Kikuchi, N. (1988) Generating optimal topologies in optimal design using a homogenization method. Comput. Methods Appl. Mech. Eng. 71, 197–224.
go back to reference Bendsoe, M. P. and Sigmund, O. (2004) Topology Optimization: theory, Methods and Applications. Springer-Verlag, Berlin. Bendsoe, M. P. and Sigmund, O. (2004) Topology Optimization: theory, Methods and Applications. Springer-Verlag, Berlin.
go back to reference Benveniste, Y., & Dvorak, G. J. (1992). Uniform fields and universal relations in piezoelectric composites. J. Mech. Phys. Solids, 40, 1295–1312.MathSciNetCrossRefMATH Benveniste, Y., & Dvorak, G. J. (1992). Uniform fields and universal relations in piezoelectric composites. J. Mech. Phys. Solids, 40, 1295–1312.MathSciNetCrossRefMATH
go back to reference Benveniste, Y. (1993a) Universal relations in piezoelectric composites with eigenstress and polarization fields. I. Binary media: Local fields and effective behavior. ASME J. Appl. Mech. 60, 265–269. Benveniste, Y. (1993a) Universal relations in piezoelectric composites with eigenstress and polarization fields. I. Binary media: Local fields and effective behavior. ASME J. Appl. Mech. 60, 265–269.
go back to reference Benveniste, Y. (1993b) Universal relations in piezoelectric composites with eigenstress and polarization fields. II. Multiphase media.: Effective behavior. ASME J. Appl. Mech., 60, 270–275. Benveniste, Y. (1993b) Universal relations in piezoelectric composites with eigenstress and polarization fields. II. Multiphase media.: Effective behavior. ASME J. Appl. Mech., 60, 270–275.
go back to reference Benveniste, Y. (1993c) Exact results in the micromechanics of fibrous piezoelectric composites exhibiting pyroelectricity. Proc. R. Soc. A 441, 59–81. Benveniste, Y. (1993c) Exact results in the micromechanics of fibrous piezoelectric composites exhibiting pyroelectricity. Proc. R. Soc. A 441, 59–81.
go back to reference Benveniste, Y. (1995) Magnetoelectric effect in fibrous composites with piezoelectric and piezomagnetic phases. Phys. Rev. B., 51, 16424–16427. Benveniste, Y. (1995) Magnetoelectric effect in fibrous composites with piezoelectric and piezomagnetic phases. Phys. Rev. B., 51, 16424–16427.
go back to reference Feibig, M. (2005) Revival of the magnetoelectric effect (Topical review). J. Phys. D-Appl. Phys. 38, R123–152. Feibig, M. (2005) Revival of the magnetoelectric effect (Topical review). J. Phys. D-Appl. Phys. 38, R123–152.
Metadata
Title
Transformation Fields
Author
George J. Dvorak
Copyright Year
2013
Publisher
Springer Netherlands
DOI
https://doi.org/10.1007/978-94-007-4101-0_8

Premium Partners