Skip to main content
Top

2013 | OriginalPaper | Chapter

9. Interfaces and Interphases

Author : George J. Dvorak

Published in: Micromechanics of Composite Materials

Publisher: Springer Netherlands

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Several types of bonds may exist at the juncture between adjacent phases in contact. On the microscale of many composite materials, most desired is a perfect bond along a sharp spatial boundary S of vanishing thickness. It guarantees that both traction and displacement vectors remain continuous on S. Contact between phase surfaces may also involve presence of one or more interphases, thin bonded layers of additional homogeneous phases introduced, for example, as coatings on particles or fibers, or as products of an interfacial chemical reaction. During composites manufacture and/or loading, an interface is expected to transmit certain tractions between adjacent constituents. When the resolved tensile and/or shear stress reaches a high magnitude, the interface may become imperfect by allowing partial or complete decohesion, a displacement jump, possibly accompanied by a distribution of ‘adhesive’ tractions. In an opposite situation, a high compressive stress may cause radial cracking in one of the phases in contact, or in the surrounding matrix. While magnitudes of interface tractions determine material propensity to distributed damage, the work required by either decohesion or radial cracking must be provided by release of potential energy, which is proportional to phase volume Chap. 5. Therefore, small inhomogeneities are less likely sources of damage than large ones.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Benveniste, Y. (2006). A general interface model for a three-dimensional curved thin anisotropic interphase between two anisotropic media. Journal of the Mechanics and Physics of Solids, 54, 708–734.MathSciNetCrossRefMATH Benveniste, Y. (2006). A general interface model for a three-dimensional curved thin anisotropic interphase between two anisotropic media. Journal of the Mechanics and Physics of Solids, 54, 708–734.MathSciNetCrossRefMATH
go back to reference Benveniste, Y., & Berdichevsky, O. (2010). On two models of arbitrarily curved three-dimensional thin interphases in elasticity. International Journal of Solids and Structures, 47, 1899–1915.CrossRefMATH Benveniste, Y., & Berdichevsky, O. (2010). On two models of arbitrarily curved three-dimensional thin interphases in elasticity. International Journal of Solids and Structures, 47, 1899–1915.CrossRefMATH
go back to reference Benveniste, Y., & Miloh, T. (2001). Imperfect soft and stiff interfaces in two-dimensional elasticity. Mechanics of Materials, 33, 309–323.CrossRef Benveniste, Y., & Miloh, T. (2001). Imperfect soft and stiff interfaces in two-dimensional elasticity. Mechanics of Materials, 33, 309–323.CrossRef
go back to reference Cammarata, R. C., Trimble, T. M., & Srolovitz, D. J. (2000). Surface stress model for instrinsic stresses in thin films. Journal of Materials Research, 15, 2468–2474.CrossRef Cammarata, R. C., Trimble, T. M., & Srolovitz, D. J. (2000). Surface stress model for instrinsic stresses in thin films. Journal of Materials Research, 15, 2468–2474.CrossRef
go back to reference Chen, T., & Dvorak, G. J. (2006). Fibrous nanocomposites with interface stress: Hill’s and Levin’s connections for effective moduli. Applied Physics Letters, 88, 211912. 1–3. Chen, T., & Dvorak, G. J. (2006). Fibrous nanocomposites with interface stress: Hill’s and Levin’s connections for effective moduli. Applied Physics Letters, 88, 211912. 1–3.
go back to reference Chen, T., Chiu, M. S., & Weng, C. N. (2006). Derivation of the generalized Young-Laplace equation of curved interfaces in nano-scaled solids. Journal of Applied Physics, 100, 1–5.CrossRef Chen, T., Chiu, M. S., & Weng, C. N. (2006). Derivation of the generalized Young-Laplace equation of curved interfaces in nano-scaled solids. Journal of Applied Physics, 100, 1–5.CrossRef
go back to reference Chen, T., Dvorak, G. J., & Yu, C. C. (2007a). Solids containing spherical nano- inclusions with interface stresses: Effective properties and thermal-mechanical connections. International Journal of Solids and Structures, 44, 941–955.CrossRefMATH Chen, T., Dvorak, G. J., & Yu, C. C. (2007a). Solids containing spherical nano- inclusions with interface stresses: Effective properties and thermal-mechanical connections. International Journal of Solids and Structures, 44, 941–955.CrossRefMATH
go back to reference Chen, T., Dvorak, G. J., & Yu, C. C. (2007b). Size-dependent elastic properties of unidirectional nano-composites with interface stresses. Acta Mechanica, 188, 39–54.CrossRefMATH Chen, T., Dvorak, G. J., & Yu, C. C. (2007b). Size-dependent elastic properties of unidirectional nano-composites with interface stresses. Acta Mechanica, 188, 39–54.CrossRefMATH
go back to reference Dionne, P. J., Ozisik, R., & Picu, R. C. (2005). Structure and dynamics of polyethylene nanocomposites. Macromolecules, 38, 9351–9358.CrossRef Dionne, P. J., Ozisik, R., & Picu, R. C. (2005). Structure and dynamics of polyethylene nanocomposites. Macromolecules, 38, 9351–9358.CrossRef
go back to reference Dionne, P. J., Picu, R. C., & Ozisik, R. (2006). Adsorption and desorption dynamics of linear polymer chains to spherical nanoparticles: A Monte Carlo investigation. Macromolecules, 39, 3089–3092.CrossRef Dionne, P. J., Picu, R. C., & Ozisik, R. (2006). Adsorption and desorption dynamics of linear polymer chains to spherical nanoparticles: A Monte Carlo investigation. Macromolecules, 39, 3089–3092.CrossRef
go back to reference Duan, H. L., Wang, J., Huang, Z. P., & Karihaloo, B. L. (2005a). Size-dependent effective elastic constants of solids containing nano-inhomogeneities with interface stress. Journal of the Mechanics and Physics of Solids, 53, 1574–1596.MathSciNetCrossRefMATH Duan, H. L., Wang, J., Huang, Z. P., & Karihaloo, B. L. (2005a). Size-dependent effective elastic constants of solids containing nano-inhomogeneities with interface stress. Journal of the Mechanics and Physics of Solids, 53, 1574–1596.MathSciNetCrossRefMATH
go back to reference Duan, H. L., Wang, J., Huang, Z. P., & Karihaloo, B. L. (2005b). Eshelby formalism for nano-inhomogeneities. Proceedings of the Royal Society of London, A 461, 3335–3353.MathSciNet Duan, H. L., Wang, J., Huang, Z. P., & Karihaloo, B. L. (2005b). Eshelby formalism for nano-inhomogeneities. Proceedings of the Royal Society of London, A 461, 3335–3353.MathSciNet
go back to reference Gibbs, J. W. (1928). The collected works of J.W. Gibbs (Vol. 1, p. 315). Longmans: New York. Gibbs, J. W. (1928). The collected works of J.W. Gibbs (Vol. 1, p. 315). Longmans: New York.
go back to reference Gurtin, M. E., & Murdoch, A. I. (1975). A continuum theory of elastic material surfaces. Archive for Rational Mechanics and Analysis, 57, 291–323, and 59, 389–390. Gurtin, M. E., & Murdoch, A. I. (1975). A continuum theory of elastic material surfaces. Archive for Rational Mechanics and Analysis, 57, 291–323, and 59, 389–390.
go back to reference Gurtin, M. E., Weissmuller, J., & Larche, F. (1998). A general theory of curved deformable interfaces in solids at equilibrium. Philosophical Magazine A, 78, 1093–1109.CrossRef Gurtin, M. E., Weissmuller, J., & Larche, F. (1998). A general theory of curved deformable interfaces in solids at equilibrium. Philosophical Magazine A, 78, 1093–1109.CrossRef
go back to reference Hatami-Marbini, H., & Picu, R. C. (2009). Heterogeneous long-range correlated deformation of semiflexible random fiber networks. Physical Review E, 80, 046703-1-11. Hatami-Marbini, H., & Picu, R. C. (2009). Heterogeneous long-range correlated deformation of semiflexible random fiber networks. Physical Review E, 80, 046703-1-11.
go back to reference Landau, L. D., & Lifshitz, E. M. (1987). Fluid mechanics (2nd ed.). Oxford: Pergamon Press.MATH Landau, L. D., & Lifshitz, E. M. (1987). Fluid mechanics (2nd ed.). Oxford: Pergamon Press.MATH
go back to reference Miller, R. E., & Shenoy, V. B. (2000). Size-dependent elastic properties of nanosized structural elements. Nanotechnology, 11, 139–147.CrossRef Miller, R. E., & Shenoy, V. B. (2000). Size-dependent elastic properties of nanosized structural elements. Nanotechnology, 11, 139–147.CrossRef
go back to reference Nix, W. D., & Gao, H. (1998). An atomistic interpretation of interface stress. Scripta Materialia, 39, 1653–1661.CrossRef Nix, W. D., & Gao, H. (1998). An atomistic interpretation of interface stress. Scripta Materialia, 39, 1653–1661.CrossRef
go back to reference Ozmusul, M. S., & Picu, R. C. (2002). Elastic moduli for particulate composites with graded filler-matrix interfaces. Polymer Composites, 23, 110–119.CrossRef Ozmusul, M. S., & Picu, R. C. (2002). Elastic moduli for particulate composites with graded filler-matrix interfaces. Polymer Composites, 23, 110–119.CrossRef
go back to reference Ozmusul, M. S., & Picu, R. C. (2003). Structure of linear polymeric chains confined between spherical impenetrable walls. The Journal of Chemical Physics, 118, 11239–11248.CrossRef Ozmusul, M. S., & Picu, R. C. (2003). Structure of linear polymeric chains confined between spherical impenetrable walls. The Journal of Chemical Physics, 118, 11239–11248.CrossRef
go back to reference Ozmusul, M. S., Picu, R. C., Sternstein, S. S., & Kumar, S. (2005). Lattice Monte Carlo simulations of chain conformations in polymer nanocomposites. Macromolecules, 38, 4495–4500.CrossRef Ozmusul, M. S., Picu, R. C., Sternstein, S. S., & Kumar, S. (2005). Lattice Monte Carlo simulations of chain conformations in polymer nanocomposites. Macromolecules, 38, 4495–4500.CrossRef
go back to reference Picu, R. C. (2009). Multiscale approach to predicting the mechanical behavior of polymeric melts. In B. Farahmand (Ed.), Virtual testing and predictive modeling: Fatigue and fracture allowances. Dordrecht: Springer. Picu, R. C. (2009). Multiscale approach to predicting the mechanical behavior of polymeric melts. In B. Farahmand (Ed.), Virtual testing and predictive modeling: Fatigue and fracture allowances. Dordrecht: Springer.
go back to reference Picu, R. C., Sarvestani, A., & Ozmusul, M. S. (2004). Elastic moduli of polymer nanocomposites derived from their molecular structure. In V. M. Harik (Ed.), Trends in nanoscale mechanics: Analysis of nanostructured materials and multiscale modeling (pp. 61–88). Dordrecht: Kluwer Academic Press. Picu, R. C., Sarvestani, A., & Ozmusul, M. S. (2004). Elastic moduli of polymer nanocomposites derived from their molecular structure. In V. M. Harik (Ed.), Trends in nanoscale mechanics: Analysis of nanostructured materials and multiscale modeling (pp. 61–88). Dordrecht: Kluwer Academic Press.
go back to reference Povstenko, Y. Z. (1993). Theoretical investigation of phenomena caused by heterogeneous surface tension in solids. Journal of the Mechanics and Physics of Solids, 41, 1499–1514.MathSciNetCrossRefMATH Povstenko, Y. Z. (1993). Theoretical investigation of phenomena caused by heterogeneous surface tension in solids. Journal of the Mechanics and Physics of Solids, 41, 1499–1514.MathSciNetCrossRefMATH
go back to reference Ramanathan, T., Liu, H., & Brinson, L. C. (2005). Functionalized SWNT polymer nanocomposites for dramatic property improvement. Journal of Polymer Science: Polymer Physics, 43, 2269–2279.CrossRef Ramanathan, T., Liu, H., & Brinson, L. C. (2005). Functionalized SWNT polymer nanocomposites for dramatic property improvement. Journal of Polymer Science: Polymer Physics, 43, 2269–2279.CrossRef
go back to reference Ramanathan, T., Abdala, A. A., Stankovich, S., et al. (2008). Functionalized graphene sheets for polymer nanocomposites. Nature Nanotechnology, 3(6), 327–331.CrossRef Ramanathan, T., Abdala, A. A., Stankovich, S., et al. (2008). Functionalized graphene sheets for polymer nanocomposites. Nature Nanotechnology, 3(6), 327–331.CrossRef
go back to reference Sarvestani, A. S., & Picu, R. C. (2005). A frictional molecular model for the viscoelasticity of entangled polymer nanocomposites. Rheologica Acta, 45, 132–141.CrossRef Sarvestani, A. S., & Picu, R. C. (2005). A frictional molecular model for the viscoelasticity of entangled polymer nanocomposites. Rheologica Acta, 45, 132–141.CrossRef
go back to reference Sharma, P., & Ganti, S. (2004). Size-dependent Eshelby’s tensor for embedded nano-inclusions incorporating surface/interface energies. ASME Journal of Applied Mechanics, 71, 663–671.CrossRefMATH Sharma, P., & Ganti, S. (2004). Size-dependent Eshelby’s tensor for embedded nano-inclusions incorporating surface/interface energies. ASME Journal of Applied Mechanics, 71, 663–671.CrossRefMATH
go back to reference Sharma, P., Ganti, S., & Bhate, N. (2003). Effect of surfaces on the size-dependent elastic state of nano-inhomogeneities. Applied Physics Letters, 82, 535–537.CrossRef Sharma, P., Ganti, S., & Bhate, N. (2003). Effect of surfaces on the size-dependent elastic state of nano-inhomogeneities. Applied Physics Letters, 82, 535–537.CrossRef
go back to reference Spaepen, F. (2000). Interfaces and stresses in thin films. Acta Materialia, 48, 31–42.CrossRef Spaepen, F. (2000). Interfaces and stresses in thin films. Acta Materialia, 48, 31–42.CrossRef
go back to reference Tvergaard, V. (2003). Debonding of short fibers among particulates in metal matrix composites. International Journal of Solids and Structures, 40, 6957–6967.CrossRefMATH Tvergaard, V. (2003). Debonding of short fibers among particulates in metal matrix composites. International Journal of Solids and Structures, 40, 6957–6967.CrossRefMATH
go back to reference Watcharotone, S., Wood, C. D., Friedrich, R., Chen, X., Qiao, R., Putz, K. W., & Brinson, L. C. (2011). Revealing the effects of interphase, interface and substrate on mechanical properties of polymers using coupled experiments and modeling of nanoindentation. Advanced Engineering Materials, 13, 400–404.CrossRef Watcharotone, S., Wood, C. D., Friedrich, R., Chen, X., Qiao, R., Putz, K. W., & Brinson, L. C. (2011). Revealing the effects of interphase, interface and substrate on mechanical properties of polymers using coupled experiments and modeling of nanoindentation. Advanced Engineering Materials, 13, 400–404.CrossRef
go back to reference Yang, F. Q. (2004). Size-dependent effective modulus of elastic composite materials: Spherical nanocavities at dilute concentrations. Journal of Applied Physics, 95, 3516–3520.CrossRef Yang, F. Q. (2004). Size-dependent effective modulus of elastic composite materials: Spherical nanocavities at dilute concentrations. Journal of Applied Physics, 95, 3516–3520.CrossRef
go back to reference Chen, T. (1993a). Green’s functions and the non-uniform transformation problem in a piezoelectric medium. Mechanics Research Communications, 20, 271–278.MathSciNetCrossRefMATH Chen, T. (1993a). Green’s functions and the non-uniform transformation problem in a piezoelectric medium. Mechanics Research Communications, 20, 271–278.MathSciNetCrossRefMATH
go back to reference Ferrante, J., Smith, J. R., & Rose, J. H. (1982). Universal binding energy relations in metallic adhesion. In J. M. Georges (Ed.), Microscopic aspects of adhesion and lubrication (pp. 19–30). Amsterdam: Elsevier. Ferrante, J., Smith, J. R., & Rose, J. H. (1982). Universal binding energy relations in metallic adhesion. In J. M. Georges (Ed.), Microscopic aspects of adhesion and lubrication (pp. 19–30). Amsterdam: Elsevier.
go back to reference Laws, N. (1975). On interfacial discontinuities in elastic composites. Journal of Elasticity, 5, 227–235.CrossRefMATH Laws, N. (1975). On interfacial discontinuities in elastic composites. Journal of Elasticity, 5, 227–235.CrossRefMATH
go back to reference Chen, T. (1993b). The rotation of a rigid ellipsoidal inclusion embedded in an anisotropic piezoelectric medium. International Journal of Solids and Structures, 30, 1983–1995.CrossRefMATH Chen, T. (1993b). The rotation of a rigid ellipsoidal inclusion embedded in an anisotropic piezoelectric medium. International Journal of Solids and Structures, 30, 1983–1995.CrossRefMATH
go back to reference Hashin, Z. (2002). Thin interphase/imperfect interface in elasticity with application to coated fiber composites. Journal of the Mechanics and Physics of Solids, 50, 2509–2537.MathSciNetCrossRefMATH Hashin, Z. (2002). Thin interphase/imperfect interface in elasticity with application to coated fiber composites. Journal of the Mechanics and Physics of Solids, 50, 2509–2537.MathSciNetCrossRefMATH
go back to reference Hill, R. (1972). An invariant treatment of interfacial discontinuities in elastic composites. In L. I. Sedov (Ed.), Continuum mechanics and related problems of analysis, N. I. Muskhelishvili 80th anniversary volume (pp. 597–604). Moscow: Acad. Sciences. Hill, R. (1972). An invariant treatment of interfacial discontinuities in elastic composites. In L. I. Sedov (Ed.), Continuum mechanics and related problems of analysis, N. I. Muskhelishvili 80th anniversary volume (pp. 597–604). Moscow: Acad. Sciences.
go back to reference Hill, R. (1983). Interfacial operators in the mechanics of composite media. Journal of the Mechanics and Physics of Solids, 31, 247–357.CrossRef Hill, R. (1983). Interfacial operators in the mechanics of composite media. Journal of the Mechanics and Physics of Solids, 31, 247–357.CrossRef
go back to reference Laws, N. (1977). The determination of stress and strain concentrations in an ellipsoidal inclusion in an anisotropic material. Journal of Elasticity, 7, 91–97.MathSciNetCrossRefMATH Laws, N. (1977). The determination of stress and strain concentrations in an ellipsoidal inclusion in an anisotropic material. Journal of Elasticity, 7, 91–97.MathSciNetCrossRefMATH
go back to reference Hill, R. (1961). Discontinuity relations in mechanics of solids. In I. N. Sneddon & R. Hill (Eds.), Progress in solid mechanics (Vol. II, pp. 245–276). Amsterdam: North Holland Publications. Hill, R. (1961). Discontinuity relations in mechanics of solids. In I. N. Sneddon & R. Hill (Eds.), Progress in solid mechanics (Vol. II, pp. 245–276). Amsterdam: North Holland Publications.
go back to reference Hashin, Z. (1991). The spherical inclusion with imperfect interface. Journal of Applied Mechanics, 58, 444–449.CrossRef Hashin, Z. (1991). The spherical inclusion with imperfect interface. Journal of Applied Mechanics, 58, 444–449.CrossRef
go back to reference Kunin, I. A., & Sosnina, E. G. (1973). Stress concentration on an ellipsoidal inhomogeneity in an anisotropic elastic medium. Prikl. Mat. Mekh., 37, 306–315. Kunin, I. A., & Sosnina, E. G. (1973). Stress concentration on an ellipsoidal inhomogeneity in an anisotropic elastic medium. Prikl. Mat. Mekh., 37, 306–315.
go back to reference Hashin, Z. (1990). Thermoelastic properties of fiber composites with imperfect interface. Mechanics of Materials, 8, 333–348.CrossRef Hashin, Z. (1990). Thermoelastic properties of fiber composites with imperfect interface. Mechanics of Materials, 8, 333–348.CrossRef
go back to reference Eshelby, J. D. (1957). The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proceedings of the Royal Society London A, 241, 376–396.MathSciNetCrossRefMATH Eshelby, J. D. (1957). The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proceedings of the Royal Society London A, 241, 376–396.MathSciNetCrossRefMATH
go back to reference Walpole, L. J. (1981). Elastic behavior of composite materials: Theoretical foundations. In Advances in applied mechanics (Vol. 21, pp. 169–242). New York: Academic. Walpole, L. J. (1981). Elastic behavior of composite materials: Theoretical foundations. In Advances in applied mechanics (Vol. 21, pp. 169–242). New York: Academic.
go back to reference Herakovich, C. T. (1998). Mechanics of fibrous composites. New York: Wiley. Herakovich, C. T. (1998). Mechanics of fibrous composites. New York: Wiley.
go back to reference Achenbach, J. D., & Zhu, H. (1989). Effect of interfacial zone on mechanical behavior and failure of fiber-reinforced composites. Journal of the Mechanics and Physics of Solids, 37, 381–393.CrossRef Achenbach, J. D., & Zhu, H. (1989). Effect of interfacial zone on mechanical behavior and failure of fiber-reinforced composites. Journal of the Mechanics and Physics of Solids, 37, 381–393.CrossRef
go back to reference Jefferson, G., Haritos, G. K and McMeeking, R. M. (2002)The elastic response of a cohesive aggregate – a discrete element model with coupled particle interactions. J. Mech. Phys. Solids, 50, 2539–2575. Jefferson, G., Haritos, G. K and McMeeking, R. M. (2002)The elastic response of a cohesive aggregate – a discrete element model with coupled particle interactions. J. Mech. Phys. Solids, 50, 2539–2575.
go back to reference Benveniste, Y., & Miloh, T. (2001). Imperfect soft and stiff interfaces in two-dimensional elasticity. Mechanics of Materials, 33, 309–323.CrossRef Benveniste, Y., & Miloh, T. (2001). Imperfect soft and stiff interfaces in two-dimensional elasticity. Mechanics of Materials, 33, 309–323.CrossRef
go back to reference Jasiuk, I., Mura, T., & Tsuchida, E. (1988). Thermal stresses and thermal expansion coefficient of short fiber composites with sliding interfaces. Journal of Engineering Materials and Technology, 110, 96–110. Jasiuk, I., Mura, T., & Tsuchida, E. (1988). Thermal stresses and thermal expansion coefficient of short fiber composites with sliding interfaces. Journal of Engineering Materials and Technology, 110, 96–110.
go back to reference Jasiuk, I., & Kouider, M. W. (1993). The effect of an inhomogeneous interphase on elastic constants of transversely isotropic composites. Jasiuk, I., & Kouider, M. W. (1993). The effect of an inhomogeneous interphase on elastic constants of transversely isotropic composites.
go back to reference Qu, J. (1993). The effect of slightly weakened interface on the overall elastic properties of composite materials. Mechanics of Materials, 14, 269–281 Qu, J. (1993). The effect of slightly weakened interface on the overall elastic properties of composite materials. Mechanics of Materials, 14, 269–281
go back to reference Zhou, L. G., & Huang, H. (2004), Are Surfaces Elastically Softer or Stiffer? Applied Physics Letters, 84, 1940–1942. Zhou, L. G., & Huang, H. (2004), Are Surfaces Elastically Softer or Stiffer? Applied Physics Letters, 84, 1940–1942.
go back to reference Shim, H. W., Zhou, L. G., Huang, H., & Cale, T. S. (2005). Nanoplate elasticity under surface reconstruction. Applied Physics Letters 86, 151912-1-3. Shim, H. W., Zhou, L. G., Huang, H., & Cale, T. S. (2005). Nanoplate elasticity under surface reconstruction. Applied Physics Letters 86, 151912-1-3.
go back to reference Liang, H. Y., Upmanyu, M., & Huang, H. (2005). Size dependent elasticity of nanowires: Non-linear effects. Physical Review B 71, 241403R-1-4. Liang, H. Y., Upmanyu, M., & Huang, H. (2005). Size dependent elasticity of nanowires: Non-linear effects. Physical Review B 71, 241403R-1-4.
go back to reference Park, H. S., Klein, P. A., & Wagner, G. J. (2006). A surface Cauchy-Born model for nanoscale materials. International Journal for Numerical Methods in Engineering, 68, 1072–1095. Park, H. S., Klein, P. A., & Wagner, G. J. (2006). A surface Cauchy-Born model for nanoscale materials. International Journal for Numerical Methods in Engineering, 68, 1072–1095.
Metadata
Title
Interfaces and Interphases
Author
George J. Dvorak
Copyright Year
2013
Publisher
Springer Netherlands
DOI
https://doi.org/10.1007/978-94-007-4101-0_9

Premium Partners