Skip to main content
Top

2019 | OriginalPaper | Chapter

9. Evaporating Meniscus on the Interface of Three Phases

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Modern progress in the nanotechnology, micro- and nano-electronics depends on a detailed analysis of the behavior of the interphase boundary in microscopic objects, and in particular, on the “liquid-gas” interphase boundary.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Wayner PC Jr, Coccio CL (1971) Heat and mass transfer in the vicinity of the triple interline of a meniscus. AIChE J 17:569–575CrossRef Wayner PC Jr, Coccio CL (1971) Heat and mass transfer in the vicinity of the triple interline of a meniscus. AIChE J 17:569–575CrossRef
2.
go back to reference Panchamgam SS, Chatterjee A, Plawsky JL, Wayner PC Jr (2008) Comprehensive experimental and theoretical study of fluid flow and heat transfer in a microscopic evaporating meniscus in a miniature heat exchanger. Int J Heat Mass Transfer 51:5368–5379CrossRef Panchamgam SS, Chatterjee A, Plawsky JL, Wayner PC Jr (2008) Comprehensive experimental and theoretical study of fluid flow and heat transfer in a microscopic evaporating meniscus in a miniature heat exchanger. Int J Heat Mass Transfer 51:5368–5379CrossRef
3.
go back to reference Stephan P (1992) Wärmedurchgang bei Verdampfung aus Kapillarrillen in Wärmerohren. PhD thesis, Univdersität Stuttgart Stephan P (1992) Wärmedurchgang bei Verdampfung aus Kapillarrillen in Wärmerohren. PhD thesis, Univdersität Stuttgart
4.
go back to reference Stephan P, Busse CA (1992) Analysis of the heat transfer coefficient of grooved heat pipe evaporator walls. Int J Heat Mass Transfer 35:383–39 Stephan P, Busse CA (1992) Analysis of the heat transfer coefficient of grooved heat pipe evaporator walls. Int J Heat Mass Transfer 35:383–39
5.
go back to reference Do KH, Kim SJ, Garimella SV (2008) A mathematical model for analyzing the thermal characteristics of a flat micro heat pipe with a grooved wick. Int J Heat Mass Transfer 51:4637–4650CrossRef Do KH, Kim SJ, Garimella SV (2008) A mathematical model for analyzing the thermal characteristics of a flat micro heat pipe with a grooved wick. Int J Heat Mass Transfer 51:4637–4650CrossRef
6.
go back to reference Akkuş Y, Dursunkaya Z (2016) A new approach to thin film evaporation modeling. Int J Heat Mass Transfer 101:742–748CrossRef Akkuş Y, Dursunkaya Z (2016) A new approach to thin film evaporation modeling. Int J Heat Mass Transfer 101:742–748CrossRef
7.
go back to reference Wang H, Garimella SV, Murthy JY (2007) Characteristics of an evaporating thin film in a microchannel. Int J Heat Mass Transfer 50:3933–3942CrossRef Wang H, Garimella SV, Murthy JY (2007) Characteristics of an evaporating thin film in a microchannel. Int J Heat Mass Transfer 50:3933–3942CrossRef
8.
go back to reference Dhavaleswarapu HK, Murthy JY, Garimella SV (2012) Numerical investigation of an evaporating meniscus in a channel. Int J Heat Mass Transfer 55:915–924CrossRef Dhavaleswarapu HK, Murthy JY, Garimella SV (2012) Numerical investigation of an evaporating meniscus in a channel. Int J Heat Mass Transfer 55:915–924CrossRef
9.
go back to reference Janeček V, Doumenc F, Guerrier B, Nikolayev VS (2015) Can hydrodynamic contact line paradox be solved by evaporation–condensation? J Colloid Interface Sci 460:329–338CrossRef Janeček V, Doumenc F, Guerrier B, Nikolayev VS (2015) Can hydrodynamic contact line paradox be solved by evaporation–condensation? J Colloid Interface Sci 460:329–338CrossRef
10.
go back to reference Van Den Akker EAT, Frijns AJH, Kunkelmann C, Hilbers PAJ, Stephan PC, Van Steenhoven AA (2012) Molecular simulations of the microregion. Int J Thermal Sci 59:21–28CrossRef Van Den Akker EAT, Frijns AJH, Kunkelmann C, Hilbers PAJ, Stephan PC, Van Steenhoven AA (2012) Molecular simulations of the microregion. Int J Thermal Sci 59:21–28CrossRef
11.
go back to reference Yagov VV (1988) Heat transfer with developed nucleate boiling of liquids. Therm Eng 2:65–70 Yagov VV (1988) Heat transfer with developed nucleate boiling of liquids. Therm Eng 2:65–70
12.
go back to reference Yagov VV (1988) A physical model and calculation formula for critical heat fluxes with nucleate pool boiling of liquids. Therm Eng 6:333–339 Yagov VV (1988) A physical model and calculation formula for critical heat fluxes with nucleate pool boiling of liquids. Therm Eng 6:333–339
13.
go back to reference Labuntsov DA, Yagov VV (2007) Mechanics of two-phase systems. Moscow Power Energetic Univ. (Publ.), Moscow (in Russian) Labuntsov DA, Yagov VV (2007) Mechanics of two-phase systems. Moscow Power Energetic Univ. (Publ.), Moscow (in Russian)
14.
go back to reference Labuntsov DA (2000) Physical foundations of power engineering. Selected works, Moscow Power Energetic Univ. (Publ.), Moscow (in Russian) Labuntsov DA (2000) Physical foundations of power engineering. Selected works, Moscow Power Energetic Univ. (Publ.), Moscow (in Russian)
15.
go back to reference Stephan P, Hammer J (1994) A new model for nucleate boiling heat transfer. In: Wärme- und Stoffübertragung, vol 30, pp 119–125 Stephan P, Hammer J (1994) A new model for nucleate boiling heat transfer. In: Wärme- und Stoffübertragung, vol 30, pp 119–125
16.
go back to reference Stephan P, Kern J (2004) Evaluation of heat and mass transfer phenomena in nucleate boiling. Int J Heat Fluid Flow 25:140–148CrossRef Stephan P, Kern J (2004) Evaluation of heat and mass transfer phenomena in nucleate boiling. Int J Heat Fluid Flow 25:140–148CrossRef
17.
go back to reference Kunkelmann C (2011) Numerical modeling and investigation of boiling phenomena. PhD thesis, Technische Universität Darmstadt Kunkelmann C (2011) Numerical modeling and investigation of boiling phenomena. PhD thesis, Technische Universität Darmstadt
18.
go back to reference Ibrahem K, Schweizer N, Herbert S, Stephan P, Gambaryan-Roisman P (2012) The effect of three-phase contact line speed on local evaporative heat transfer: experimental and numerical investigations. Int J Heat Mass Transf 55:1896–1904CrossRef Ibrahem K, Schweizer N, Herbert S, Stephan P, Gambaryan-Roisman P (2012) The effect of three-phase contact line speed on local evaporative heat transfer: experimental and numerical investigations. Int J Heat Mass Transf 55:1896–1904CrossRef
19.
go back to reference Craster RV, Matar OK (2009) Dynamics and stability of thin liquid films. Rev Mod Phys 81:1131–1198CrossRef Craster RV, Matar OK (2009) Dynamics and stability of thin liquid films. Rev Mod Phys 81:1131–1198CrossRef
20.
go back to reference Loitsyanskii LG (1988) Mechanics of liquids and gases. Pergamon Press, OxfordMATH Loitsyanskii LG (1988) Mechanics of liquids and gases. Pergamon Press, OxfordMATH
21.
go back to reference Parsegian A (2006) Van der Waals forces: a handbook for biologists engineering and physicists. Cambridge University Press, Chemists Parsegian A (2006) Van der Waals forces: a handbook for biologists engineering and physicists. Cambridge University Press, Chemists
22.
go back to reference Dzyaloshinskii IE, Lifshitz EM, Pitaevskii LP (1961) General theory of Van der Waals’ forces. Sov Phys Usp 4:153–176 (in Russian)CrossRef Dzyaloshinskii IE, Lifshitz EM, Pitaevskii LP (1961) General theory of Van der Waals’ forces. Sov Phys Usp 4:153–176 (in Russian)CrossRef
23.
go back to reference Muratova TM, Labuntsov DA (1969) Kinetic analysis of the processes of evaporation and condensation. High Temp 7(5):959–967 Muratova TM, Labuntsov DA (1969) Kinetic analysis of the processes of evaporation and condensation. High Temp 7(5):959–967
24.
go back to reference Zudin YB (1993) The calculation of parameters of the evaporating meniscus of a thin liquid film. High Temp 31(5):777–779 Zudin YB (1993) The calculation of parameters of the evaporating meniscus of a thin liquid film. High Temp 31(5):777–779
25.
go back to reference Weigand B (2015) Analytical methods for heat transfer and fluid flow problems, 2nd edn. Springer, Berlin, HeidelbergMATH Weigand B (2015) Analytical methods for heat transfer and fluid flow problems, 2nd edn. Springer, Berlin, HeidelbergMATH
26.
go back to reference Israelachvili JN (1992) Intermolecular and surface forces. Academic Press, London Israelachvili JN (1992) Intermolecular and surface forces. Academic Press, London
27.
go back to reference Plawsky JL, Fedorov AG, Garimella SV, Ma HB, Maroo SC, Li C, Nam Y (2014) Nano- and microstructures for thin film evaporation—a review. Nanosc Microsc Therm Eng 18:251–269CrossRef Plawsky JL, Fedorov AG, Garimella SV, Ma HB, Maroo SC, Li C, Nam Y (2014) Nano- and microstructures for thin film evaporation—a review. Nanosc Microsc Therm Eng 18:251–269CrossRef
28.
go back to reference Iliev SD, Pesheva NC (2011) Dynamic meniscus profile method for determination of the dynamic contact angle in the wilhelmy geometry. Colloids Surf A 385(1–3):144–151CrossRef Iliev SD, Pesheva NC (2011) Dynamic meniscus profile method for determination of the dynamic contact angle in the wilhelmy geometry. Colloids Surf A 385(1–3):144–151CrossRef
29.
go back to reference Snoeijer JH, Andreotti B (2013) Moving contact lines: scales, regimes, and dynamical transitions. Annu Rev Fluid Mech 45:269–92 Snoeijer JH, Andreotti B (2013) Moving contact lines: scales, regimes, and dynamical transitions. Annu Rev Fluid Mech 45:269–92
30.
go back to reference Picker G (1998) Nicht-Gleichgewichts-Effekte beim Wachsen und Kondensieren von Dampfblasen. Dissertation, Technische Universität München Picker G (1998) Nicht-Gleichgewichts-Effekte beim Wachsen und Kondensieren von Dampfblasen. Dissertation, Technische Universität München
Metadata
Title
Evaporating Meniscus on the Interface of Three Phases
Author
Yuri B. Zudin
Copyright Year
2019
DOI
https://doi.org/10.1007/978-3-030-13815-8_9

Premium Partners