Skip to main content

2019 | OriginalPaper | Buchkapitel

9. Evaporating Meniscus on the Interface of Three Phases

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Modern progress in the nanotechnology, micro- and nano-electronics depends on a detailed analysis of the behavior of the interphase boundary in microscopic objects, and in particular, on the “liquid-gas” interphase boundary.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Wayner PC Jr, Coccio CL (1971) Heat and mass transfer in the vicinity of the triple interline of a meniscus. AIChE J 17:569–575CrossRef Wayner PC Jr, Coccio CL (1971) Heat and mass transfer in the vicinity of the triple interline of a meniscus. AIChE J 17:569–575CrossRef
2.
Zurück zum Zitat Panchamgam SS, Chatterjee A, Plawsky JL, Wayner PC Jr (2008) Comprehensive experimental and theoretical study of fluid flow and heat transfer in a microscopic evaporating meniscus in a miniature heat exchanger. Int J Heat Mass Transfer 51:5368–5379CrossRef Panchamgam SS, Chatterjee A, Plawsky JL, Wayner PC Jr (2008) Comprehensive experimental and theoretical study of fluid flow and heat transfer in a microscopic evaporating meniscus in a miniature heat exchanger. Int J Heat Mass Transfer 51:5368–5379CrossRef
3.
Zurück zum Zitat Stephan P (1992) Wärmedurchgang bei Verdampfung aus Kapillarrillen in Wärmerohren. PhD thesis, Univdersität Stuttgart Stephan P (1992) Wärmedurchgang bei Verdampfung aus Kapillarrillen in Wärmerohren. PhD thesis, Univdersität Stuttgart
4.
Zurück zum Zitat Stephan P, Busse CA (1992) Analysis of the heat transfer coefficient of grooved heat pipe evaporator walls. Int J Heat Mass Transfer 35:383–39 Stephan P, Busse CA (1992) Analysis of the heat transfer coefficient of grooved heat pipe evaporator walls. Int J Heat Mass Transfer 35:383–39
5.
Zurück zum Zitat Do KH, Kim SJ, Garimella SV (2008) A mathematical model for analyzing the thermal characteristics of a flat micro heat pipe with a grooved wick. Int J Heat Mass Transfer 51:4637–4650CrossRef Do KH, Kim SJ, Garimella SV (2008) A mathematical model for analyzing the thermal characteristics of a flat micro heat pipe with a grooved wick. Int J Heat Mass Transfer 51:4637–4650CrossRef
6.
Zurück zum Zitat Akkuş Y, Dursunkaya Z (2016) A new approach to thin film evaporation modeling. Int J Heat Mass Transfer 101:742–748CrossRef Akkuş Y, Dursunkaya Z (2016) A new approach to thin film evaporation modeling. Int J Heat Mass Transfer 101:742–748CrossRef
7.
Zurück zum Zitat Wang H, Garimella SV, Murthy JY (2007) Characteristics of an evaporating thin film in a microchannel. Int J Heat Mass Transfer 50:3933–3942CrossRef Wang H, Garimella SV, Murthy JY (2007) Characteristics of an evaporating thin film in a microchannel. Int J Heat Mass Transfer 50:3933–3942CrossRef
8.
Zurück zum Zitat Dhavaleswarapu HK, Murthy JY, Garimella SV (2012) Numerical investigation of an evaporating meniscus in a channel. Int J Heat Mass Transfer 55:915–924CrossRef Dhavaleswarapu HK, Murthy JY, Garimella SV (2012) Numerical investigation of an evaporating meniscus in a channel. Int J Heat Mass Transfer 55:915–924CrossRef
9.
Zurück zum Zitat Janeček V, Doumenc F, Guerrier B, Nikolayev VS (2015) Can hydrodynamic contact line paradox be solved by evaporation–condensation? J Colloid Interface Sci 460:329–338CrossRef Janeček V, Doumenc F, Guerrier B, Nikolayev VS (2015) Can hydrodynamic contact line paradox be solved by evaporation–condensation? J Colloid Interface Sci 460:329–338CrossRef
10.
Zurück zum Zitat Van Den Akker EAT, Frijns AJH, Kunkelmann C, Hilbers PAJ, Stephan PC, Van Steenhoven AA (2012) Molecular simulations of the microregion. Int J Thermal Sci 59:21–28CrossRef Van Den Akker EAT, Frijns AJH, Kunkelmann C, Hilbers PAJ, Stephan PC, Van Steenhoven AA (2012) Molecular simulations of the microregion. Int J Thermal Sci 59:21–28CrossRef
11.
Zurück zum Zitat Yagov VV (1988) Heat transfer with developed nucleate boiling of liquids. Therm Eng 2:65–70 Yagov VV (1988) Heat transfer with developed nucleate boiling of liquids. Therm Eng 2:65–70
12.
Zurück zum Zitat Yagov VV (1988) A physical model and calculation formula for critical heat fluxes with nucleate pool boiling of liquids. Therm Eng 6:333–339 Yagov VV (1988) A physical model and calculation formula for critical heat fluxes with nucleate pool boiling of liquids. Therm Eng 6:333–339
13.
Zurück zum Zitat Labuntsov DA, Yagov VV (2007) Mechanics of two-phase systems. Moscow Power Energetic Univ. (Publ.), Moscow (in Russian) Labuntsov DA, Yagov VV (2007) Mechanics of two-phase systems. Moscow Power Energetic Univ. (Publ.), Moscow (in Russian)
14.
Zurück zum Zitat Labuntsov DA (2000) Physical foundations of power engineering. Selected works, Moscow Power Energetic Univ. (Publ.), Moscow (in Russian) Labuntsov DA (2000) Physical foundations of power engineering. Selected works, Moscow Power Energetic Univ. (Publ.), Moscow (in Russian)
15.
Zurück zum Zitat Stephan P, Hammer J (1994) A new model for nucleate boiling heat transfer. In: Wärme- und Stoffübertragung, vol 30, pp 119–125 Stephan P, Hammer J (1994) A new model for nucleate boiling heat transfer. In: Wärme- und Stoffübertragung, vol 30, pp 119–125
16.
Zurück zum Zitat Stephan P, Kern J (2004) Evaluation of heat and mass transfer phenomena in nucleate boiling. Int J Heat Fluid Flow 25:140–148CrossRef Stephan P, Kern J (2004) Evaluation of heat and mass transfer phenomena in nucleate boiling. Int J Heat Fluid Flow 25:140–148CrossRef
17.
Zurück zum Zitat Kunkelmann C (2011) Numerical modeling and investigation of boiling phenomena. PhD thesis, Technische Universität Darmstadt Kunkelmann C (2011) Numerical modeling and investigation of boiling phenomena. PhD thesis, Technische Universität Darmstadt
18.
Zurück zum Zitat Ibrahem K, Schweizer N, Herbert S, Stephan P, Gambaryan-Roisman P (2012) The effect of three-phase contact line speed on local evaporative heat transfer: experimental and numerical investigations. Int J Heat Mass Transf 55:1896–1904CrossRef Ibrahem K, Schweizer N, Herbert S, Stephan P, Gambaryan-Roisman P (2012) The effect of three-phase contact line speed on local evaporative heat transfer: experimental and numerical investigations. Int J Heat Mass Transf 55:1896–1904CrossRef
19.
Zurück zum Zitat Craster RV, Matar OK (2009) Dynamics and stability of thin liquid films. Rev Mod Phys 81:1131–1198CrossRef Craster RV, Matar OK (2009) Dynamics and stability of thin liquid films. Rev Mod Phys 81:1131–1198CrossRef
20.
Zurück zum Zitat Loitsyanskii LG (1988) Mechanics of liquids and gases. Pergamon Press, OxfordMATH Loitsyanskii LG (1988) Mechanics of liquids and gases. Pergamon Press, OxfordMATH
21.
Zurück zum Zitat Parsegian A (2006) Van der Waals forces: a handbook for biologists engineering and physicists. Cambridge University Press, Chemists Parsegian A (2006) Van der Waals forces: a handbook for biologists engineering and physicists. Cambridge University Press, Chemists
22.
Zurück zum Zitat Dzyaloshinskii IE, Lifshitz EM, Pitaevskii LP (1961) General theory of Van der Waals’ forces. Sov Phys Usp 4:153–176 (in Russian)CrossRef Dzyaloshinskii IE, Lifshitz EM, Pitaevskii LP (1961) General theory of Van der Waals’ forces. Sov Phys Usp 4:153–176 (in Russian)CrossRef
23.
Zurück zum Zitat Muratova TM, Labuntsov DA (1969) Kinetic analysis of the processes of evaporation and condensation. High Temp 7(5):959–967 Muratova TM, Labuntsov DA (1969) Kinetic analysis of the processes of evaporation and condensation. High Temp 7(5):959–967
24.
Zurück zum Zitat Zudin YB (1993) The calculation of parameters of the evaporating meniscus of a thin liquid film. High Temp 31(5):777–779 Zudin YB (1993) The calculation of parameters of the evaporating meniscus of a thin liquid film. High Temp 31(5):777–779
25.
Zurück zum Zitat Weigand B (2015) Analytical methods for heat transfer and fluid flow problems, 2nd edn. Springer, Berlin, HeidelbergMATH Weigand B (2015) Analytical methods for heat transfer and fluid flow problems, 2nd edn. Springer, Berlin, HeidelbergMATH
26.
Zurück zum Zitat Israelachvili JN (1992) Intermolecular and surface forces. Academic Press, London Israelachvili JN (1992) Intermolecular and surface forces. Academic Press, London
27.
Zurück zum Zitat Plawsky JL, Fedorov AG, Garimella SV, Ma HB, Maroo SC, Li C, Nam Y (2014) Nano- and microstructures for thin film evaporation—a review. Nanosc Microsc Therm Eng 18:251–269CrossRef Plawsky JL, Fedorov AG, Garimella SV, Ma HB, Maroo SC, Li C, Nam Y (2014) Nano- and microstructures for thin film evaporation—a review. Nanosc Microsc Therm Eng 18:251–269CrossRef
28.
Zurück zum Zitat Iliev SD, Pesheva NC (2011) Dynamic meniscus profile method for determination of the dynamic contact angle in the wilhelmy geometry. Colloids Surf A 385(1–3):144–151CrossRef Iliev SD, Pesheva NC (2011) Dynamic meniscus profile method for determination of the dynamic contact angle in the wilhelmy geometry. Colloids Surf A 385(1–3):144–151CrossRef
29.
Zurück zum Zitat Snoeijer JH, Andreotti B (2013) Moving contact lines: scales, regimes, and dynamical transitions. Annu Rev Fluid Mech 45:269–92 Snoeijer JH, Andreotti B (2013) Moving contact lines: scales, regimes, and dynamical transitions. Annu Rev Fluid Mech 45:269–92
30.
Zurück zum Zitat Picker G (1998) Nicht-Gleichgewichts-Effekte beim Wachsen und Kondensieren von Dampfblasen. Dissertation, Technische Universität München Picker G (1998) Nicht-Gleichgewichts-Effekte beim Wachsen und Kondensieren von Dampfblasen. Dissertation, Technische Universität München
Metadaten
Titel
Evaporating Meniscus on the Interface of Three Phases
verfasst von
Yuri B. Zudin
Copyright-Jahr
2019
DOI
https://doi.org/10.1007/978-3-030-13815-8_9

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.