Skip to main content
Top
Published in: Journal of Engineering Thermophysics 4/2021

01-10-2021

Evaporation of a Droplet of a Heated Colloid Solution on a Horizontal Structured Wall

Authors: S. Y. Misyura, A. V. Bilsky, V. S. Morozov, O. A. Gobyzov, M. N. Ryabov

Published in: Journal of Engineering Thermophysics | Issue 4/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Evaporation of a heated droplet of a colloid solution on structured surfaces is studied experimentally. Microscopic particles of TiO2 are added to water. The wettability of the structured surfaces varies in a wide range of the static contact angle of the droplet. Free convection in the droplet on the textured wall is compared with convection on a smooth surface. The textured wall alters both the wettability and the mean rate of convection in the liquid. Experiments aimed at studying the formation of a stable cluster of microparticles are performed on a textured surface made by means of 3D printing. The cluster is formed in the region of local heating of the droplet and consists of hexagonal cells.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Chakraborty, S., Rosen, M.A., and MacDonald, B.D., Analysis and Feasibility of an Evaporative Cooling System with Diffusion-based Sessile Droplet Evaporation for Cooling Microprocessors, Appl. Thermal Engin., 2017, vol. 125, p. 104–110.CrossRef Chakraborty, S., Rosen, M.A., and MacDonald, B.D., Analysis and Feasibility of an Evaporative Cooling System with Diffusion-based Sessile Droplet Evaporation for Cooling Microprocessors, Appl. Thermal Engin., 2017, vol. 125, p. 104–110.CrossRef
2.
go back to reference Rose, J.W., Condensation Heat Transfer Fundamentals, Chem. Engin. Res. Design, 1998, vol. 15, pp. 143–152.CrossRef Rose, J.W., Condensation Heat Transfer Fundamentals, Chem. Engin. Res. Design, 1998, vol. 15, pp. 143–152.CrossRef
3.
go back to reference Nebuchinov, A.S., Lozhkin, Y.A., Bilsky, A.V., and Markovich, D.M., Combination of PIV and PLIF Methods to Study Convective Heat Transfer in an Impinging Jet, Exp. Thermal Fluid Sci., 2017, vol. 80, pp. 139–146.CrossRef Nebuchinov, A.S., Lozhkin, Y.A., Bilsky, A.V., and Markovich, D.M., Combination of PIV and PLIF Methods to Study Convective Heat Transfer in an Impinging Jet, Exp. Thermal Fluid Sci., 2017, vol. 80, pp. 139–146.CrossRef
4.
go back to reference Lebedev, V.P., Lemanov, V.V., Misyura, S.Ya., and Terekhov, V.I., Effects of Flow Turbulence on Film Cooling Efficiency, Int. J. Heat Mass Transfer, 1995, vol. 38, pp. 2117–2125.CrossRef Lebedev, V.P., Lemanov, V.V., Misyura, S.Ya., and Terekhov, V.I., Effects of Flow Turbulence on Film Cooling Efficiency, Int. J. Heat Mass Transfer, 1995, vol. 38, pp. 2117–2125.CrossRef
5.
go back to reference Nakoryakov, V.E., Misyura, S.Y., and Elistratov, S.L., Boiling Crisis in Droplets of Ethanol Water Solution on the Heating Surface, J. Eng. Therm., 2013, vol. 22, pp. 1–6.CrossRef Nakoryakov, V.E., Misyura, S.Y., and Elistratov, S.L., Boiling Crisis in Droplets of Ethanol Water Solution on the Heating Surface, J. Eng. Therm., 2013, vol. 22, pp. 1–6.CrossRef
6.
go back to reference Misyura, S.Y., Wall Effect on Heat Transfer Crisis, Exp. Thermal Fluid Sci., 2016, vol. 70, pp. 389–396.CrossRef Misyura, S.Y., Wall Effect on Heat Transfer Crisis, Exp. Thermal Fluid Sci., 2016, vol. 70, pp. 389–396.CrossRef
7.
go back to reference Tonini, S., and Cossali, G.E., A Novel Formulation of Multi-Component Drop Evaporation Models for Spray Applications, Int. J. Therm. Sci., 2015, vol. 89, pp. 245–253.CrossRef Tonini, S., and Cossali, G.E., A Novel Formulation of Multi-Component Drop Evaporation Models for Spray Applications, Int. J. Therm. Sci., 2015, vol. 89, pp. 245–253.CrossRef
8.
go back to reference Misyura, S.Y., Comparing the Dissociation Kinetics of Various Gas Hydrates during Combustion: Assessment of Key Factors to Improve Combustion Efficiency, Appl. Energy, 2020, vol. 270, p. 115042.CrossRef Misyura, S.Y., Comparing the Dissociation Kinetics of Various Gas Hydrates during Combustion: Assessment of Key Factors to Improve Combustion Efficiency, Appl. Energy, 2020, vol. 270, p. 115042.CrossRef
9.
go back to reference Misyura, S.Y., Non-Stationary Combustion of Natural and Artificial Methane Hydrate at Heterogeneous Dissociation, Energy, 2019, vol. 181, pp. 589–602.CrossRef Misyura, S.Y., Non-Stationary Combustion of Natural and Artificial Methane Hydrate at Heterogeneous Dissociation, Energy, 2019, vol. 181, pp. 589–602.CrossRef
10.
go back to reference Misyura, S.Y., Dissociation of Various Gas Hydrates (Methane Hydrate, Double Gas Hydrates of Methane-Propane and Methane-Isopropanol) during Combustion: Assessing the Combustion Efficiency, Energy, 2020, vol. 206, p. 118120.CrossRef Misyura, S.Y., Dissociation of Various Gas Hydrates (Methane Hydrate, Double Gas Hydrates of Methane-Propane and Methane-Isopropanol) during Combustion: Assessing the Combustion Efficiency, Energy, 2020, vol. 206, p. 118120.CrossRef
11.
go back to reference Wu, R., Liang, S., Pan, A., Yuan, Z., Tang, Y., Tan, X., Guan, D., and Yu, Y., Fabrication of Nano-Structured Super-Hydrophobic Film on Aluminum by Controllable Immersing Method, Appl. Surf. Sci., 2012, vol. 258, pp. 5933–5937.ADSCrossRef Wu, R., Liang, S., Pan, A., Yuan, Z., Tang, Y., Tan, X., Guan, D., and Yu, Y., Fabrication of Nano-Structured Super-Hydrophobic Film on Aluminum by Controllable Immersing Method, Appl. Surf. Sci., 2012, vol. 258, pp. 5933–5937.ADSCrossRef
12.
go back to reference Ta, V.D., Dunn, A., Wasley, T.J., Li, J., Kay, R.W., Stringer, J., Smith, P.J., Esenturk, E., Connaughton, C., and Shephard, J.D., Laser Textured Superhydrophobic Surfaces and Their Applications for Homogeneous Spot Deposition, Appl. Surf. Sci., 2016, vol. 365, pp. 153–159.ADSCrossRef Ta, V.D., Dunn, A., Wasley, T.J., Li, J., Kay, R.W., Stringer, J., Smith, P.J., Esenturk, E., Connaughton, C., and Shephard, J.D., Laser Textured Superhydrophobic Surfaces and Their Applications for Homogeneous Spot Deposition, Appl. Surf. Sci., 2016, vol. 365, pp. 153–159.ADSCrossRef
13.
go back to reference Sun, K., Yanga, H., Xue, W., He, A., Zhu, D., Liu, W., Adeyemi, K., and Cao, Y., Anti-Biofouling Superhydrophobic Surface Fabricated by Picosecond Laser Texturing of Stainless Steel, Appl. Surf. Sci., 2018, vol. 436, pp. 263–267.ADSCrossRef Sun, K., Yanga, H., Xue, W., He, A., Zhu, D., Liu, W., Adeyemi, K., and Cao, Y., Anti-Biofouling Superhydrophobic Surface Fabricated by Picosecond Laser Texturing of Stainless Steel, Appl. Surf. Sci., 2018, vol. 436, pp. 263–267.ADSCrossRef
14.
go back to reference Chebolu, A., Laha, B., Ghosh, M., and Nagahanumaiah, Investigation on Bacterial Adhesion and Colonisation Resistance over Laser-Machined Micro Patterned Surfaces, Micro Nano Lett., 2013, vol. 8, pp. 280–283.CrossRef Chebolu, A., Laha, B., Ghosh, M., and Nagahanumaiah, Investigation on Bacterial Adhesion and Colonisation Resistance over Laser-Machined Micro Patterned Surfaces, Micro Nano Lett., 2013, vol. 8, pp. 280–283.CrossRef
15.
go back to reference Min, T., Design and Fabrication of Super-Hydrophobic Surfaces by Laser Micro/Nano-Processing, PhD thesis, Tang Min, Singapore, 2012. Min, T., Design and Fabrication of Super-Hydrophobic Surfaces by Laser Micro/Nano-Processing, PhD thesis, Tang Min, Singapore, 2012.
16.
go back to reference Emelyanenko, A.M., Shagieva, F.M., Domantovsky, A.G., and Boinovich, L.B., Nanosecond Laser Micro- and Nanotexturing for the Design of a Superhydrophobic Coating Robust against Long-Term Contact with Water, Cavitation, and Abrasion, Appl. Surf. Sci., 2015, vol. 332, pp. 513–517.ADSCrossRef Emelyanenko, A.M., Shagieva, F.M., Domantovsky, A.G., and Boinovich, L.B., Nanosecond Laser Micro- and Nanotexturing for the Design of a Superhydrophobic Coating Robust against Long-Term Contact with Water, Cavitation, and Abrasion, Appl. Surf. Sci., 2015, vol. 332, pp. 513–517.ADSCrossRef
17.
go back to reference Römer, G., del Cerro, D.A., Sipkema, R.C.J., Groenendijk, M.N.W., and Huis in’t Veld, A.J., Ultra Short Pulse Laser Generated Surface Textures for Anti-Ice Applications in Aviation, Procs. of the 28th Int. Congr. on Applications of Lasers and Electro-Optics, Laser Institute of America, Orlando, 2009, pp. 30–37. Römer, G., del Cerro, D.A., Sipkema, R.C.J., Groenendijk, M.N.W., and Huis in’t Veld, A.J., Ultra Short Pulse Laser Generated Surface Textures for Anti-Ice Applications in Aviation, Procs. of the 28th Int. Congr. on Applications of Lasers and Electro-Optics, Laser Institute of America, Orlando, 2009, pp. 30–37.
18.
go back to reference Libenson, M.N., Surface Electromagnetic Waves in Optics, Zh. Fiz., 1996, pp. 103–110. Libenson, M.N., Surface Electromagnetic Waves in Optics, Zh. Fiz., 1996, pp. 103–110.
19.
go back to reference Libenson, M.N., Shandybina, G.D., and Shakhmin, A.L., Chemical Analysis of Products Obtained by Nanosecond Laser Ablation, Tech. Phys., 2000, vol. 45, pp. 1219–1222.ADSCrossRef Libenson, M.N., Shandybina, G.D., and Shakhmin, A.L., Chemical Analysis of Products Obtained by Nanosecond Laser Ablation, Tech. Phys., 2000, vol. 45, pp. 1219–1222.ADSCrossRef
20.
go back to reference Burdonskiy, I.N., Gol’tsov, A.Y., Leonov, A.G., Makarov, K.N., Timofeyev, I.S., and Yufa, V.N., Generation of Shock Waves due to Interaction of Power Laser Radiation with Polycrystalline Targets, VANT, 2013, vol. 36, pp. 8–18. Burdonskiy, I.N., Gol’tsov, A.Y., Leonov, A.G., Makarov, K.N., Timofeyev, I.S., and Yufa, V.N., Generation of Shock Waves due to Interaction of Power Laser Radiation with Polycrystalline Targets, VANT, 2013, vol. 36, pp. 8–18.
21.
go back to reference Lee, D.J. and Jeong, S.H., Analysis of Recoil Force during Nd:YAG Laser Ablation of Silicon, Appl. Phys. A, 2004, vol. 79, pp. 1341–1344.CrossRef Lee, D.J. and Jeong, S.H., Analysis of Recoil Force during Nd:YAG Laser Ablation of Silicon, Appl. Phys. A, 2004, vol. 79, pp. 1341–1344.CrossRef
22.
go back to reference Kuznetsov, G.V., Feoktistov, D.V., Orlova, E.G., Batishcheva, K., and Ilenok, S.S., Unification of the Textures Formed on Aluminum after Laser Treatment, Appl. Surf. Sci., 2019, vol. 469, pp. 974–982.ADSCrossRef Kuznetsov, G.V., Feoktistov, D.V., Orlova, E.G., Batishcheva, K., and Ilenok, S.S., Unification of the Textures Formed on Aluminum after Laser Treatment, Appl. Surf. Sci., 2019, vol. 469, pp. 974–982.ADSCrossRef
23.
go back to reference Misyura, S.Y., The Dependence of Drop Evaporation Rate and Wettability on Corrosion Kinetics, Colloids Surf. A, 2021, vol. 610, p. 125735.CrossRef Misyura, S.Y., The Dependence of Drop Evaporation Rate and Wettability on Corrosion Kinetics, Colloids Surf. A, 2021, vol. 610, p. 125735.CrossRef
24.
go back to reference Misyura, S.Y., Different Modes of Heat Transfer and Crystallization in a Drop of NaCl Solution: The Influence of Key Factors on the Crystallization Rate and Heat Transfer Coefficient, Int. J. Therm. Sci., 2021, vol. 159, p. 106602.CrossRef Misyura, S.Y., Different Modes of Heat Transfer and Crystallization in a Drop of NaCl Solution: The Influence of Key Factors on the Crystallization Rate and Heat Transfer Coefficient, Int. J. Therm. Sci., 2021, vol. 159, p. 106602.CrossRef
25.
go back to reference Hu, H., and Larson, R.G., Analysis of the Effects of Marangoni Stresses on the Microflow in an Evaporating Sessile Droplet, Langmuir, 2005, vol. 21, pp. 3972–3980.CrossRef Hu, H., and Larson, R.G., Analysis of the Effects of Marangoni Stresses on the Microflow in an Evaporating Sessile Droplet, Langmuir, 2005, vol. 21, pp. 3972–3980.CrossRef
26.
go back to reference Hu, H., and Larson, R.G., Marangoni Effect Reverses Coffee-ring Depositions, J. Phys. Chem. B, 2006, vol. 110, pp. 7090–7094.CrossRef Hu, H., and Larson, R.G., Marangoni Effect Reverses Coffee-ring Depositions, J. Phys. Chem. B, 2006, vol. 110, pp. 7090–7094.CrossRef
27.
go back to reference Misyura, S.Y., Volkov, R.S., and Filatova, A.S., Interaction of Two Drops at Different Temperatures: The Role of Thermocapillary Convection and Surfactant, Colloids Surf. A, 2018, vol. 559, pp. 275–283.CrossRef Misyura, S.Y., Volkov, R.S., and Filatova, A.S., Interaction of Two Drops at Different Temperatures: The Role of Thermocapillary Convection and Surfactant, Colloids Surf. A, 2018, vol. 559, pp. 275–283.CrossRef
28.
go back to reference Misyura, S.Y., Kuznetsov, G.V., Volkov, R.S., Lezhnin, S.I., and Morozov, V.S., The Effect of Impurity Particles on the Forced Convection Velocity in a Drop, Powder Technol., 2020, vol. 362, pp. 341–349.CrossRef Misyura, S.Y., Kuznetsov, G.V., Volkov, R.S., Lezhnin, S.I., and Morozov, V.S., The Effect of Impurity Particles on the Forced Convection Velocity in a Drop, Powder Technol., 2020, vol. 362, pp. 341–349.CrossRef
29.
go back to reference Misyura, S.Y., Convection in a Droplet Blown by Gas Flow, Appl. Thermal Engin., 2020, vol. 165, p. 114536.CrossRef Misyura, S.Y., Convection in a Droplet Blown by Gas Flow, Appl. Thermal Engin., 2020, vol. 165, p. 114536.CrossRef
30.
go back to reference Kelly-Zion, P.L., Pursell, C.J., Vaidya, S., and Batra, J., Evaporation of Sessile Drops under Combined Diffusion and Natural Convection, Colloid Surf. A, 2011, vol. 381, pp. 31–36.CrossRef Kelly-Zion, P.L., Pursell, C.J., Vaidya, S., and Batra, J., Evaporation of Sessile Drops under Combined Diffusion and Natural Convection, Colloid Surf. A, 2011, vol. 381, pp. 31–36.CrossRef
31.
go back to reference Carle, F., Semenov, S., Medale, M., and Brutin, D., Contribution of Convective Transport to Evaporation of Sessile Droplets: Empirical Model, Int. J. Therm. Sci., 2016, vol. 101, pp. 35–47.CrossRef Carle, F., Semenov, S., Medale, M., and Brutin, D., Contribution of Convective Transport to Evaporation of Sessile Droplets: Empirical Model, Int. J. Therm. Sci., 2016, vol. 101, pp. 35–47.CrossRef
32.
go back to reference Misyura, S.Y., Evaporation of Aqueous Solutions of LiBr and LiCl Salts, Int. Comm. Heat Mass Transfer, 2020, vol. 117, p. 104727.CrossRef Misyura, S.Y., Evaporation of Aqueous Solutions of LiBr and LiCl Salts, Int. Comm. Heat Mass Transfer, 2020, vol. 117, p. 104727.CrossRef
33.
go back to reference Girard, F., Antoni, M., and Sefiane, K., On the Effect of Marangoni Flow on Evaporation Rates of Heated Water Drops, Langmuir, 2008, vol. 24, pp. 9207–9210.CrossRef Girard, F., Antoni, M., and Sefiane, K., On the Effect of Marangoni Flow on Evaporation Rates of Heated Water Drops, Langmuir, 2008, vol. 24, pp. 9207–9210.CrossRef
34.
go back to reference Kuznetsov, G.V., Misyura, S.Y., Volkov, R.S., and Morozov, V.S., Marangoni Flow and Free Convection during Crystallization of a Salt Solution Droplet, Colloids and Surfaces A, 2019, vol. 572, pp. 37–46.CrossRef Kuznetsov, G.V., Misyura, S.Y., Volkov, R.S., and Morozov, V.S., Marangoni Flow and Free Convection during Crystallization of a Salt Solution Droplet, Colloids and Surfaces A, 2019, vol. 572, pp. 37–46.CrossRef
35.
go back to reference Kreizer, M., Ratner, D., and Liberzon, A., Real Time Image Processing for Particle Tracking Velocimetry, Exp. Fluids, 2010, vol. 48, pp. 105–110.ADSCrossRef Kreizer, M., Ratner, D., and Liberzon, A., Real Time Image Processing for Particle Tracking Velocimetry, Exp. Fluids, 2010, vol. 48, pp. 105–110.ADSCrossRef
36.
go back to reference Westerweel, J., Fundamentals of Digital Particle Image Velocimetry, Meas. Sci. Technol., 1997, vol. 8, pp. 1379–1392.ADSCrossRef Westerweel, J., Fundamentals of Digital Particle Image Velocimetry, Meas. Sci. Technol., 1997, vol. 8, pp. 1379–1392.ADSCrossRef
37.
go back to reference Volkov, R.S. and Strizhak, P.A., Planar Laser-Induced Fluorescence Diagnostics of Water Droplets Heating and Evaporation at High-Temperature, Appl. Thermal Engin., 2017, vol. 127, pp. 141–156.CrossRef Volkov, R.S. and Strizhak, P.A., Planar Laser-Induced Fluorescence Diagnostics of Water Droplets Heating and Evaporation at High-Temperature, Appl. Thermal Engin., 2017, vol. 127, pp. 141–156.CrossRef
Metadata
Title
Evaporation of a Droplet of a Heated Colloid Solution on a Horizontal Structured Wall
Authors
S. Y. Misyura
A. V. Bilsky
V. S. Morozov
O. A. Gobyzov
M. N. Ryabov
Publication date
01-10-2021
Publisher
Pleiades Publishing
Published in
Journal of Engineering Thermophysics / Issue 4/2021
Print ISSN: 1810-2328
Electronic ISSN: 1990-5432
DOI
https://doi.org/10.1134/S1810232821040081

Other articles of this Issue 4/2021

Journal of Engineering Thermophysics 4/2021 Go to the issue

Premium Partners