Skip to main content
Erschienen in: Journal of Engineering Thermophysics 4/2021

01.10.2021

Evaporation of a Droplet of a Heated Colloid Solution on a Horizontal Structured Wall

verfasst von: S. Y. Misyura, A. V. Bilsky, V. S. Morozov, O. A. Gobyzov, M. N. Ryabov

Erschienen in: Journal of Engineering Thermophysics | Ausgabe 4/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Evaporation of a heated droplet of a colloid solution on structured surfaces is studied experimentally. Microscopic particles of TiO2 are added to water. The wettability of the structured surfaces varies in a wide range of the static contact angle of the droplet. Free convection in the droplet on the textured wall is compared with convection on a smooth surface. The textured wall alters both the wettability and the mean rate of convection in the liquid. Experiments aimed at studying the formation of a stable cluster of microparticles are performed on a textured surface made by means of 3D printing. The cluster is formed in the region of local heating of the droplet and consists of hexagonal cells.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Chakraborty, S., Rosen, M.A., and MacDonald, B.D., Analysis and Feasibility of an Evaporative Cooling System with Diffusion-based Sessile Droplet Evaporation for Cooling Microprocessors, Appl. Thermal Engin., 2017, vol. 125, p. 104–110.CrossRef Chakraborty, S., Rosen, M.A., and MacDonald, B.D., Analysis and Feasibility of an Evaporative Cooling System with Diffusion-based Sessile Droplet Evaporation for Cooling Microprocessors, Appl. Thermal Engin., 2017, vol. 125, p. 104–110.CrossRef
2.
Zurück zum Zitat Rose, J.W., Condensation Heat Transfer Fundamentals, Chem. Engin. Res. Design, 1998, vol. 15, pp. 143–152.CrossRef Rose, J.W., Condensation Heat Transfer Fundamentals, Chem. Engin. Res. Design, 1998, vol. 15, pp. 143–152.CrossRef
3.
Zurück zum Zitat Nebuchinov, A.S., Lozhkin, Y.A., Bilsky, A.V., and Markovich, D.M., Combination of PIV and PLIF Methods to Study Convective Heat Transfer in an Impinging Jet, Exp. Thermal Fluid Sci., 2017, vol. 80, pp. 139–146.CrossRef Nebuchinov, A.S., Lozhkin, Y.A., Bilsky, A.V., and Markovich, D.M., Combination of PIV and PLIF Methods to Study Convective Heat Transfer in an Impinging Jet, Exp. Thermal Fluid Sci., 2017, vol. 80, pp. 139–146.CrossRef
4.
Zurück zum Zitat Lebedev, V.P., Lemanov, V.V., Misyura, S.Ya., and Terekhov, V.I., Effects of Flow Turbulence on Film Cooling Efficiency, Int. J. Heat Mass Transfer, 1995, vol. 38, pp. 2117–2125.CrossRef Lebedev, V.P., Lemanov, V.V., Misyura, S.Ya., and Terekhov, V.I., Effects of Flow Turbulence on Film Cooling Efficiency, Int. J. Heat Mass Transfer, 1995, vol. 38, pp. 2117–2125.CrossRef
5.
Zurück zum Zitat Nakoryakov, V.E., Misyura, S.Y., and Elistratov, S.L., Boiling Crisis in Droplets of Ethanol Water Solution on the Heating Surface, J. Eng. Therm., 2013, vol. 22, pp. 1–6.CrossRef Nakoryakov, V.E., Misyura, S.Y., and Elistratov, S.L., Boiling Crisis in Droplets of Ethanol Water Solution on the Heating Surface, J. Eng. Therm., 2013, vol. 22, pp. 1–6.CrossRef
6.
Zurück zum Zitat Misyura, S.Y., Wall Effect on Heat Transfer Crisis, Exp. Thermal Fluid Sci., 2016, vol. 70, pp. 389–396.CrossRef Misyura, S.Y., Wall Effect on Heat Transfer Crisis, Exp. Thermal Fluid Sci., 2016, vol. 70, pp. 389–396.CrossRef
7.
Zurück zum Zitat Tonini, S., and Cossali, G.E., A Novel Formulation of Multi-Component Drop Evaporation Models for Spray Applications, Int. J. Therm. Sci., 2015, vol. 89, pp. 245–253.CrossRef Tonini, S., and Cossali, G.E., A Novel Formulation of Multi-Component Drop Evaporation Models for Spray Applications, Int. J. Therm. Sci., 2015, vol. 89, pp. 245–253.CrossRef
8.
Zurück zum Zitat Misyura, S.Y., Comparing the Dissociation Kinetics of Various Gas Hydrates during Combustion: Assessment of Key Factors to Improve Combustion Efficiency, Appl. Energy, 2020, vol. 270, p. 115042.CrossRef Misyura, S.Y., Comparing the Dissociation Kinetics of Various Gas Hydrates during Combustion: Assessment of Key Factors to Improve Combustion Efficiency, Appl. Energy, 2020, vol. 270, p. 115042.CrossRef
9.
Zurück zum Zitat Misyura, S.Y., Non-Stationary Combustion of Natural and Artificial Methane Hydrate at Heterogeneous Dissociation, Energy, 2019, vol. 181, pp. 589–602.CrossRef Misyura, S.Y., Non-Stationary Combustion of Natural and Artificial Methane Hydrate at Heterogeneous Dissociation, Energy, 2019, vol. 181, pp. 589–602.CrossRef
10.
Zurück zum Zitat Misyura, S.Y., Dissociation of Various Gas Hydrates (Methane Hydrate, Double Gas Hydrates of Methane-Propane and Methane-Isopropanol) during Combustion: Assessing the Combustion Efficiency, Energy, 2020, vol. 206, p. 118120.CrossRef Misyura, S.Y., Dissociation of Various Gas Hydrates (Methane Hydrate, Double Gas Hydrates of Methane-Propane and Methane-Isopropanol) during Combustion: Assessing the Combustion Efficiency, Energy, 2020, vol. 206, p. 118120.CrossRef
11.
Zurück zum Zitat Wu, R., Liang, S., Pan, A., Yuan, Z., Tang, Y., Tan, X., Guan, D., and Yu, Y., Fabrication of Nano-Structured Super-Hydrophobic Film on Aluminum by Controllable Immersing Method, Appl. Surf. Sci., 2012, vol. 258, pp. 5933–5937.ADSCrossRef Wu, R., Liang, S., Pan, A., Yuan, Z., Tang, Y., Tan, X., Guan, D., and Yu, Y., Fabrication of Nano-Structured Super-Hydrophobic Film on Aluminum by Controllable Immersing Method, Appl. Surf. Sci., 2012, vol. 258, pp. 5933–5937.ADSCrossRef
12.
Zurück zum Zitat Ta, V.D., Dunn, A., Wasley, T.J., Li, J., Kay, R.W., Stringer, J., Smith, P.J., Esenturk, E., Connaughton, C., and Shephard, J.D., Laser Textured Superhydrophobic Surfaces and Their Applications for Homogeneous Spot Deposition, Appl. Surf. Sci., 2016, vol. 365, pp. 153–159.ADSCrossRef Ta, V.D., Dunn, A., Wasley, T.J., Li, J., Kay, R.W., Stringer, J., Smith, P.J., Esenturk, E., Connaughton, C., and Shephard, J.D., Laser Textured Superhydrophobic Surfaces and Their Applications for Homogeneous Spot Deposition, Appl. Surf. Sci., 2016, vol. 365, pp. 153–159.ADSCrossRef
13.
Zurück zum Zitat Sun, K., Yanga, H., Xue, W., He, A., Zhu, D., Liu, W., Adeyemi, K., and Cao, Y., Anti-Biofouling Superhydrophobic Surface Fabricated by Picosecond Laser Texturing of Stainless Steel, Appl. Surf. Sci., 2018, vol. 436, pp. 263–267.ADSCrossRef Sun, K., Yanga, H., Xue, W., He, A., Zhu, D., Liu, W., Adeyemi, K., and Cao, Y., Anti-Biofouling Superhydrophobic Surface Fabricated by Picosecond Laser Texturing of Stainless Steel, Appl. Surf. Sci., 2018, vol. 436, pp. 263–267.ADSCrossRef
14.
Zurück zum Zitat Chebolu, A., Laha, B., Ghosh, M., and Nagahanumaiah, Investigation on Bacterial Adhesion and Colonisation Resistance over Laser-Machined Micro Patterned Surfaces, Micro Nano Lett., 2013, vol. 8, pp. 280–283.CrossRef Chebolu, A., Laha, B., Ghosh, M., and Nagahanumaiah, Investigation on Bacterial Adhesion and Colonisation Resistance over Laser-Machined Micro Patterned Surfaces, Micro Nano Lett., 2013, vol. 8, pp. 280–283.CrossRef
15.
Zurück zum Zitat Min, T., Design and Fabrication of Super-Hydrophobic Surfaces by Laser Micro/Nano-Processing, PhD thesis, Tang Min, Singapore, 2012. Min, T., Design and Fabrication of Super-Hydrophobic Surfaces by Laser Micro/Nano-Processing, PhD thesis, Tang Min, Singapore, 2012.
16.
Zurück zum Zitat Emelyanenko, A.M., Shagieva, F.M., Domantovsky, A.G., and Boinovich, L.B., Nanosecond Laser Micro- and Nanotexturing for the Design of a Superhydrophobic Coating Robust against Long-Term Contact with Water, Cavitation, and Abrasion, Appl. Surf. Sci., 2015, vol. 332, pp. 513–517.ADSCrossRef Emelyanenko, A.M., Shagieva, F.M., Domantovsky, A.G., and Boinovich, L.B., Nanosecond Laser Micro- and Nanotexturing for the Design of a Superhydrophobic Coating Robust against Long-Term Contact with Water, Cavitation, and Abrasion, Appl. Surf. Sci., 2015, vol. 332, pp. 513–517.ADSCrossRef
17.
Zurück zum Zitat Römer, G., del Cerro, D.A., Sipkema, R.C.J., Groenendijk, M.N.W., and Huis in’t Veld, A.J., Ultra Short Pulse Laser Generated Surface Textures for Anti-Ice Applications in Aviation, Procs. of the 28th Int. Congr. on Applications of Lasers and Electro-Optics, Laser Institute of America, Orlando, 2009, pp. 30–37. Römer, G., del Cerro, D.A., Sipkema, R.C.J., Groenendijk, M.N.W., and Huis in’t Veld, A.J., Ultra Short Pulse Laser Generated Surface Textures for Anti-Ice Applications in Aviation, Procs. of the 28th Int. Congr. on Applications of Lasers and Electro-Optics, Laser Institute of America, Orlando, 2009, pp. 30–37.
18.
Zurück zum Zitat Libenson, M.N., Surface Electromagnetic Waves in Optics, Zh. Fiz., 1996, pp. 103–110. Libenson, M.N., Surface Electromagnetic Waves in Optics, Zh. Fiz., 1996, pp. 103–110.
19.
Zurück zum Zitat Libenson, M.N., Shandybina, G.D., and Shakhmin, A.L., Chemical Analysis of Products Obtained by Nanosecond Laser Ablation, Tech. Phys., 2000, vol. 45, pp. 1219–1222.ADSCrossRef Libenson, M.N., Shandybina, G.D., and Shakhmin, A.L., Chemical Analysis of Products Obtained by Nanosecond Laser Ablation, Tech. Phys., 2000, vol. 45, pp. 1219–1222.ADSCrossRef
20.
Zurück zum Zitat Burdonskiy, I.N., Gol’tsov, A.Y., Leonov, A.G., Makarov, K.N., Timofeyev, I.S., and Yufa, V.N., Generation of Shock Waves due to Interaction of Power Laser Radiation with Polycrystalline Targets, VANT, 2013, vol. 36, pp. 8–18. Burdonskiy, I.N., Gol’tsov, A.Y., Leonov, A.G., Makarov, K.N., Timofeyev, I.S., and Yufa, V.N., Generation of Shock Waves due to Interaction of Power Laser Radiation with Polycrystalline Targets, VANT, 2013, vol. 36, pp. 8–18.
21.
Zurück zum Zitat Lee, D.J. and Jeong, S.H., Analysis of Recoil Force during Nd:YAG Laser Ablation of Silicon, Appl. Phys. A, 2004, vol. 79, pp. 1341–1344.CrossRef Lee, D.J. and Jeong, S.H., Analysis of Recoil Force during Nd:YAG Laser Ablation of Silicon, Appl. Phys. A, 2004, vol. 79, pp. 1341–1344.CrossRef
22.
Zurück zum Zitat Kuznetsov, G.V., Feoktistov, D.V., Orlova, E.G., Batishcheva, K., and Ilenok, S.S., Unification of the Textures Formed on Aluminum after Laser Treatment, Appl. Surf. Sci., 2019, vol. 469, pp. 974–982.ADSCrossRef Kuznetsov, G.V., Feoktistov, D.V., Orlova, E.G., Batishcheva, K., and Ilenok, S.S., Unification of the Textures Formed on Aluminum after Laser Treatment, Appl. Surf. Sci., 2019, vol. 469, pp. 974–982.ADSCrossRef
23.
Zurück zum Zitat Misyura, S.Y., The Dependence of Drop Evaporation Rate and Wettability on Corrosion Kinetics, Colloids Surf. A, 2021, vol. 610, p. 125735.CrossRef Misyura, S.Y., The Dependence of Drop Evaporation Rate and Wettability on Corrosion Kinetics, Colloids Surf. A, 2021, vol. 610, p. 125735.CrossRef
24.
Zurück zum Zitat Misyura, S.Y., Different Modes of Heat Transfer and Crystallization in a Drop of NaCl Solution: The Influence of Key Factors on the Crystallization Rate and Heat Transfer Coefficient, Int. J. Therm. Sci., 2021, vol. 159, p. 106602.CrossRef Misyura, S.Y., Different Modes of Heat Transfer and Crystallization in a Drop of NaCl Solution: The Influence of Key Factors on the Crystallization Rate and Heat Transfer Coefficient, Int. J. Therm. Sci., 2021, vol. 159, p. 106602.CrossRef
25.
Zurück zum Zitat Hu, H., and Larson, R.G., Analysis of the Effects of Marangoni Stresses on the Microflow in an Evaporating Sessile Droplet, Langmuir, 2005, vol. 21, pp. 3972–3980.CrossRef Hu, H., and Larson, R.G., Analysis of the Effects of Marangoni Stresses on the Microflow in an Evaporating Sessile Droplet, Langmuir, 2005, vol. 21, pp. 3972–3980.CrossRef
26.
Zurück zum Zitat Hu, H., and Larson, R.G., Marangoni Effect Reverses Coffee-ring Depositions, J. Phys. Chem. B, 2006, vol. 110, pp. 7090–7094.CrossRef Hu, H., and Larson, R.G., Marangoni Effect Reverses Coffee-ring Depositions, J. Phys. Chem. B, 2006, vol. 110, pp. 7090–7094.CrossRef
27.
Zurück zum Zitat Misyura, S.Y., Volkov, R.S., and Filatova, A.S., Interaction of Two Drops at Different Temperatures: The Role of Thermocapillary Convection and Surfactant, Colloids Surf. A, 2018, vol. 559, pp. 275–283.CrossRef Misyura, S.Y., Volkov, R.S., and Filatova, A.S., Interaction of Two Drops at Different Temperatures: The Role of Thermocapillary Convection and Surfactant, Colloids Surf. A, 2018, vol. 559, pp. 275–283.CrossRef
28.
Zurück zum Zitat Misyura, S.Y., Kuznetsov, G.V., Volkov, R.S., Lezhnin, S.I., and Morozov, V.S., The Effect of Impurity Particles on the Forced Convection Velocity in a Drop, Powder Technol., 2020, vol. 362, pp. 341–349.CrossRef Misyura, S.Y., Kuznetsov, G.V., Volkov, R.S., Lezhnin, S.I., and Morozov, V.S., The Effect of Impurity Particles on the Forced Convection Velocity in a Drop, Powder Technol., 2020, vol. 362, pp. 341–349.CrossRef
29.
Zurück zum Zitat Misyura, S.Y., Convection in a Droplet Blown by Gas Flow, Appl. Thermal Engin., 2020, vol. 165, p. 114536.CrossRef Misyura, S.Y., Convection in a Droplet Blown by Gas Flow, Appl. Thermal Engin., 2020, vol. 165, p. 114536.CrossRef
30.
Zurück zum Zitat Kelly-Zion, P.L., Pursell, C.J., Vaidya, S., and Batra, J., Evaporation of Sessile Drops under Combined Diffusion and Natural Convection, Colloid Surf. A, 2011, vol. 381, pp. 31–36.CrossRef Kelly-Zion, P.L., Pursell, C.J., Vaidya, S., and Batra, J., Evaporation of Sessile Drops under Combined Diffusion and Natural Convection, Colloid Surf. A, 2011, vol. 381, pp. 31–36.CrossRef
31.
Zurück zum Zitat Carle, F., Semenov, S., Medale, M., and Brutin, D., Contribution of Convective Transport to Evaporation of Sessile Droplets: Empirical Model, Int. J. Therm. Sci., 2016, vol. 101, pp. 35–47.CrossRef Carle, F., Semenov, S., Medale, M., and Brutin, D., Contribution of Convective Transport to Evaporation of Sessile Droplets: Empirical Model, Int. J. Therm. Sci., 2016, vol. 101, pp. 35–47.CrossRef
32.
Zurück zum Zitat Misyura, S.Y., Evaporation of Aqueous Solutions of LiBr and LiCl Salts, Int. Comm. Heat Mass Transfer, 2020, vol. 117, p. 104727.CrossRef Misyura, S.Y., Evaporation of Aqueous Solutions of LiBr and LiCl Salts, Int. Comm. Heat Mass Transfer, 2020, vol. 117, p. 104727.CrossRef
33.
Zurück zum Zitat Girard, F., Antoni, M., and Sefiane, K., On the Effect of Marangoni Flow on Evaporation Rates of Heated Water Drops, Langmuir, 2008, vol. 24, pp. 9207–9210.CrossRef Girard, F., Antoni, M., and Sefiane, K., On the Effect of Marangoni Flow on Evaporation Rates of Heated Water Drops, Langmuir, 2008, vol. 24, pp. 9207–9210.CrossRef
34.
Zurück zum Zitat Kuznetsov, G.V., Misyura, S.Y., Volkov, R.S., and Morozov, V.S., Marangoni Flow and Free Convection during Crystallization of a Salt Solution Droplet, Colloids and Surfaces A, 2019, vol. 572, pp. 37–46.CrossRef Kuznetsov, G.V., Misyura, S.Y., Volkov, R.S., and Morozov, V.S., Marangoni Flow and Free Convection during Crystallization of a Salt Solution Droplet, Colloids and Surfaces A, 2019, vol. 572, pp. 37–46.CrossRef
35.
Zurück zum Zitat Kreizer, M., Ratner, D., and Liberzon, A., Real Time Image Processing for Particle Tracking Velocimetry, Exp. Fluids, 2010, vol. 48, pp. 105–110.ADSCrossRef Kreizer, M., Ratner, D., and Liberzon, A., Real Time Image Processing for Particle Tracking Velocimetry, Exp. Fluids, 2010, vol. 48, pp. 105–110.ADSCrossRef
36.
Zurück zum Zitat Westerweel, J., Fundamentals of Digital Particle Image Velocimetry, Meas. Sci. Technol., 1997, vol. 8, pp. 1379–1392.ADSCrossRef Westerweel, J., Fundamentals of Digital Particle Image Velocimetry, Meas. Sci. Technol., 1997, vol. 8, pp. 1379–1392.ADSCrossRef
37.
Zurück zum Zitat Volkov, R.S. and Strizhak, P.A., Planar Laser-Induced Fluorescence Diagnostics of Water Droplets Heating and Evaporation at High-Temperature, Appl. Thermal Engin., 2017, vol. 127, pp. 141–156.CrossRef Volkov, R.S. and Strizhak, P.A., Planar Laser-Induced Fluorescence Diagnostics of Water Droplets Heating and Evaporation at High-Temperature, Appl. Thermal Engin., 2017, vol. 127, pp. 141–156.CrossRef
Metadaten
Titel
Evaporation of a Droplet of a Heated Colloid Solution on a Horizontal Structured Wall
verfasst von
S. Y. Misyura
A. V. Bilsky
V. S. Morozov
O. A. Gobyzov
M. N. Ryabov
Publikationsdatum
01.10.2021
Verlag
Pleiades Publishing
Erschienen in
Journal of Engineering Thermophysics / Ausgabe 4/2021
Print ISSN: 1810-2328
Elektronische ISSN: 1990-5432
DOI
https://doi.org/10.1134/S1810232821040081

Weitere Artikel der Ausgabe 4/2021

Journal of Engineering Thermophysics 4/2021 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.