Skip to main content
Erschienen in: Journal of Engineering Thermophysics 4/2021

01.10.2021

Modeling of Freon 134a Gas Hydrate Synthesis via Boiling and Condensation of Gas in a Volume of Water

verfasst von: A. V. Meleshkin, A. A. Shkoldina

Erschienen in: Journal of Engineering Thermophysics | Ausgabe 4/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The paper presents a theoretical assessment of the hydration mass increase with time in the gas hydrate synthesis based on the self-organizing cyclic process of boiling and condensation of the hydrate-forming gas in a volume of water. Data were obtained on the distribution of the bubbles released because of boiling of the liquefied gas at three different points in time in a real experiment. The average rate of increase in the hydration mass was determined. The hydration gain was simulated for an experiment 30 minutes long. The data obtained were compared with experimental results.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Belosludov, R.V., Bozhko, Y.Y., Zhdanov, R.K., Subbotin, O.S., Kawazoe, Y., and Belosludov, V.R., Influence of the Water Temperature in the Working Area on the Synthesis of Gas Hydrate by the Method of Boiling-Condensation of the Hydrate-Forming Gas in the Volume of Water, Fluid Ph. Equilibria, 2016, vol. 413, pp. 220–228.CrossRef Belosludov, R.V., Bozhko, Y.Y., Zhdanov, R.K., Subbotin, O.S., Kawazoe, Y., and Belosludov, V.R., Influence of the Water Temperature in the Working Area on the Synthesis of Gas Hydrate by the Method of Boiling-Condensation of the Hydrate-Forming Gas in the Volume of Water, Fluid Ph. Equilibria, 2016, vol. 413, pp. 220–228.CrossRef
2.
Zurück zum Zitat Belosludov, V.R. and Bozhko, Y.Y., Self-Preservation Effect Modelling in Hydrate Systems Using Lattice Dynamic Methods, J. Phys. Conf. Ser., 2018, vol. 1128, 012086.CrossRef Belosludov, V.R. and Bozhko, Y.Y., Self-Preservation Effect Modelling in Hydrate Systems Using Lattice Dynamic Methods, J. Phys. Conf. Ser., 2018, vol. 1128, 012086.CrossRef
3.
Zurück zum Zitat Sizikov, A.A., Vlasov, V.A., Stoporev A.S., and Manakov, A.Y., Decomposition Kinetics and Self-Preservation of Methane Hydrate Particles in Crude Oil Dispersions: Experiments and Theory, Energy Fuels, 2019, vol. 33, no. 12, pp. 12353–12365.CrossRef Sizikov, A.A., Vlasov, V.A., Stoporev A.S., and Manakov, A.Y., Decomposition Kinetics and Self-Preservation of Methane Hydrate Particles in Crude Oil Dispersions: Experiments and Theory, Energy Fuels, 2019, vol. 33, no. 12, pp. 12353–12365.CrossRef
4.
Zurück zum Zitat Stoporev, A.S., A., Manakov Yu., Altunina, L.K., and Strelets, L.A., Self-Preservation of Gas Hydrate Particles Suspended in Crude Oils and Liquid Hydrocarbons: Role of Preparation Method, Dispersion Media, and Hydrate Former, Energy Fuels, 2016, vol. 30, no. 11, pp. 9014–9021.CrossRef Stoporev, A.S., A., Manakov Yu., Altunina, L.K., and Strelets, L.A., Self-Preservation of Gas Hydrate Particles Suspended in Crude Oils and Liquid Hydrocarbons: Role of Preparation Method, Dispersion Media, and Hydrate Former, Energy Fuels, 2016, vol. 30, no. 11, pp. 9014–9021.CrossRef
5.
Zurück zum Zitat Belosludov, V.R., Bozhko, Y.Y., Subbotin, O.S., Belosludov, R.V., Zhdanov, R.K., Gets, K.V., and Kawazoe, Y., Influence of N2 on Formation Conditions and Guest Distribution of Mixed CO2 + CH4 Gas Hydrates, Molecules, 2018, vol. 23, p. 3336.CrossRef Belosludov, V.R., Bozhko, Y.Y., Subbotin, O.S., Belosludov, R.V., Zhdanov, R.K., Gets, K.V., and Kawazoe, Y., Influence of N2 on Formation Conditions and Guest Distribution of Mixed CO2 + CH4 Gas Hydrates, Molecules, 2018, vol. 23, p. 3336.CrossRef
6.
Zurück zum Zitat Bozhko, Y.Y., Subbotin, O.S., Gets, K.V., Zhdanov, R.K., and Belosludov, V.R., Theoretical Modeling of the Gas Hydrates of Nitrous Oxide and Methane Mixtures, Mendeleev Comm., 2017, vol. 27, pp. 397–398.CrossRef Bozhko, Y.Y., Subbotin, O.S., Gets, K.V., Zhdanov, R.K., and Belosludov, V.R., Theoretical Modeling of the Gas Hydrates of Nitrous Oxide and Methane Mixtures, Mendeleev Comm., 2017, vol. 27, pp. 397–398.CrossRef
7.
Zurück zum Zitat Zhdanov, R.K., Gets, K.V., Belosludov, V.R., Subbotin, O.S., Bozhko, Y.Y., and Belosludov, V.R., Visualization of the Synthesis of Gas Hydrate by the Method of Explosive Boiling a Hydrate-Forming Gas in the Volume of Water, Fluid Ph. Equilibria, 2017, vol. 434, pp. 87–92.CrossRef Zhdanov, R.K., Gets, K.V., Belosludov, V.R., Subbotin, O.S., Bozhko, Y.Y., and Belosludov, V.R., Visualization of the Synthesis of Gas Hydrate by the Method of Explosive Boiling a Hydrate-Forming Gas in the Volume of Water, Fluid Ph. Equilibria, 2017, vol. 434, pp. 87–92.CrossRef
8.
Zurück zum Zitat Bozhko, Y.Y., Subbotin, O.S., Gets, K.V., Zhdanov, R.K., and Belosludov, V.R., Simulation of Thermobaric Conditions of the Formation, Composition, and Structure of Mixed Hydrates Containing Xenon and Nitrous Oxide, J. Struct. Chem., 2017, vol. 58, pp. 853–860.CrossRef Bozhko, Y.Y., Subbotin, O.S., Gets, K.V., Zhdanov, R.K., and Belosludov, V.R., Simulation of Thermobaric Conditions of the Formation, Composition, and Structure of Mixed Hydrates Containing Xenon and Nitrous Oxide, J. Struct. Chem., 2017, vol. 58, pp. 853–860.CrossRef
9.
Zurück zum Zitat Subbotin, O.S., Bozhko, Y.Y., Zhdanov, R.K., Gets, K.V., Belosludov, V.R., Belosludov, R.V., and Kawazoe, Y., Ozone Storage Capacity in Clathrate Hydrates Formed by O3 + O2 + N2 + CO2 Gas Mixtures, Phys. Chem. Chem. Phys., 2018, vol. 20, pp. 12637–12641.CrossRef Subbotin, O.S., Bozhko, Y.Y., Zhdanov, R.K., Gets, K.V., Belosludov, V.R., Belosludov, R.V., and Kawazoe, Y., Ozone Storage Capacity in Clathrate Hydrates Formed by O3 + O2 + N2 + CO2 Gas Mixtures, Phys. Chem. Chem. Phys., 2018, vol. 20, pp. 12637–12641.CrossRef
10.
Zurück zum Zitat Shagapov, V.S., Musakaev, N.G., and Khasanov, M.K., Self-Preservation of Gas Hydrate Particles Suspended in Crude Oils and Liquid Hydrocarbons: Role of Preparation Method, Dispersion Media, and Hydrate Former, Int. J. Heat Mass Transfer, 2015, vol. 84, pp. 1030–1039.CrossRef Shagapov, V.S., Musakaev, N.G., and Khasanov, M.K., Self-Preservation of Gas Hydrate Particles Suspended in Crude Oils and Liquid Hydrocarbons: Role of Preparation Method, Dispersion Media, and Hydrate Former, Int. J. Heat Mass Transfer, 2015, vol. 84, pp. 1030–1039.CrossRef
11.
Zurück zum Zitat Sagidullin, A.K., Stoporev, A.S., and Manakov, A.Yu., Effect of Temperature on the Rate of Methane Hydrate Nucleation in Water-in-Crude Oil Emulsion, Energy Fuels, 2019, vol. 33, no. 4, pp. 3155–3161.CrossRef Sagidullin, A.K., Stoporev, A.S., and Manakov, A.Yu., Effect of Temperature on the Rate of Methane Hydrate Nucleation in Water-in-Crude Oil Emulsion, Energy Fuels, 2019, vol. 33, no. 4, pp. 3155–3161.CrossRef
12.
Zurück zum Zitat Skiba, S., Strukov, D., Sagidullin, A., et al., Impact of Biodegradation of Oil on the Kinetics of Gas Hydrate Formation and Decomposition, J. Petrol. Sci. Engin., 2020, vol. 192, p. 107211.CrossRef Skiba, S., Strukov, D., Sagidullin, A., et al., Impact of Biodegradation of Oil on the Kinetics of Gas Hydrate Formation and Decomposition, J. Petrol. Sci. Engin., 2020, vol. 192, p. 107211.CrossRef
13.
Zurück zum Zitat Shestakov, V.A., Sagidullin, A.K., and Stoporev, A.S., Analysis of Methane Hydrate Nucleation in Water-in-Oil Emulsions: Isothermal vs Constant Cooling Ramp Method and New Method for Data Treatment, J. Molec. Liq., 2020, vol. 318, p. 114018.CrossRef Shestakov, V.A., Sagidullin, A.K., and Stoporev, A.S., Analysis of Methane Hydrate Nucleation in Water-in-Oil Emulsions: Isothermal vs Constant Cooling Ramp Method and New Method for Data Treatment, J. Molec. Liq., 2020, vol. 318, p. 114018.CrossRef
14.
Zurück zum Zitat Shumskayte, M.Y., Manakov, A.Y., Sagidullin, A.K., Glinskikh, V.N., and Podenko, L.S., Melting of Tetrahydrofuran Hydrate in Pores: An Investigation by Low-Field NMR Relaxation, Marine Petrol. Geo., 2021, vol. 129, p. 105096.CrossRef Shumskayte, M.Y., Manakov, A.Y., Sagidullin, A.K., Glinskikh, V.N., and Podenko, L.S., Melting of Tetrahydrofuran Hydrate in Pores: An Investigation by Low-Field NMR Relaxation, Marine Petrol. Geo., 2021, vol. 129, p. 105096.CrossRef
15.
Zurück zum Zitat Faizullin, M.Z., Vinogradov, A.V., Tomin, A.S., and Koverda, V.P., Study of Condensation and Crystallization Processes During the Formation of Gas Hydrates in Supersonic Jets, High Temp., 2019, vol. 57, no. 5, pp. 731–737.CrossRef Faizullin, M.Z., Vinogradov, A.V., Tomin, A.S., and Koverda, V.P., Study of Condensation and Crystallization Processes During the Formation of Gas Hydrates in Supersonic Jets, High Temp., 2019, vol. 57, no. 5, pp. 731–737.CrossRef
16.
Zurück zum Zitat Faizullin, M.Z., Vinogradov, A.V., and Koverda, V.P., Hydrate Formation in Layers of Gas-Saturated Amorphous Ice, Chem. Eng. Sci., 2015, vol. 130, pp. 135–143.CrossRef Faizullin, M.Z., Vinogradov, A.V., and Koverda, V.P., Hydrate Formation in Layers of Gas-Saturated Amorphous Ice, Chem. Eng. Sci., 2015, vol. 130, pp. 135–143.CrossRef
17.
Zurück zum Zitat Misyura, S.Y. and Donskoy, I.G., Ways to Improve the Efficiency of Carbon Dioxide Utilization and Gas Hydrate Storage at Low Temperatures, J. CO2 Util., 2019, vol. 34, pp. 313–324.CrossRef Misyura, S.Y. and Donskoy, I.G., Ways to Improve the Efficiency of Carbon Dioxide Utilization and Gas Hydrate Storage at Low Temperatures, J. CO2 Util., 2019, vol. 34, pp. 313–324.CrossRef
18.
Zurück zum Zitat Misyura, S.Y. and Donskoy, I.G., Dissociation Kinetics of Methane Hydrate and CO2 Hydrate for Different Granular Composition, Fuel, 2020, vol. 262, p. 116614.CrossRef Misyura, S.Y. and Donskoy, I.G., Dissociation Kinetics of Methane Hydrate and CO2 Hydrate for Different Granular Composition, Fuel, 2020, vol. 262, p. 116614.CrossRef
19.
Zurück zum Zitat Misyura, S.Y., Efficiency of Methane Hydrate Combustion for Different Types of Oxidizer Flow, Energy, 2016, vol. 103, pp. 430–439.CrossRef Misyura, S.Y., Efficiency of Methane Hydrate Combustion for Different Types of Oxidizer Flow, Energy, 2016, vol. 103, pp. 430–439.CrossRef
20.
Zurück zum Zitat Misyura, S.Y., Comparing the Dissociation Kinetics of Various Gas Hydrates During Combustion: Assessment of Key Factors to Improve Combustion Efficiency, Appl. Energy, 2020, vol. 270, p. 115042.CrossRef Misyura, S.Y., Comparing the Dissociation Kinetics of Various Gas Hydrates During Combustion: Assessment of Key Factors to Improve Combustion Efficiency, Appl. Energy, 2020, vol. 270, p. 115042.CrossRef
21.
Zurück zum Zitat Misyura, S.Y., Dependence of Wettability of Microtextured Wall on the Heat and Mass Transfer: Simple Estimates for Convection and Heat Transfer, Int. J. Mech. Sci., 2020, vol. 170, p. 105353.CrossRef Misyura, S.Y., Dependence of Wettability of Microtextured Wall on the Heat and Mass Transfer: Simple Estimates for Convection and Heat Transfer, Int. J. Mech. Sci., 2020, vol. 170, p. 105353.CrossRef
22.
Zurück zum Zitat Misyura, S.Y., The Influence of Characteristic Scales of Convection on Non-Isothermal Evaporation of a Thin Liquid Layer, Sci. Rep., 2018, vol. 8, p. 11521.ADSCrossRef Misyura, S.Y., The Influence of Characteristic Scales of Convection on Non-Isothermal Evaporation of a Thin Liquid Layer, Sci. Rep., 2018, vol. 8, p. 11521.ADSCrossRef
23.
Zurück zum Zitat Nakoryakov, V.E., Mezentsev, I.V., Meleshkin, A.V., Elistratov, D.S., and Manakov, A.Y., Experimental Investigation of Gas-Hydrate Formation by Underwater Boiling of a Condensed Gas Layer, J. Eng. Therm., 2015, vol. 24, no. 4, pp. 335–337.CrossRef Nakoryakov, V.E., Mezentsev, I.V., Meleshkin, A.V., Elistratov, D.S., and Manakov, A.Y., Experimental Investigation of Gas-Hydrate Formation by Underwater Boiling of a Condensed Gas Layer, J. Eng. Therm., 2015, vol. 24, no. 4, pp. 335–337.CrossRef
24.
Zurück zum Zitat Meleshkin, A.V., Bartashevich, M.V., and Glezer, V.V., Hydrate Formation in Water Foam Volume, J. Eng. Therm., 2020, vol. 29, no. 2, pp. 279–284.CrossRef Meleshkin, A.V., Bartashevich, M.V., and Glezer, V.V., Hydrate Formation in Water Foam Volume, J. Eng. Therm., 2020, vol. 29, no. 2, pp. 279–284.CrossRef
25.
Zurück zum Zitat Meleshkin, A.V., Bartashevich, M.V., Glezer, V.V., and Glebov, R.A., Effect of Surfactants on Synthesis of Gas Hydrates, J. Eng. Therm., 2020, vol. 9, no. 2, pp. 264–266.CrossRef Meleshkin, A.V., Bartashevich, M.V., Glezer, V.V., and Glebov, R.A., Effect of Surfactants on Synthesis of Gas Hydrates, J. Eng. Therm., 2020, vol. 9, no. 2, pp. 264–266.CrossRef
26.
Zurück zum Zitat Meleshkin, A.V., Bartashevich, M.V., and Glezer, V.V., Investigation of the Effect of Operating Parameters on the Synthesis of Gas Hydrate by the Method Based on Self-Organizing Process of Boiling-Condensation of a Hydrate-Forming Gas in the Volume of Water, Appl Surf. Sci., 2019, vol. 493, pp. 847–851.ADSCrossRef Meleshkin, A.V., Bartashevich, M.V., and Glezer, V.V., Investigation of the Effect of Operating Parameters on the Synthesis of Gas Hydrate by the Method Based on Self-Organizing Process of Boiling-Condensation of a Hydrate-Forming Gas in the Volume of Water, Appl Surf. Sci., 2019, vol. 493, pp. 847–851.ADSCrossRef
27.
Zurück zum Zitat Sun, C.Y., Chen, G.J., Ma, C.F., Huang, Q., Luo, H., and Li, Q.P., The Growth Kinetics of Hydrate Film on the Surface of Gas Bubble Suspended in Water or Aqueous Surfactant Solution, J. Cryst. Growth, 2007, vol. 306, no. 2, pp. 491–499.ADSCrossRef Sun, C.Y., Chen, G.J., Ma, C.F., Huang, Q., Luo, H., and Li, Q.P., The Growth Kinetics of Hydrate Film on the Surface of Gas Bubble Suspended in Water or Aqueous Surfactant Solution, J. Cryst. Growth, 2007, vol. 306, no. 2, pp. 491–499.ADSCrossRef
28.
Zurück zum Zitat Englezos, P., Kalogerakis, N., Dholabhai, P.D., and Bishnoi, P.R., Kinetics of Formation of Methane and Ethane Gas Hydrates, Chem. Eng. Sci., 1987, vol. 42, no. 11, pp. 2647–2658.CrossRef Englezos, P., Kalogerakis, N., Dholabhai, P.D., and Bishnoi, P.R., Kinetics of Formation of Methane and Ethane Gas Hydrates, Chem. Eng. Sci., 1987, vol. 42, no. 11, pp. 2647–2658.CrossRef
29.
Zurück zum Zitat Vysniauskas, A. and Bishnoi, P.R., A Kinetic Study of Methane Hydrate Formation, Chem. Eng. Sci., 1983, vol. 38, no. 7, pp. 1061–1072.CrossRef Vysniauskas, A. and Bishnoi, P.R., A Kinetic Study of Methane Hydrate Formation, Chem. Eng. Sci., 1983, vol. 38, no. 7, pp. 1061–1072.CrossRef
30.
Zurück zum Zitat Sun, C.Y., Peng, B.Z., Dandekar, A., Ma, Q.L., and Chen, G.J., Studies on Hydrate Film Growth, Annual Rep. Sec. “C” (Phys. Chem.), 2010, vol. 106, pp. 77–100.CrossRef Sun, C.Y., Peng, B.Z., Dandekar, A., Ma, Q.L., and Chen, G.J., Studies on Hydrate Film Growth, Annual Rep. Sec. “C” (Phys. Chem.), 2010, vol. 106, pp. 77–100.CrossRef
31.
Zurück zum Zitat Ogasawara, K., Yamasaki, A., and Teng, H., Mass Transfer from CO2 Drops Traveling in High-Pressure and Low-Temperature Water, Energy Fuels, 2001, vol. 15, no. 1, pp. 147–150.CrossRef Ogasawara, K., Yamasaki, A., and Teng, H., Mass Transfer from CO2 Drops Traveling in High-Pressure and Low-Temperature Water, Energy Fuels, 2001, vol. 15, no. 1, pp. 147–150.CrossRef
32.
Zurück zum Zitat Holder, G.D. and Warzinski, R.P., Formation and Growth of CO2 Clathrate Hydrate Shells around Gas Bubbles or Liquid Drops, ACS Div. Fuel Chem., Prep., 1996, vol. 41, no. 4, pp. 1452–1457. Holder, G.D. and Warzinski, R.P., Formation and Growth of CO2 Clathrate Hydrate Shells around Gas Bubbles or Liquid Drops, ACS Div. Fuel Chem., Prep., 1996, vol. 41, no. 4, pp. 1452–1457.
33.
Zurück zum Zitat Mori, Y.H. and Mochizuki, T., Mass Transport across Clathrate Hydrate Films—A Capillary Permeation Model, Chem. Eng. Sci., 1997, vol. 52, no. 20, pp. 3613–3616.CrossRef Mori, Y.H. and Mochizuki, T., Mass Transport across Clathrate Hydrate Films—A Capillary Permeation Model, Chem. Eng. Sci., 1997, vol. 52, no. 20, pp. 3613–3616.CrossRef
34.
Zurück zum Zitat Sun, X., Wang, Z., Sun, B., Chen, L., and Zhang, J., Modeling of Dynamic Hydrate Shell Growth on Bubble Surface Considering Multiple Factor Interactions, Chem. Eng. J., 2018, pp. 221–233.CrossRef Sun, X., Wang, Z., Sun, B., Chen, L., and Zhang, J., Modeling of Dynamic Hydrate Shell Growth on Bubble Surface Considering Multiple Factor Interactions, Chem. Eng. J., 2018, pp. 221–233.CrossRef
35.
Zurück zum Zitat Makogon, Y.F., Gazovye gidraty, preduprezhdenie ikh obrazovaniya i ispol’zovanie (Gas Hydrates, Prevention of Their Formation, and Use), Moscow: Nedra, 1985. Makogon, Y.F., Gazovye gidraty, preduprezhdenie ikh obrazovaniya i ispol’zovanie (Gas Hydrates, Prevention of Their Formation, and Use), Moscow: Nedra, 1985.
Metadaten
Titel
Modeling of Freon 134a Gas Hydrate Synthesis via Boiling and Condensation of Gas in a Volume of Water
verfasst von
A. V. Meleshkin
A. A. Shkoldina
Publikationsdatum
01.10.2021
Verlag
Pleiades Publishing
Erschienen in
Journal of Engineering Thermophysics / Ausgabe 4/2021
Print ISSN: 1810-2328
Elektronische ISSN: 1990-5432
DOI
https://doi.org/10.1134/S1810232821040123

Weitere Artikel der Ausgabe 4/2021

Journal of Engineering Thermophysics 4/2021 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.