Skip to main content
Erschienen in: Journal of Engineering Thermophysics 4/2021

01.10.2021

Ultrasonic Measurements of Two-Phase Flow

verfasst von: A. S. Strelnik, S. V. Dvoinishnikov, V. G. Meledin, V. V. Rakhmanov, G. V. Bakakin, I. K. Kabardin, O. G. Derzho, M. R. Gordienko, S. V. Kakaulin

Erschienen in: Journal of Engineering Thermophysics | Ausgabe 4/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The paper presents development of a complex method of ultrasonic measurement of two-phase flows. The method enables measurement of the dynamic and structural characteristics of ascending inhomogeneity. A software and hardware complex for realization of the proposed method has been developed and implemented and tested in water. Results of experimental studies show that the software and hardware complex enables detection of rising gas bubbles in a liquid medium, monitoring of their dynamics, and localization of them in a volume of 5 to 50 cm3.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Meledin, V.G., Informatika optoelektronnykh izmerenii: nauka i innovatsionnye promyshlennye tekhnologii (Informatics of Optoelectronic Measurements: Science and Innovative Industrial Technologies), Novosibirsk: IT SO RAN, 2008. Meledin, V.G., Informatika optoelektronnykh izmerenii: nauka i innovatsionnye promyshlennye tekhnologii (Informatics of Optoelectronic Measurements: Science and Innovative Industrial Technologies), Novosibirsk: IT SO RAN, 2008.
2.
Zurück zum Zitat Anufriev, I.S., Anikin, Y.A., Fil’kov, A.I., Loboda, E.L., Agafontseva, M.V., Kasymov, D.P., Tizilov, A.S., Astanin, A.V., Pesterev, A.V., and Evtushkin, E.V., Investigation into the Structure of a Swirling Flow in a Model of a Vortex Combustion Chamber by Laser Doppler Anemometry, Tech. Phys. Lett., 2013, vol. 39, pp. 30–32; https://doi.org/10.1134/S1063785013010045.ADSCrossRef Anufriev, I.S., Anikin, Y.A., Fil’kov, A.I., Loboda, E.L., Agafontseva, M.V., Kasymov, D.P., Tizilov, A.S., Astanin, A.V., Pesterev, A.V., and Evtushkin, E.V., Investigation into the Structure of a Swirling Flow in a Model of a Vortex Combustion Chamber by Laser Doppler Anemometry, Tech. Phys. Lett., 2013, vol. 39, pp. 30–32; https://​doi.​org/​10.​1134/​S106378501301004​5.​ADSCrossRef
3.
Zurück zum Zitat Butov, A.A., Zhdanov, V.S., Klimonov, I.A., Kudashov, I.G., and Kutlimetov, A.E., Verification of the EUCLID/V2 Code Based on Experiments Involving Destruction of a Liquid Metal Cooled Reactor’s Core Components, Thermal Engin., 2019, vol. 66, no. 5, pp. 302–309.ADSCrossRef Butov, A.A., Zhdanov, V.S., Klimonov, I.A., Kudashov, I.G., and Kutlimetov, A.E., Verification of the EUCLID/V2 Code Based on Experiments Involving Destruction of a Liquid Metal Cooled Reactor’s Core Components, Thermal Engin., 2019, vol. 66, no. 5, pp. 302–309.ADSCrossRef
4.
Zurück zum Zitat Mosunova, N.A., Alipchenkov, V.M., Pribaturin, N.A., Strizhov, V.F., and Usov, E.V., Lead Coolant Modeling in System Thermal-Hydraulic Code HYDRA-IBRAE/LM and Some Validation Results, Nucl. Engin. Des., 2020, vol. 359, p. 110463.CrossRef Mosunova, N.A., Alipchenkov, V.M., Pribaturin, N.A., Strizhov, V.F., and Usov, E.V., Lead Coolant Modeling in System Thermal-Hydraulic Code HYDRA-IBRAE/LM and Some Validation Results, Nucl. Engin. Des., 2020, vol. 359, p. 110463.CrossRef
5.
Zurück zum Zitat Sergiyenko, O.Yu., Ivanov, M.V., Tyrsa, V.V., Kartashov, V.M., Rivas-López, M., Hernández-Balbuena, D., Flores-Fuentes, W., Rodrı́guez-Quiñonez, J.C., Nieto-Hipólito, J.I., Hernandez, W., and Tchernykh, A., Data Transferring Model Determination in Robotic Group, Robotics Autonom. Syst., 2016, vol. 83, pp. 251–260; DOI:10.1016/j.robot.2016.04.003.CrossRef Sergiyenko, O.Yu., Ivanov, M.V., Tyrsa, V.V., Kartashov, V.M., Rivas-López, M., Hernández-Balbuena, D., Flores-Fuentes, W., Rodrı́guez-Quiñonez, J.C., Nieto-Hipólito, J.I., Hernandez, W., and Tchernykh, A., Data Transferring Model Determination in Robotic Group, Robotics Autonom. Syst., 2016, vol. 83, pp. 251–260; DOI:10.1016/j.robot.2016.04.003.CrossRef
6.
Zurück zum Zitat Kremlevskii, P.P., Raskhodomery i schetchiki kolichestva veshchestv: Spravochnik: Kniga 2 (Flow Meters and Quantity Meters: Handbook: Book 2), St.-Petersburg: Politekhnika, 2004. Kremlevskii, P.P., Raskhodomery i schetchiki kolichestva veshchestv: Spravochnik: Kniga 2 (Flow Meters and Quantity Meters: Handbook: Book 2), St.-Petersburg: Politekhnika, 2004.
7.
Zurück zum Zitat Anufriev, I.S., Baklanov, A.M., Borovkova, O.V., Vigriyanov, M.S., Leshchevich, V.V., and Sharypov, O.V., Investigation of Soot Nanoparticles during Combustion of Liquid Hydrocarbons with Injection of a Superheated Steam Jet into the Reaction Zone, Combust., Explos., Shock Waves, 2017, vol. 53, pp. 140–148; https://doi.org/10.1134/S0010508217020034.CrossRef Anufriev, I.S., Baklanov, A.M., Borovkova, O.V., Vigriyanov, M.S., Leshchevich, V.V., and Sharypov, O.V., Investigation of Soot Nanoparticles during Combustion of Liquid Hydrocarbons with Injection of a Superheated Steam Jet into the Reaction Zone, Combust., Explos., Shock Waves, 2017, vol. 53, pp. 140–148; https://​doi.​org/​10.​1134/​S001050821702003​4.​CrossRef
8.
Zurück zum Zitat Sergiyenko, O. and Zhirabok, A., Fault Identification in Mobile Robot Groups Using Sliding Mode Observers, Program. Computer Soft., 2020, vol. 46, no. 8, pp. 679–688.MathSciNetCrossRef Sergiyenko, O. and Zhirabok, A., Fault Identification in Mobile Robot Groups Using Sliding Mode Observers, Program. Computer Soft., 2020, vol. 46, no. 8, pp. 679–688.MathSciNetCrossRef
9.
Zurück zum Zitat Anufriev, I.S., Alekseenko, S.V., Kopyev, E.P., and Sharypov, O.V., Combustion of Substandard Liquid Hydrocarbons in Atmosphere Burners with Steam Gasification, J. Eng. Therm., 2019, vol. 28, pp. 324–31; https://doi.org/10.1134/S1810232819030032.CrossRef Anufriev, I.S., Alekseenko, S.V., Kopyev, E.P., and Sharypov, O.V., Combustion of Substandard Liquid Hydrocarbons in Atmosphere Burners with Steam Gasification, J. Eng. Therm., 2019, vol. 28, pp. 324–31; https://​doi.​org/​10.​1134/​S181023281903003​2.​CrossRef
10.
Zurück zum Zitat Zhdanov, V.S., Klimonov, I.A., Lezhnin, S.I., Lobanov, P.D., Pribaturin, N.A., Svetonosov, A.I., and Usov, E.V., Computation-and-Experiment Study of Behavior of Molten Metal in Fuel Element and Fuel Assembly: Preliminary Experiments and Computational Models, J. Eng. Therm., 2020, vol. 29, pp. 209–221.CrossRef Zhdanov, V.S., Klimonov, I.A., Lezhnin, S.I., Lobanov, P.D., Pribaturin, N.A., Svetonosov, A.I., and Usov, E.V., Computation-and-Experiment Study of Behavior of Molten Metal in Fuel Element and Fuel Assembly: Preliminary Experiments and Computational Models, J. Eng. Therm., 2020, vol. 29, pp. 209–221.CrossRef
11.
Zurück zum Zitat Mogil’ner, A.I., Morozov, S.A., Zakharov, S.O., and Uralets, A.Yu., Detection of gas bubbles in liquid metal heat carrier by means of magnetic flowmeters, Preprint of Institute of Physics and Power Engineering, Obninsk, 1986. Mogil’ner, A.I., Morozov, S.A., Zakharov, S.O., and Uralets, A.Yu., Detection of gas bubbles in liquid metal heat carrier by means of magnetic flowmeters, Preprint of Institute of Physics and Power Engineering, Obninsk, 1986.
12.
Zurück zum Zitat Kokoreva, I. and Shchelkunov, G., X-ray Non-Destructive Testing, Elektron.: Nauka, Tekhnol., Bizness, 2007, vol. 5, pp. 329–336. Kokoreva, I. and Shchelkunov, G., X-ray Non-Destructive Testing, Elektron.: Nauka, Tekhnol., Bizness, 2007, vol. 5, pp. 329–336.
13.
Zurück zum Zitat Santhosh, K.V. and Roy, B.K., An Intelligent Flow Measurement Technique Using Ultrasonic Flow Meter with Optimized Neural Network, Int. J. Control Automat., 2012, vol. 5, no. 4, pp. 53–56. Santhosh, K.V. and Roy, B.K., An Intelligent Flow Measurement Technique Using Ultrasonic Flow Meter with Optimized Neural Network, Int. J. Control Automat., 2012, vol. 5, no. 4, pp. 53–56.
14.
Zurück zum Zitat Andruszkiewicz, et al., Ultrasonic Measurements of Flow in Two-Phase Liquid Gas Systems. Parts I–III, Chemical and Process Engineering, 2008. Andruszkiewicz, et al., Ultrasonic Measurements of Flow in Two-Phase Liquid Gas Systems. Parts I–III, Chemical and Process Engineering, 2008.
15.
Zurück zum Zitat Ermolov, I.N. and Ermolov, M.I., Ul’trazvukovoi kontrol’ (Ultrasonic Testing), 5th ed., Moscow: 2006. Ermolov, I.N. and Ermolov, M.I., Ul’trazvukovoi kontrol’ (Ultrasonic Testing), 5th ed., Moscow: 2006.
16.
Zurück zum Zitat Andruszkiewicz, A., Eckert, K., Eckert, S., and Odenbach, S., Gas Bubble Detection in Liquid Metals by Means of the Ultrasound Transit-Time-Technique, Eur. Phys. J. Spec. Top., 2013, vol. 220, no. 1, pp. 53–62.ADSCrossRef Andruszkiewicz, A., Eckert, K., Eckert, S., and Odenbach, S., Gas Bubble Detection in Liquid Metals by Means of the Ultrasound Transit-Time-Technique, Eur. Phys. J. Spec. Top., 2013, vol. 220, no. 1, pp. 53–62.ADSCrossRef
17.
Zurück zum Zitat Richter, T., Eckert, K., Yang, X., and Odenbach, S., Measuring the Diameter of Rising Gas Bubbles by Means of the Ultrasound Transit Time Technique, Nucl. Engin. Des., 2015, vol. 291, pp. 64–70.CrossRef Richter, T., Eckert, K., Yang, X., and Odenbach, S., Measuring the Diameter of Rising Gas Bubbles by Means of the Ultrasound Transit Time Technique, Nucl. Engin. Des., 2015, vol. 291, pp. 64–70.CrossRef
18.
Zurück zum Zitat Vogt, T., Andruszkiewicz, A., Eckert, K., Odenbach, S., Eckert, S., and Gerbeth, G., Ultrasonic Flow Measurements and Bubble Detection in Gas-Stirred Metallic Melts, Proc. 8th Int. Symp. on Ultrasonic Doppler Methods for Fluid Mechanics and Fluid Engineering, 2012, pp. 23–26. Vogt, T., Andruszkiewicz, A., Eckert, K., Odenbach, S., Eckert, S., and Gerbeth, G., Ultrasonic Flow Measurements and Bubble Detection in Gas-Stirred Metallic Melts, Proc. 8th Int. Symp. on Ultrasonic Doppler Methods for Fluid Mechanics and Fluid Engineering, 2012, pp. 23–26.
Metadaten
Titel
Ultrasonic Measurements of Two-Phase Flow
verfasst von
A. S. Strelnik
S. V. Dvoinishnikov
V. G. Meledin
V. V. Rakhmanov
G. V. Bakakin
I. K. Kabardin
O. G. Derzho
M. R. Gordienko
S. V. Kakaulin
Publikationsdatum
01.10.2021
Verlag
Pleiades Publishing
Erschienen in
Journal of Engineering Thermophysics / Ausgabe 4/2021
Print ISSN: 1810-2328
Elektronische ISSN: 1990-5432
DOI
https://doi.org/10.1134/S1810232821040111

Weitere Artikel der Ausgabe 4/2021

Journal of Engineering Thermophysics 4/2021 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.